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Preface

This volume was born from the experience of the authors as researchers and
educators, which suggests that many students of data mining are handicapped
in their research by the lack of a formal, systematic education in its mathe-
matics.

The data mining literature contains many excellent titles that address the
needs of users with a variety of interests ranging from decision making to pat-
tern investigation in biological data. However, these books do not deal with
the mathematical tools that are currently needed by data mining researchers
and doctoral students. We felt it timely to produce a book that integrates
the mathematics of data mining with its applications. We emphasize that this
book is about mathematical tools for data mining and not about data mining
itself; despite this, a substantial amount of applications of mathematical con-
cepts in data mining are presented. The book is intended as a reference for
the working data miner.

In our opinion, three areas of mathematics are vital for data mining: set
theory, including partially ordered sets and combinatorics; linear algebra, with
its many applications in principal component analysis and neural networks;
and probability theory, which plays a foundational role in statistics, machine
learning and data mining.

This volume is dedicated to the study of set-theoretical foundations of data
mining. Two further volumes are contemplated that will cover linear algebra
and probability theory.

The first part of this book, dedicated to set theory, begins with a study of
functions and relations. Applications of these fundamental concepts to such is-
sues as equivalences and partitions are discussed. Also, we prepare the ground
for the following volumes by discussing indicator functions, fields and σ-fields,
and other concepts.

In this part, we have also included a précis of universal and linear algebra
that covers the needs of subsequent chapters. This part concludes with a
chapter on graphs and hypergraphs.
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The second part is centered around partially ordered sets. We present alge-
braic structures closely related to partial orders, namely lattices, and Boolean
algebras. We study basic issues about lattices, such as their dual roles as
special partially ordered sets and algebraic structures, the theory of complete
lattices and Galois connections, and their applications to the study of associa-
tion rules. Special attention is paid to Boolean algebras which are of increasing
interest for data mining because they allow the discovery of minimal sets of
features necessary for explaining observations and the discovery of hidden
patterns.

An introduction to topology and measure theory, which is essential for the
study of various concepts of dimension and the recent preoccupations of data
mining researchers with the applications of fractal theory to data mining, is
also a component of this part.

A variety of applications in data mining are discussed, such as the notion of
entropy, presented in a new algebraic framework related to partitions rather
than random distributions, levelwise algorithms that generalize the Apriori
technique, and generalized measures and their use in the study of frequent
item sets. This part concludes with a chapter on rough sets.

The third part is focused on metric spaces. Metrics play an important role
in clustering, classification, and certain data preprocessing techniques. We
study a variety of concepts related to metrics, from dissimilarities to metrics,
tree metrics, and ultrametrics. This chapter is followed by an application chap-
ter dedicated to clustering that includes basic types of clustering algorithms,
limitations of clustering, and techniques for evaluating cluster quality.

The fourth part focuses on combinatorics, an area of mathematics dedi-
cated to the study of finite collections of objects that satisfy certain criteria.
The main topics discussed are the inclusion-exclusion principle, combinatorics
of partitions, counting problems related to collections of sets, and the Vapnik-
Chervonenkis dimension of collections of sets.

Each chapter ends with suggestions for further reading. The book contains
more than 400 exercises; they form an integral part of the material. Some of the
exercises are in reality supplemental material. For these, we include solutions.
The mathematics required for making the best use of our book is a typical
three-semester sequence in calculus.

We would like to thank Catherine Brett and Frank Ganz from Springer-
Verlag for their professionalism and helpfulness.

Boston and Villeneuve d’Ascq Dan A. Simovici
January 2008 Chabane Djeraba
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Set Theory
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Sets, Relations, and Functions

1.1 Introduction

In this chapter, dedicated to set-theoretical bases of data mining, we assume
that the reader is familiar with the notion of a set, membership of an element
in a set, and elementary set theory. After a brief review of set-theoretical
operations we discuss collections of sets, ordered pairs, and set products.

The Axiom of Choice, a basic principle used in many branches of math-
ematics, is discussed in Section 1.4. This subject is approached again in the
context of partially ordered sets in Chapter 4. Countable and uncountable
sets are presented in Section 1.5. An introductory section on elementary com-
binatorics is expanded in Chapter 14. Finally, we introduce the basics of the
relational database model.

1.2 Sets and Collections

If x is a member of a set S, this is denoted, as usual, by x ∈ S. To denote
that x is not a member of the set S, we write x �∈ S.

Throughout this book, we use standardized notations for certain important
sets of numbers:

C the set of complex numbers
R the set of real numbers
R≥0 the set of nonnegative real numbers
R>0 the set of positive real numbers
R̂≥0 the set R≥0 ∪ {+∞}
R̂ the set R ∪ {−∞,+∞}
Q the set of rational numbers
I the set of irrational numbers
Z the set of integers
N the set of natural numbers
N1 the set of positive natural numbers

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 1, c© Springer-Verlag London Limited 2008
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The usual order of real numbers is extended to the set R̂ by−∞ < x < +∞
for every x ∈ R. In addition, we assume that

x+∞ = ∞+ x = +∞,
x−∞ = −∞+ x = −∞,

for every x ∈ R. Also,

x · ∞ = ∞ · x =

{
+∞ if x > 0
−∞ if x < 0,

and

x · (−∞) = (−∞) · x =

{
−∞ if x > 0
∞ if x < 0.

Note that the product of 0 with either +∞ or −∞ is not defined. Division is
extended by x/+∞ = x/−∞ = 0 for every x ∈ R.

If S is a finite set, we denote by |S| the number of elements of S.
Sets may contain other sets as elements. For example, the set

C = {∅, {0}, {0, 1}, {0, 2}, {1, 2, 3}}

contains the empty set ∅ and {0}, {0, 1},{0, 2},{1, 2, 3} as its elements. We
refer to such sets as collections of sets or simply collections. In general, we use
calligraphic letters C,D, . . . to denote collections of sets.

If C and D are two collections, we say that C is included in D, or that C is
a subcollection of D, if every member of C is a member of D. This is denoted
by C ⊆ D.

Two collections C and D are equal if we have both C ⊆ D and D ⊆ C.
This is denoted by C = D.

Definition 1.1. Let C be a collection of sets. The union of C, denoted by
⋃

C,
is the set defined by ⋃

C = {x | x ∈ S for some S ∈ C}.

If C is a nonempty collection, its intersection is the set
⋂

C given by⋂
C = {x | x ∈ S for every S ∈ C}.

If C = {S, T}, we have x ∈
⋃

C if and only if x ∈ S or x ∈ T and x ∈
⋃

C

if and only if x ∈ S and y ∈ T . The union and the intersection of this two-set
collection are denoted by S ∪ T and S ∩ T and are referred to as the union
and the intersection of S and T , respectively.

We give, without proof, several properties of union and intersection of sets:
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1. S ∪ (T ∪ U) = (S ∪ T ) ∪ U (associativity of union),
2. S ∪ T = T ∪ S (commutativity of union),
3. S ∪ S = S (idempotency of union),
4. S ∪ ∅ = S,
5. S ∩ (T ∩ U) = (S ∩ T ) ∩ U (associativity of intersection),
6. S ∩ T = T ∩ S (commutativity of intersection),
7. S ∩ S = S (idempotency of intersection),
8. S ∩ ∅ = ∅,

for all sets S, T, U .
The associativity of union and intersection allows us to denote unambigu-

ously the union of three sets S, T, U by S∪T ∪U and the intersection of three
sets S, T, U by S ∪ T ∪ U .

Definition 1.2. The sets S and T are disjoint if S ∩ T = ∅.
A collection of sets C is said to be a collection of pairwise disjoint sets if

for every S and T in C, if S �= T , S and T are disjoint.

Definition 1.3. Let S and T be two sets. The difference of S and T is the
set S − T defined by

S − T = {x ∈ S | x �∈ T}.

When the set S is understood from the context, we write T for S−T , and
we refer to the set T as the complement of T with respect to S or simply the
complement of T .

The relationship between set difference and set union and intersection is
given in the following theorem.

Theorem 1.4. For every set S and nonempty collection C of sets, we have

S −
⋃

C =
⋂
{S − C | C ∈ C},

S −
⋂

C =
⋃
{S − C | C ∈ C}.

Proof. We leave the proof of these equalities to the reader. 	


Corollary 1.5. For any sets S, T, U , we have

S − (T ∪ U) = (S − T ) ∩ (S − U),
S − (T ∩ U) = (S − T ) ∪ (S − U).

Proof. The corollary follows immediately from Theorem 1.4 by choosing C =
{T,U}. 	


With the notation previously introduced for the complement of a set, the
equalities of Corollary 1.5 become
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T ∪ U = T ∩ U,
T ∩ U = T ∪ U.

The link between union and intersection is given by the distributivity
properties contained in the following theorem.

Theorem 1.6. For any collection of sets C and set T , we have(⋃
C
)
∩ T =

⋃
{C ∩ T | C ∈ C}.

If C is nonempty, we also have(⋂
C
)
∪ T =

⋂
{C ∪ T | C ∈ C}.

Proof. We shall prove only the first equality; the proof of the second one is
left as an exercise for the reader.

Let x ∈ (
⋃

C)∩T . This means that x ∈
⋃

C and x ∈ T . There is a set C ∈ C

such that x ∈ C; hence, x ∈ C ∩ T , which implies x ∈
⋃
{C ∩ T | C ∈ C}.

Conversely, if x ∈
⋃
{C ∩T | C ∈ C}, there exists a member C ∩T of this

collection such that x ∈ C ∩ T , so x ∈ C and x ∈ T . It follows that x ∈
⋃

C,
and this, in turn, gives x ∈ (

⋃
C) ∩ T . 	


Corollary 1.7. For any sets T , U , V , we have

(U ∪ V ) ∩ T = (U ∩ T ) ∪ (V ∩ T ),
(U ∩ V ) ∪ T = (U ∪ T ) ∩ (V ∪ T ).

Proof. The corollary follows immediately by choosing C = {U, V } in Theo-
rem 1.6. 	


Note that if C and D are two collections such that C ⊆ D, then⋃
C ⊆

⋃
D

and ⋂
D ⊆

⋂
C.

We initially excluded the empty collection from the definition of the intersec-
tion of a collection. However, within the framework of collections of subsets of
a given set S, we will extend the previous definition by taking

⋂
∅ = S for the

empty collection of subsets of S. This is consistent with the fact that ∅ ⊆ C

implies
⋂

C ⊆ S.
The symmetric difference of sets denoted by ⊕ is defined by

U ⊕ V = (U − V ) ∪ (V − U)

for all sets U, V .
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Theorem 1.8. For all sets U, V, T , we have
(i) U ⊕ U = ∅;
(ii) U ⊕ V = V ⊕ T ;
(iii) (U ⊕ V )⊕ T = U ⊕ (V ⊕ T ).

Proof. The first two parts of the theorem are direct applications of the defini-
tion of ⊕. We leave to the reader the proof of the third part (the associativity
of ⊕).

The next theorem allows us to introduce a type of set collection of funda-
mental importance.

Theorem 1.9. Let {{x, y}, {x}} and {{u, v}, {u}} be two collections such that
{{x, y}, {x}} = {{u, v}, {u}}. Then, we have x = u and y = v.

Proof. Suppose that {{x, y}, {x}} = {{u, v}, {u}}.
If x = y, the collection {{x, y}, {x}} consists of a single set, {x}, so

the collection {{u, v}, {u}} will also consist of a single set. This means that
{u, v} = {u}, which implies u = v. Therefore, x = u, which gives the desired
conclusion because we also have y = v.

If x �= y, then neither (x, y) nor (u, v) are singletons. However, they both
contain exactly one singleton, namely {x} and {u}, respectively, so x = u.
They also contain the equal sets {x, y} and {u, v}, which must be equal. Since
v ∈ {x, y} and v �= u = x, we conclude that v = y. 	


Definition 1.10. An ordered pair is a collection of sets {{x, y}, {x}}.

Theorem 1.9 implies that for an ordered pair {{x, y}, {x}}, x and y are
uniquely determined. This justifies the following definition.

Definition 1.11. Let {{x, y}, {x}} be an ordered pair. Then x is the first
component of p and y is the second component of p.

From now on, an ordered pair {{x, y}, {x}} will be denoted by (x, y). If
both x, y ∈ S, we refer to (x, y) as an ordered pair on the set S.

Definition 1.12. Let C and D be two collections of sets such that
⋃

C =
⋃

D.
D is a refinement of C if, for every D ∈ D, there exists C ∈ C such that D ⊆ C.

This is denoted by C � D.

Example 1.13. Consider the collection C = {(a,∞) | a ∈ R} and D = {(a, b) |
a, b ∈ R, a < b}. It is clear that

⋃
C =

⋃
D = R.

Since we have (a, b) ⊆ (a,∞) for every a, b ∈ R such that a < b, it follows
that D is a refinement of C.

Definition 1.14. A collection of sets C is hereditary if U ∈ C and W ⊆ U
implies W ∈ C.
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Example 1.15. Let S be a set. The collection of subsets of S, denoted by P(S),
is a hereditary collection of sets since a subset of a subset T of S is itself a
subset of S.

The set of subsets of S that contain k elements is denoted by Pk(S).
Clearly, for every set S, we have P0(S) = {∅} because there is only one
subset of S that contains 0 elements, namely the empty set. The set of all
finite subsets of a set S is denoted by Pfin(S). It is clear that Pfin(S) =⋃
k ∈ NPk(S).

Example 1.16. If S = {a, b, c}, then P(S) consists of the following eight sets:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

For the empty set, we have P(∅) = {∅}.

Definition 1.17. A collection C has finite character if C ∈ C if and only if
every finite subset of C belongs to C.

It is clear that, for a collection C of finite character, if C ∈ C and D ⊆ C,
then we also have D ∈ C. In other words, every collection of finite character
is hereditary.

Theorem 1.18. Let C be a collection of finite character that consists of sub-
sets of a set S. If U0, . . . , Un, . . . are members of C such that U0 ⊆ · · · ⊆ Un ⊆
· · · , then U =

⋃
{Ui | i ≥ 0} ∈ C.

Proof. Let W = {wi | 0 ≤ i ≤ n − 1} be a finite subset of U . For every
w� ∈ W , let w� be the least integer such that w� ∈ Uq�

for 0 ≤ � ≤ n − 1. If
q = max{q0, . . . , qk−1}, then W ⊆ Uq, so W ∈ C. Since every finite subset of
U belongs to C, we obtain U ∈ C. 	


Definition 1.19. Let C be a collection of sets and let K be a set. The trace
of the collection C on the set K is the collection {C ∩K | C ∈ C}.

An alternative notation for CK is C �K , a notation that we shall use when the
collection C is adorned by other subscripts.

We conclude this presentation of collections of sets with two more opera-
tions on collections of sets.

Definition 1.20. Let C and D be two collections of sets. The collections C∨D,
C ∧D, and C−D are given by

C ∨D = {C ∪D | C ∈ C and D ∈ D},
C ∧D = {C ∩D | C ∈ C and D ∈ D},
C−D = {C −D | C ∈ C and D ∈ D}.
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Example 1.21. Let C and D be the collections of sets defined by

C = {{x}, {y, z}, {x, y}, {x, y, z}},
D = {{y}, {x, y}, {u, y, z}}.

We have

C ∨D = {{x, y}, {y, z}, {x, y, z}, {u, y, z}, {u, x, y, z}},
C ∧D = {∅, {x}, {y}, {x, y}, {y, z}},
C−D = {∅, {x}, {z}, {x, z}},
D− C = {∅, {u}, {x}, {y}, {u, z}, {u, y, z}}.

Unlike “∪” and “∩”, the operations “∨” and “∧” between collections of
sets are not idempotent. Indeed, we have, for example,

D ∨D = {{y}, {x, y}, {u, y, z}, {u, x, y, z}} �= D.

The trace CK of a collection C on K can be written as CK = C ∧ {K}.

1.3 Relations and Functions

This section covers a number of topics that are derived from the notion of
relation.

1.3.1 Cartesian Products of Sets

Definition 1.22. Let X and Y be two sets. The Cartesian product of X and
Y is the set X × Y , which consists of all pairs (x, y) such that x ∈ X and
y ∈ Y .

If either X = ∅ or Y = ∅, then X × Y = ∅.

Example 1.23. Consider the setsX = {a, b, c} and Y = {0, 1}. Their Cartesian
product is the set:

X × Y = {(x, 0), (y, 0), (z, 0), (x, 1), (y, 1), (z, 1)}.

Example 1.24. The Cartesian product R × R consists of all ordered pairs of
real numbers (x, y). Geometrically, each such ordered pair corresponds to a
point in a plane equipped with a system of coordinates. Namely, the pair
(u, v) ∈ R × R is represented by the point P whose x-coordinate is u and
y-coordinate is v (see Figure 1.1)

The Cartesian product is distributive over union, intersection, and differ-
ence of sets.
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�

�

�
P

x

y

Fig. 1.1. Cartesian representation of the pair (x, y).

Theorem 1.25. If � is one of ∪,∩, or −, then for any sets R, S, and T , we
have

(R � S)× T = (R× T ) � (S × T ),
T × (R � S) = (T ×R) � (T × S).

Proof. We prove only that (R − S) × T = (R × T ) − (S × T ). Let (x, y) ∈
(R − S) × T . We have x ∈ R − S and y ∈ T . Therefore, (x, y) ∈ R × T and
(x, y) �∈ S × T , which show that (x, y) ∈ (R× T )− (S × T ).

Conversely, (x, y) ∈ (R × T ) − (S × T ) implies x ∈ and y ∈ T and also
(x, y) �∈ S × T . Thus, we have x �∈ S, so (x, y) ∈ (R− S)× T . 	


It is not difficult to see that if R ⊆ R′ and S ⊆ S′, then R× S ⊆ R′ × S′.
We refer to this property as the monotonicity of the Cartesian product with
respect to set inclusion.

1.3.2 Relations

Definition 1.26. A relation is a set of ordered pairs.
If S and T are sets and ρ is a relation such that ρ ⊆ S × T , then we refer

to ρ as a relation from S to T .
A relation from S to S is called a relation on S.

P(S × T ) is the set of all relations from S to T .
Among the relations from S to T , we distinguish the empty relation ∅ and

the full relation S × T .
The identity relation of a set S is the relation ιS ⊆ S × S defined by

ιS = {(x, x) | x ∈ S}. The full relation on S is θS = S × S.
If (x, y) ∈ ρ, we sometimes denote this fact by x ρ y, and we write x � ρ y

instead of (x, y) �∈ ρ.
Example 1.27. Let S ⊆ R. The relation “less than” on S is given by

{(x, y) | x, y ∈ S and y = x+ z for some z ∈ R≥0}.
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Example 1.28. Consider the relation ν ⊆ Z×Q given by

ν = {(n, q) | n ∈ Z, q ∈ Q, and n ≤ q < n+ 1}.

We have (−3,−2.3) ∈ ν and (2, 2.3) ∈ ν. Clearly, (n, q) ∈ ν if and only if
n is the integral part of the rational number q.

Example 1.29. The relation δ is defined by

δ = {(m,n) ∈ N× N | n = km for some k ∈ N}.

We have (m,n) ∈ δ if m divides n evenly.

Note that if S ⊆ T , then ιS ⊆ ιT and θS ⊆ θT .

Definition 1.30. The domain of a relation ρ from S to T is the set

Dom(ρ) = {x ∈ S | (x, y) ∈ ρ for some y ∈ T}.

The range of ρ from S to T is the set

Ran(ρ) = {y ∈ T | (x, y) ∈ ρ for some x ∈ S}.

If ρ is a relation and S and T are sets, then ρ is a relation from S to T if
and only if Dom(ρ) ⊆ S and Ran(ρ) ⊆ T . Clearly, ρ is always a relation from
Dom(ρ) to Ran(ρ).

If ρ and σ are relations and ρ ⊆ σ, then Dom(ρ) ⊆ Dom(σ) and Ran(ρ) ⊆
Ran(σ).

If ρ and σ are relations, then so are ρ∪σ, ρ∩σ, and ρ−σ, and in fact if ρ
and σ are both relations from S to T , then these relations are also relations
from S to T .

Definition 1.31. Let ρ be a relation. The inverse of ρ is the relation ρ−1

given by
ρ−1 = {(y, x) | (x, y) ∈ ρ}.

The proofs of the following simple properties are left to the reader:
(i) Dom(ρ−1) = Ran(ρ),
(ii) Ran(ρ−1) = Dom(ρ),
(iii) if ρ is a relation from A to B, then ρ−1 is a relation from B to A, and
(iv) (ρ−1)−1 = ρ
for every relation ρ. Furthermore, if ρ and σ are two relations such that ρ ⊆ σ,
then ρ−1 ⊆ σ−1 (monotonicity of the inverse).

Definition 1.32. Let ρ and σ be relations. The product of ρ and σ is the
relation ρσ, where

ρσ = {(x, z) | for some y, (x, y) ∈ ρ, and (y, z) ∈ σ}.
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It is easy to see that Dom(ρσ) ⊆ Dom(ρ) and Ran(ρσ) ⊆ Ran(σ). Further,
if ρ is a relation from A to B and σ is a relation from B to C, then ρσ is a
relation from A to C.

Several properties of the relation product are given in the following theo-
rem.

Theorem 1.33. Let ρ1, ρ2, and ρ3 be relations. We have
(i) ρ1(ρ2ρ3) = (ρ1ρ2)ρ3 (associativity of relation product).
(ii) ρ1(ρ2∪ρ3) = (ρ1ρ2)∪(ρ1ρ3) and (ρ1∪ρ2)ρ3 = (ρ1ρ3)∪(ρ2ρ3) (distributivity

of relation product over union).
(iii) (ρ1ρ2)−1 = ρ−1

2 ρ−1
1 .

(iv) If ρ2 ⊆ ρ3, then ρ1ρ2 ⊆ ρ1ρ3 and ρ2ρ1 ⊆ ρ3ρ1 (monotonicity of relation
product).

(v) If S and T are any sets, then ιSρ1 ⊆ ρ1 and ρ1ιT ⊆ ρ1. Further, ιSρ1 = ρ1
if and only if Dom(ρ1) ⊆ S, and ρ1ιT = ρ1 if and only if Ran(ρ1) ⊆ T .
(Thus, ρ1 is a relation from S to T if and only if ιSρ1 = ρ1 = ρ1ιT .)

Proof. We prove (i), (ii), and (iv) and leave the other parts as exercises.
To prove Part (i), let (a, d) ∈ ρ1(ρ2ρ3). There is a b such that (a, b) ∈ ρ1

and (b, d) ∈ ρ2ρ3. This means that there exists c such that (b, c) ∈ ρ2 and
(c, d) ∈ ρ3. Therefore, we have (a, c) ∈ ρ1ρ2, which implies (a, d) ∈ (ρ1ρ2)ρ3.
This shows that ρ1(ρ2ρ3) ⊆ (ρ1ρ2)ρ3.

Conversely, let (a, d) ∈ (ρ1ρ2)ρ3. There is a c such that (a, c) ∈ ρ1ρ2
and (c, d) ∈ ρ3. This implies the existence of a b for which (a, b) ∈ ρ1 and
(b, c) ∈ ρ3. For this b, we have (b, d) ∈ ρ2ρ3, which gives (a, d) ∈ ρ1(ρ2ρ3).
We have proven the reverse inclusion, (ρ1ρ2)ρ3 ⊆ ρ1(ρ2ρ3), which gives the
associativity of relation product.

For Part (ii), let (a, c) ∈ ρ1(ρ2∪ρ3). Then, there is a b such that (a, b) ∈ ρ1
and (b, c) ∈ ρ2 or (b, c) ∈ ρ3. In the first case, we have (a, c) ∈ ρ1ρ2; in the
second, (a, c) ∈ ρ1ρ3. Therefore, we have (a, c) ∈ (ρ1ρ2)∪(ρ1ρ3) in either case,
so ρ1(ρ2 ∪ ρ3) ⊆ (ρ1ρ2) ∪ (ρ1ρ3).

Let (a, c) ∈ (ρ1ρ2) ∪ (ρ1ρ3). We have either (a, c) ∈ ρ1ρ2 or (a, c) ∈ ρ1ρ3.
In the first case, there is a b such that (a, b) ∈ ρ1 and (b, c) ∈ ρ2 ⊆ ρ2 ∪ ρ3.
Therefore, (a, c) ∈ ρ1(ρ2 ∪ ρ3). The second case is handled similarly. This
establishes

(ρ1ρ2) ∪ (ρ1ρ3) ⊆ ρ1(ρ2 ∪ ρ3).
The other distributivity property has a similar argument.

Finally, for Part (iv), let ρ2 and ρ3 be such that ρ2 ⊆ ρ3. Since ρ2∪ρ3 = ρ3,
we obtain from (ii) that

ρ1ρ3 = (ρ1ρ2) ∪ (ρ1ρ3),

which shows that ρ1ρ2 ⊆ ρ1ρ3. The second inclusion is proven similarly. 	


Definition 1.34. The n-power of a relation ρ ⊆ S × S is defined inductively
by ρ0 = ιS and ρn+1 = ρnρ for n ∈ N.
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Note that ρ1 = ρ0ρ = ιSρ = ρ for any relation ρ.

Example 1.35. Let ρ ⊆ R× R be the relation defined by

ρ = {(x, x+ 1) | x ∈ R}.

The zero-th power of ρ is the relation ι
R

. The second power of ρ is

ρ2 = ρ · ρ = {(x, y) ∈ R× R | (x, z) ∈ ρ and (z, y) ∈ ρ for some z ∈ R}.

In other words, ρ2 = {(x, x+ 2) | x ∈ R}. In general, ρn = {(x, x+ n) | x ∈
R}.

Definition 1.36. A relation ρ is a function if for all x, y, z, (x, y) ∈ ρ and
(x, z) ∈ ρ imply y = z; ρ is a one-to-one relation if, for all x, x′, and y,
(x, y) ∈ ρ and (x′, y) ∈ ρ imply x = x′.

Observe that ∅ is a function (referred to in this context as the empty func-
tion) because ∅ satisfies vacuously the defining condition for being a function.

Example 1.37. Let S be a set. The relation ρ on S × P(S) given by

ρ = {(x, {x}) | x ∈ S}

is a function.

Example 1.38. For every set S, the relation ιS is both a function and a one-to-
one relation. The relation ν from Example 1.28 is a one-to-one relation, but
it is not a function.

Theorem 1.39. For any relation ρ, ρ is a function if and only if ρ−1 is a
one-to-one relation.

Proof. Suppose that ρ is a function, and let (y1, x), (y2, x) ∈ ρ−1. Definition
1.31 implies that (x, y1), (x, y2) ∈ ρ; hence, y1 = y2 because ρ is a function.
This proves that ρ−1 is one-to-one.

Conversely, assume that ρ−1 is one-to-one and let (x, y1), (x, y2) ∈ ρ. Ap-
plying Definition 1.31, we obtain (y1, x), (y2, x) ∈ ρ−1 and, since ρ−1 is one-
to-one, we have y1 = y2. This shows that ρ is a function. 	


Example 1.40. We observed that the relation ν introduced in Example 1.28
is one-to-one. Therefore, its inverse ν−1 ⊆ Q × Z is a function. In fact, ν−1

associates to each rational number q its integer part �q�.

Definition 1.41. A relation ρ from S to T is total if Dom(ρ) = S and is
onto if Ran(ρ) = T .
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Any relation ρ is a total and onto relation from Dom(ρ) to Ran(ρ). If both
S and T are nonempty, then S × T is a total and onto relation from S to T .

It is easy to prove that a relation ρ from S to T is a total relation from S
to T if and only if ρ−1 is an onto relation from T to S.

If ρ is a relation, then one can determine whether or not ρ is a function or
is one-to-one just by looking at the ordered pairs of ρ. Whether ρ is a total
or onto relation from A to B depends on what A and B are.

Theorem 1.42. Let ρ and σ be relations.
(i) If ρ and σ are functions, then ρσ is also a function.
(ii) If ρ and σ are one-to-one relations, then ρσ is also a one-to-one relation.
(iii) If ρ is a total relation from R to S and σ is a total relation from S to T ,

then ρσ is a total relation from R to T .
(iv) If ρ is an onto relation from R to S and σ is an onto relation from S to

T , then ρσ is an onto relation from R to T .

Proof. To show Part (i), suppose that ρ and σ are both functions and that
(x, z1) and (x, z2) both belong to ρσ. Then, there exists a y1 such that (x, y1) ∈
ρ and (y1, z1) ∈ σ, and there exists a y2 such that (x, y2) ∈ ρ and (y2, z2) ∈ σ.
Since ρ is a function, y1 = y2, and hence, since σ is a function, z1 = z2, as
desired.

Part (ii) follows easily from Part (i). Suppose that relations ρ and σ are
one-to-one (and hence that ρ−1 and σ−1 are both functions). To show that
ρσ is one-to-one, it suffices to show that (ρσ)−1 = σ−1ρ−1 is a function. This
follows immediately from Part (i).

We leave the proofs for the last two parts of the theorem to the reader.
	


The properties of relations defined next allow us to define important classes
of relations.

Definition 1.43. Let S be a set and let ρ ⊆ S×S be a relation. The relation
ρ is:
(i) reflexive if (s, s) ∈ ρ for every s ∈ S;
(ii) irreflexive if (s, s) �∈ ρ for every s ∈ S;
(iii) symmetric if (s, s′) ∈ ρ implies (s′, s) ∈ ρ for s, s′ ∈ S;
(iv) antisymmetric if (s, s′), (s′, s) ∈ ρ implies s = s′ for s, s′ ∈ S;
(v) asymmetric if (s, s′) ∈ ρ implies (s′, s) �∈ ρ; and
(vi) transitive if (s, s′), (s′, s′′) ∈ ρ implies (s, s′′) ∈ ρ.

Example 1.44. The relation ιS is reflexive, symmetric, antisymmetric, and
transitive for any set S.

Example 1.45. The relation δ introduced in Example 1.29 is reflexive since
n · 1 = n for any n ∈ N.

Suppose that (m,n), (n,m) ∈ δ. There are p, q ∈ N such that mp = n and
nq = m. If n = 0, then this also implies m = 0; hence, m = n. Let us assume
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that n �= 0. The previous equalities imply nqp = n, and since n �= 0, we have
qp = 1. In view of the fact that both p and q belong to N, we have p = q = 1;
hence, m = n, which proves the antisymmetry of ρ.

Let (m,n), (n, r) ∈ δ. We can write n = mp and r = nq for some p, q ∈ N,
which gives r = mpq. This means that (m, r) ∈ δ, which shows that δ is also
transitive.

Definition 1.46. Let S and T be two sets and let ρ ⊆ S × T be a relation.
The image of an element s ∈ S under the relation ρ is the set ρ(s) = {t ∈

T | (s, t) ∈ ρ}.
The preimage of an element t ∈ T under ρ is the set {s ∈ S | (s, t) ∈ ρ},

which equals ρ−1(t), using the previous notation.
The collection of images of S under ρ is

IMρ = {ρ(s) | s ∈ S},

while the collection of preimages of T is

PIMρ = IMρ−1 = {ρ−1(t) | t ∈ T}.

If C and C′ are two collections of subsets of S and T , respectively, and C′ = IMρ

and C = PIMρ for some relation ρ ⊆ S × T , we refer to C′ as the dual class
relative to ρ of C.

Example 1.47. Any collection D of subsets of S can be regarded as the col-
lection of images under a suitable relation. Indeed, let C be such a collection.
Define the relation ρ ⊆ S×C as ρ = {(s, C) | s ∈ S,C ∈ C and c ∈ C}. Then,
IMρ consists of all subsets of P(C) of the form ρ(s) = {C ∈ C | s ∈ C} for
s ∈ S. It is easy to see that PIMρ(C) = C.

The collection IMρ defined in this example is referred to as the bi-dual
collection of C.

1.3.3 Functions

We saw that a function is a relation ρ such that, for every x in Dom(ρ), there
is only one y such that (x, y) ∈ ρ. In other words, a function assigns a unique
value to each member of its domain.

From now on, we will use the letters f, g, h, and k to denote functions, and
we will denote the identity relation ιS , which we have already remarked is a
function, by 1S .

If f is a function, then, for each x in Dom(f), we let f(x) denote the
unique y with (x, y) ∈ f , and we refer to f(x) as the image of x under f .

Definition 1.48. Let S and T be sets. A partial function from S to T is a
relation from S to T that is a function.

A total function from S to T (also called a function from S to T or a
mapping from S to T ) is a partial function from S to T that is a total relation
from S to T .
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The set of all partial functions from S to T is denoted by S � T and the
set of all total functions from S to T by S −→ T . We have S −→ T ⊆ S � T
for all sets S and T .

The fact that f is a partial function from S to T is indicated by writing
f : S � T rather than f ∈ S � T . Similarly, instead of writing f ∈ S −→ T ,
we use the notation f : S −→ T .

For any sets S and T , we have ∅ ∈ S � T . If either S or T is empty, then
∅ is the only partial function from S to T . If S = ∅, then the empty function
is a total function from S to any T . Thus, for any sets S and T , we have

S � ∅ = {∅},
∅ � T = {∅},
∅ −→ T = {∅}.

Furthermore, if S is nonempty, then there can be no (total) function from S
to the empty set, so we have

S −→ ∅ = ∅ (if S �= ∅).

Definition 1.49. A one-to-one function is called an injection.
A function f : S � T is called a surjection (from S to T ) if f is an onto

relation from S to T , and it is called a bijection (from S to T ) or a one-to-one
correspondence between S and T if it is total, an injection, and a surjection.

Using our notation for functions, we can restate the definition of injection
as follows: f is an injection if for all s, s′ ∈ Dom(f), f(s) = f(s′) implies
s = s′. Likewise, f : S � T is a surjection if for every t ∈ T there is an s ∈ S
with f(s) = t.

Example 1.50. Let S and T be two sets and assume that S ⊆ T . The contain-
ment mapping c : S −→ T defined by c(s) = s for s ∈ S is an injection. We
denote such a containment by c : S ↪→ T .

Example 1.51. Let m ∈ N be a natural number, m ≥ 2. Consider the function
rm : N −→ {0, . . . ,m−1}, where rm(n) is the remainder when n is divided by
m. Obviously, rm is well-defined since the remainder p when a natural number
is divided by m satisfies 0 ≤ p ≤ m − 1. The function rm is onto because of
the fact that, for any p ∈ {0, . . . ,m − 1}, we have rm(km + p) = p for any
k ∈ N.

For instance, if m = 4, we have r4(0) = r4(4) = r4(8) = · · · = 0, r4(1) =
r4(5) = r4(9) = · · · = 1, r4(2) = r4(6) = r4(10) = · · · = 2 and r4(3) = r4(7) =
r4(11) = · · · = 3.

Example 1.52. Let Pfin(N) be the set of finite subsets of N. Define the function
φ : Pfin(N) −→ N as
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φ(K) =

{
0 if K = ∅,∑p

i=1 2ni if K = {n1, . . . , np}.

It is easy to see that φ is a bijection.

Since a function is a relation, the ideas introduced in the previous section
for relations in general can be equally well applied to functions. In particular,
we can consider the inverse of a function and the product of two functions.

If f is a function, then, by Theorem 1.39, f−1 is a one-to-one relation;
however, f−1 is not necessarily a function. In fact, by the same theorem, if f
is a function, then f−1 is a function if and only if f is an injection.

Suppose now that f : S � T is an injection. Then, f−1 : T � S is also
an injection. Further, f−1 : T � S is total if and only if f : S � T is a
surjection, and f−1 : T � S is a surjection if and only if f : S � T is total. It
follows that f : S � T is a bijection if and only if f−1 : T � S is a bijection.

If f and g are functions, then we will always use the alternative notation
gf instead of the notation fg used for the relation product. We will refer to
gf as the composition of f and g rather than the product.

By Theorem 1.42, the composition of two functions is a function. In fact,
it follows from the definition of composition that

Dom(gf) = {s ∈ Dom(f) | f(s) ∈ Dom(g)}

and, for all s ∈ Dom(gf),
gf(s) = g(f(s)).

This explains why we use gf rather than fg. If we used the other notation, the
previous equation would become fg(s) = g(f(s)), which is rather confusing.

Definition 1.53. Let f : S −→ T . A left inverse (relative to S and T ) for f
is a function g : T −→ S such that gf = 1S. A right inverse (relative to S
and T ) for f is a function g : T −→ S such that fg = 1T .

Theorem 1.54. Let f : S −→ T .
(i) f is a surjection if and only if f has a right inverse (relative to S and T ).
(ii) If S is nonempty, then f is an injection if and only if f has a left inverse

(relative to S and T ).

Proof. To prove the first part, suppose first that f : S −→ T is a surjection.
Define a function g : T −→ S as follows: For each y ∈ T , let g(y) be some
arbitrarily chosen element x ∈ S such that f(x) = y. (Such an x exists because
f is surjective.) Then, by definition, f(g(y)) = y for all y ∈ T , so g is a right
inverse for f . Conversely, suppose that f has a right inverse g. Let y ∈ T
and let x = g(y). Then, we have f(x) = f(g(y)) = 1T (y) = y. Thus, f is
surjective.

To prove the second part, first suppose that f : S −→ T is an injection
and S is nonempty. Let x0 be some fixed element of S. Define a function
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g : T −→ S as follows: If y ∈ Ran(f), then, since f is an injection, there
is a unique element x ∈ S such that f(x) = y. Define g(y) to be this x. If
y ∈ T − Ran(f), define g(y) = x0. Then, it is immediate from the definition
of g that, for all x ∈ S, g(f(x)) = x, so g is a left inverse for f . Conversely,
suppose that f has a left inverse g. For all x1, x2 ∈ S, if f(x1) = f(x2), we
have x1 = 1S(x1) = g(f(x1)) = g(f(x2)) = 1S(x2) = x2. Hence, f is an
injection. 	


We have used in this proof (without an explicit mention) an axiom of set
theory that we discuss in Section 1.4. For a proof that makes explicit use of
this axiom, see Supplement 38.

Theorem 1.55. Let f : S −→ T . Then, the following statements are equiva-
lent:
(i) f is a bijection.
(ii) There is a function g : T −→ S that is both a left and a right inverse for

f .
(iii) f has both a left inverse and a right inverse.

Further, if f is a bijection, then f−1 is the only left inverse that f has,
and it is the only right inverse that f has.

Proof. (i) implies (ii): If f : S −→ B is a bijection, then f−1 : T −→ S is both
a left and a right inverse for f .

(ii) implies (iii): This implication is obvious.
(iii) implies (i): If f has both a left inverse and a right inverse and S �= ∅,

then it follows immediately from Theorem 1.54 that f is both injective and
surjective, so f is a bijection. If S = ∅, then the existence of a left inverse
function from T to S implies that T is also empty; this means that f is the
empty function, which is a bijection from the empty set to itself.

Finally, suppose that f : S −→ T is a bijection and that g : T −→ S is a
left inverse for f . Then, we have

f−1 = 1Sf
−1 = (gf)f−1 = g(ff−1) = g1T = g.

Thus, f−1 is the unique left inverse for f . A similar proof shows that f−1 is
the unique right inverse for f . 	


To prove that f : S −→ T is a bijection one could prove directly that f
is both one-to-one and onto. Theorem 1.55 provides an alternative way. If we
can define a function g : T −→ S and show that g is both a left and a right
inverse for f , then f is a bijection and g = f−1.

The next definition provides another way of viewing a subset of a set S.

Definition 1.56. Let S be a set. An indicator function over S is a function
I : S −→ {0, 1}.

If P is a subset of S, then the indicator function of P (as a subset of S)
is the function IP : S −→ {0, 1} given by
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IP (x) =

{
1 if x ∈ P
0 otherwise,

for every x ∈ S.

It is easy to see that

IP∩Q(x) = IP (x) · IQ(x),
IP∪Q(x) = IP (x) + IQ(x)− IP (x) · IQ(x),
IP̄ (x) = 1− IP (x),

for every P,Q ⊆ S and x ∈ S.
The relationship between the subsets of a set and indicator functions de-

fined on that set is discussed next.

Theorem 1.57. There is a bijection Ψ : P(S) −→ (S −→ {0, 1}) between the
set of subsets of S and the set of indicator functions defined on S.

Proof. For P ∈ P(S), define Ψ(P ) = IP . The mapping Ψ is one-to-one. Indeed,
assume that IP = IQ, where P,Q ∈ P(S). We have x ∈ P if and only if
IP (x) = 1, which is equivalent to IQ(x) = 1. This happens if and only if
x ∈ Q; hence, P = Q so Ψ is one-to-one.

Let f : S −→ {0, 1} be an arbitrary function. Define the set Tf = {x ∈
S | f(x) = 1}. It is easy to see that f is the indicator function of the set Tf .
Hence, Ψ(Tf ) = f , which shows that the mapping Ψ is also onto and hence it
is a bijection. 	


Definition 1.58. A simple function on a set S is a function f : S −→ R that
has a finite range.

Simple functions are linear combinations of indicator functions, as we show
next.

Theorem 1.59. Let f : S −→ R be a simple function such that Ran(f) =
{y1, . . . , yn} ⊆ R. Then,

f =
n∑

i=1

yiIf−1(yi).

Proof. Let x ∈ R. If f(x) = yj , then

If−1(y�)(x) =

{
1 if � = j,

0 otherwise.

Thus, (
n∑

i=1

yiIf−1(yi)

)
(x) = yj ,

which shows that f(x) =
(∑n

i=1 yiIf−1(yi)

)
(x). 	
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Theorem 1.60. Let f1, . . . , fk be k simple functions defined on a set S. If
g : R

k −→ R is an arbitrary function, then g(f1, . . . , fk) is a simple function
on S and we have

g(f1, . . . , fk)(x) =
m1∑

p1=1

· · ·
mk∑

pk=1

g(y1p1 , . . . , ykpk
)If−1

1 (y1p1 )∩···∩f−1
k (ykpk

)(x)

for every x ∈ S, where Ran(fi) = {yi1, . . . , yimi
} for 1 ≤ i ≤ k.

Proof. It is clear that the function g(f1, . . . , fk) is a simple function because
it has a finite range. Moreover, if Ran(fi) = {yi1, . . . , yimi

}, then the values of
g(f1, . . . , fk) have the form g(y1p1 , . . . , ykpk

), and g(f1, . . . , fk) can be written
as

g(f1, . . . , fk)(x)

=
m1∑

p1=1

· · ·
mk∑

pk=1

g(y1p1 , . . . , ykpk
)If−1

1 (y1p1 )(x) · · · If−1
k (ykpk

)(x)

=
m1∑

p1=1

· · ·
∑

pk = 1mkg(y1p1 , . . . , ykpk
)If−1

1 (y1p1 )∩···∩f−1
k (ykpk

)(x)

for x ∈ S. 	

Theorem 1.60 justifies the following statement.

Theorem 1.61. If f1, . . . , fk are simple functions on a set S, then

max{f1(x), . . . , fk(x)},
min{f1(x), . . . , fk(x)},
f1(x) + · · ·+ fk(x),
f1(x) · · · · · fk(x)

are simple functions on S.

Proof. The statement follows immediately from Theorem 1.60. 	


Functions and Sets

Let f : S −→ T be a function. If L is a subset of S, we define the subset f(L)
of T as f(L) = {f(s) | s ∈ L}. The set f(L) is the image of L under f .

Also, if H is a subset of T , we define the set f−1(H) as the subset of S
given by f−1(H) = {s ∈ S | f(s) ∈ H} and we refer to this set as the inverse
image of H under f .

It is easy to verify that L ⊆ L′ implies f(L) ⊆ f(L′) (monotonicity of set
images) and H ⊆ H ′ implies f−1(H) ⊆ f−1(H ′) for every L,L′ ∈ P(S) and
H,H ′ ∈ P(T ) (monotonicity of set inverse images).

Next, we discuss the behavior of images and inverse images of sets with
respect to union and intersection.
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Theorem 1.62. Let f : S −→ T be a function. If C is a collection of subsets
of S, then we have
(i) f(

⋃
C) =

⋃
{f(L) | L ∈ C} and

(ii) f(
⋂

C) ⊆
⋂
{f(L) | L ∈ C}.

Proof. Note that L ⊆
⋃

C for every L ∈ C. The monotonicity of set images
implies f(L) ⊆ f(

⋃
C). Therefore,

⋃
{f(L) | L ∈ C} ⊆ f(

⋃
C).

Conversely, let t ∈ f(
⋃

C). There is s ∈
⋃

C such that t = f(s). Further,
since s ∈

⋃
C we have s ∈ L, for some L ∈ C, which shows that f ∈ f(L) ⊆⋃

{f(L) | L ∈ C}, which implies the reverse inclusion f(
⋃

C) ⊆
⋃
{f(L) |

L ∈ C}.
We leave to the reader the second part of the theorem. 	


Theorem 1.63. Let f : S −→ T and g : T −→ U be two functions. We have
f−1(g−1(X)) = (gf)−1(X) for every subset X of U .

Proof. We have s ∈ f−1(g−1(X)) if and only if f(s) ∈ g−1(X), which is
equivalent to g(f(s)) ∈ X, that is, with s ∈ (gf)−1(X). The equality of the
theorem follows immediately. 	


Theorem 1.64. If f : S −→ T is an injective function, then f(
⋂

C) =⋂
{f(L) | L ∈ C} for every collection C of subsets of S.

Proof. By Theorem 1.62, it suffices to show that for an injection f we have⋂
{f(L) | L ∈ C} ⊆ f(

⋂
C).

Let y ∈
⋂
{f(L) | L ∈ C}. For each set L ∈ C there exists xL ∈ L such that

f(xL) = y. Since f is an injection, it follows that there exists x ∈ S such that
xL = x for every L ∈ C. Thus, x ∈

⋂
C, which implies that y = f(x) ∈ f(

⋂
C).

This allows us to obtain the desired inclusion. 	


Theorem 1.65. Let f : S −→ T be a function. If D is a collection of subsets
of T , then we have
(i) f−1(

⋃
D) =

⋃
{f−1(H) | H ∈ D} and

(ii) f−1(
⋂

D) =
⋂
{f−1(H) | H ∈ D}.

Proof. We prove only the second part of the theorem and leave the first part
to the reader.

Since
⋂

D ⊆ H for every H ∈ D, we have f−1(
⋂

D) ⊆ f−1(H) due to the
monotonicity of set inverse images. Therefore, f−1(

⋂
D) ⊆

⋂
{f−1(H) | H ∈

D}.
To prove the reverse inclusion, let s ∈

⋂
{f−1(H) | H ∈ D}. This means

that s ∈ f−1(H) and therefore f(s) ∈ H for every H ∈ D. This implies
f(s) ∈

⋂
D, so s ∈ f−1(

⋂
D), which yields the reverse inclusion

⋂
{f−1(H) |

H ∈ D} ⊆ f−1(
⋂

D). 	

Note that images and inverse images behave differently with respect to

intersection. The inclusion contained by the second part of Theorem 1.62
may be strict, as the following example shows.
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Example 1.66. Let S = {s0, s1, s2}, T = {t0, t1}, and f : S −→ T be the
function defined by f(s0) = f(s1) = t0 and f(s2) = t1. Consider the collection
C = {{s0}, {s1, s2}}. Clearly,

⋂
C = ∅, so f(

⋂
C) = ∅. However, f({s0}) =

{t0} and f({s1, s2}) = {t0, t1}, which shows that
⋂
{f(L) | L ∈ C} = {t0}.

Theorem 1.67. Let f : S −→ T be a function and let U and V be two subsets
of T . Then, f−1(U − V ) = f−1(U)− f−1(V ).

Proof. Let s ∈ f−1(U−V ). We have f(s) ∈ U−V , so f(s) ∈ U and f(s) �∈ V .
This implies s ∈ f−1(U) and s �∈ f−1(V ), so s ∈ f−1(U) − f−1(V ), which
yields the inclusion

f−1(U − V ) ⊆ f−1(U)− f−1(V ).

Conversely, let s ∈ f−1(U) − f−1(V ). We have s ∈ f−1(U) and s �∈
f−1(V ) which amount to f(s) ∈ U and f(s) �∈ V , respectively. Therefore,
f(s) ∈ U − V , which implies s ∈ f−1(U − V ). This proves the inclusion:

f−1(U)− f−1(V ) ⊆ f−1(U − V ),

which concludes the argument. 	


Corollary 1.68. Let f : S −→ T be a function and let V be a subset of T .
We have f−1(V̄ ) = f−1(V ).

Proof. Note that f−1(T ) = S for any function f : S −→ T . Therefore, by
choosing U = T in the equality of Theorem 1.67, we have

S − f−1(V ) = f−1(T − V ),

which is precisely the statement of this corollary. 	


1.3.4 Finite and Infinite Sets

Functions allow us to compare sizes of sets. This idea is formalized next.

Definition 1.69. Two sets S and T are equinumerous if there is a bijection
f : S −→ T .

The notion of equinumerous sets allows us to introduce formally the no-
tions of finite and infinite sets.

Definition 1.70. A set S is finite if there exists a natural number n ∈ N such
that S is equinumerous with the set {0, . . . , n−1}. Otherwise, the set S is said
to be infinite.

If S is an infinite set and T is a subset of S such that S − T is finite, then
we refer to T as a cofinite set.
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Theorem 1.71. If n ∈ N and f : {0, . . . , n − 1} −→ {0, . . . , n − 1} is an
injection, then f is also a surjection.

Proof. Let f : {0, . . . , n−1} −→ {0, . . . , n−1} be an injection. Suppose that f
is not a surjection, that is, there is k such that 0 ≤ k ≤ n−1 and k �∈ Ran(f).
Since f is injective, the elements f(0), f(1), f(n−1) are distinct; this leads to
a contradiction because k is not one of them. Thus, f is a surjection. 	


Theorem 1.72. For any natural numbers m,n ∈ N, the following statements
hold:
(i) There exists an injection from {0, . . . , n−1} to {0, . . . ,m−1} if and only

if n ≤ m.
(ii) There exists a surjection from {0, . . . , n− 1} to {0, . . . ,m− 1} if and only

if n ≤ m > 0 or if n = m = 0.
(iii) There exists a bijection between {0, . . . , n− 1} and {0, . . . ,m − 1} if and

only if n = m.

Proof. For the first part of the theorem, if n ≤ m, then the mapping f :
{0, . . . , n − 1} −→ {0, . . . ,m − 1} given by f(k) = k is the desired injection.
Conversely, if f : {0, . . . , n − 1} −→ {0, . . . ,m − 1} is an injection, the list
(f(0), . . . , f(n − 1)) consists of n distinct elements and is a subset of the set
{0, . . . ,m− 1}. Therefore, n ≤ m.

For the second part, if n = m = 0, then the empty function is a surjection
from {0, . . . , n − 1} to {0, . . . ,m − 1}. If n ≥ m > 0, then we can define a
surjection f : {0, . . . , n− 1} −→ {0, . . . ,m− 1} by defining

f(r) =

{
r if 0 ≤ r ≤ m− 1,
0 if m ≤ r ≤ n− 1.

Conversely, suppose that f : {0, . . . , n− 1} −→ {0, . . . ,m− 1} is a surjection.
Define g : {0, . . . ,m−1} −→ {0, . . . , n−1} by defining g(r), for 0 ≤ r ≤ m−1,
to be the least t, 0 ≤ t ≤ n − 1, for which f(t) = r. (Such t exists since f is
a surjection.) Then, g is an injection, and hence, by the first part, m ≤ n. In
addition, if m = 0, then we must also have n = 0 or else the function f could
not exist.

For Part (iii), if n = m, then the identity function is the desired bijection.
Conversely, if there is a bijection from {0, . . . , n− 1} to {0, . . . ,m− 1}, then
by the first part, n ≤ m, while by the second part, n ≥ m, so n = m. 	


Corollary 1.73. If S is a finite set, then there is a unique natural number n
for which there exists a bijection from {0, . . . , n− 1} to S.

Proof. Suppose that f : {0, . . . , n− 1} −→ S and g : {0, . . . ,m− 1} −→ S are
both bijections. Then, g−1f : {0, . . . , n− 1} −→ {0, . . . ,m− 1} is a bijection,
so n = m. 	


If S is a finite set, we denote by |S| the unique natural number that exists
for S according to Corollary 1.73. We refer to |S| as the cardinality of S.
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Corollary 1.74. Let S and T be finite sets.
(i) There is an injection from S to T if and only if |S| ≤ |T |.
(ii) There is a surjection from S to T if and only if |S| ≥ |T |.
(iii) There is a bijection from S to B if and only if |S| = |T |.

Proof. Let |S| = n and |T | = m and let f : {0, . . . , n − 1} −→ S and g :
{0, . . . ,m − 1} −→ T be bijections. If h : S −→ T is an injection, then
g−1hf : {0, . . . , n− 1} −→ {0, . . . ,m− 1} is an injection, so by Theorem 1.72,
Part (i), n ≤ m, i.e., |S| ≤ |T |. Conversely, if n ≤ m, then there is an
injection k : {0, . . . , n − 1} −→ {0, . . . ,m − 1}, namely the inclusion, and
gkf−1 : S −→ T is an injection.

The other parts are proven similarly. 	


Corollary 1.75. Let S and T be two finite sets with the same cardinality. If
h : S −→ T , then the following are equivalent:
(i) h is an injection,
(ii) h is a surjection, and
(iii) h is a bijection.

Proof. Let |S| = |T | = n and let f : {0, . . . , n− 1} −→ S and g : {0, . . . ,m−
1} −→ T be bijections. If h is an injection, then k = g−1hf : {0, . . . , n−1} −→
{0, . . . , n− 1} is also an injection, so, by Theorem 1.72, k is a surjection. But
then h = gkf−1 is also a surjection.

If h is a surjection, then, for each b ∈ T , h−1({b}) is nonempty. Thus,
since f is a surjection, for each b ∈ T , there is some i, 0 ≤ i ≤ n − 1, with
h(f(i)) = b. We may thus define k : T −→ S by defining k(b) to be f(i),
where i is the least number with h(f(i)) = b. Then, k is a right inverse for
h, and k is an injection. By the first part of the proof, k is a surjection and
hence a bijection, and h, being a left inverse for k, must be k−1, so h is also
a bijection.

Finally, if h is a bijection, then h is an injection. 	


1.3.5 Generalized Set Products and Sequences

The Cartesian product of two sets was introduced as the set of ordered pairs
of elements of these sets. Here we present a definition of an equivalent notion
that can be generalized to an arbitrary family of sets.

Definition 1.76. Let S and T be two sets. The set product of S and T is
the set of functions of the form p : {0, 1} −→ S ∪ T such that f(0) ∈ S and
f(1) ∈ T .

Note that the function Φ : P −→ S × T given by Φ(p) = (p(0), p(1)) is a
bijection between the set product P of the sets S and T and the Cartesian
product S × T . Thus, we can regard a function p in the set product of S and
T as an alternate representation of an ordered pair.
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Definition 1.77. Let C = {Si | i ∈ I} be a collection of sets indexed by a set
I. The set product of C is the set

∏
C of all functions f : I −→

⋃
C such that

f(i) ∈ Si for every i ∈ I.

Example 1.78. Let C = {{0, . . . , i} | i ∈ N} be a family of sets indexed by
the set of natural numbers. Clearly, we have

⋃
C = N. The set

∏
C consists

of those functions f such that f(i) ∈ {0, . . . , i} for i ∈ N, that is, of those
functions such that f(i) ≤ i for every i ∈ I.

Definition 1.79. Let C = {Si | i ∈ I} be a collection of sets indexed by a set
I and let i be an element of I. The ith projection is the function pi :

∏
C −→ Si

defined by pi(f) = f(i) for every f ∈
∏

C.

Theorem 1.80. Let C = {Si | i ∈ I} be a collection of sets indexed by a
set I and let T be a set such that, for every i ∈ I there exists a function
gi : T −→ Si. Then, there exists a unique function h : T −→

∏
C such that

gi = pih for every i ∈ I.

Proof. For t ∈ T , define h(t) = f , where f(i) = gi(t) for every i ∈ I. We have
pi(h(t)) = pi(f) = gi(t) for every t ∈ T , so h is a function that satisfies the
conditions of the statement.

Suppose now that h1 is another function, h1 : T −→
∏

C, such that
gi = pih1 and h1(t) = f1. We have gi(t) = pi(h1(t)) = pi(f1) = pi(f), so
f(i) = f1(i) for every i ∈ I. Thus, f = f1 and h(t) = h1(t) for every t ∈ T ,
which shows that h is unique with the property of the statement. 	


Definition 1.81. Let C = {S0, . . . , Sn−1} be a collection of n sets indexed by
the set {0, . . . , n− 1}.

The set product
∏

P consists of those functions f : {0, . . . , n − 1} −→⋃n−1
i=0 Si such that f(i) ∈ Si for 0 ≤ i ≤ n− 1.
For set products of this type, we use the alternative notation S0×· · ·×Sn−1.
If S0 = · · · = Sn−1 = S, we denote the set product S0 × · · · × Sn−1 by Sn.
A sequence on S of length n is a member of this set product. If the set S

is clear from the context, then we refer to s as a sequence.
The set of finite sequences of length n on the set S is denoted by Seqn(S).

If s ∈ Seqn(S), we refer to the number n as the length of the sequence
s and it is denoted by |s|. The set of finite sequences on a set S is the set⋃
{Seqn(S) | n ∈ N}, which is denoted by Seq(S).

For a sequence s of length n on the set S such that s(i) = si for 0 ≤ i ≤
n− 1, we denote s as

s = (s0, s1, . . . , sn−1).

The elements s0, . . . , sn−1 are referred to as the components of s.
For a sequence r ∈ Seq(S), we denote the set of elements of S that occur

in s by set(r).
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In certain contexts, such as the study of formal languages, sequences over
a nonempty, finite set I are referred to as words. The set I itself is called
an alphabet. We use special notation for words. If I = {a0, . . . , an−1} is an
alphabet and s = (ai0 , ai1 , . . . , aip−1) is a word over the alphabet I, then we
write s = ai0ai1 · · · aip−1 .

The notion of a relation can also be generalized.

Definition 1.82. Let C = {Ci | i ∈ I} be a collection of sets. A C-relation
is a subset ρ of the generalized Cartesian product

∏
C. If I is a finite set and

|I| = n, then we say that ρ is an n-ary relation.
For small values of n, we use specific terms such as binary relation for

n = 2 or ternary relation for n = 3.
The number n is the arity of the relation ρ.

Example 1.83. Let I = {0, 1, 2} and C0 = C1 = C2 = R. Define the ternary
relation ρ on the collection {C0, C1, C2} by

ρ = {(x, y, z) ∈ R
3 | x < y < z}.

In other words, we have (x, y, z) ∈ ρ if and only if y ∈ (x, z).

Definition 1.84. Let p and q be two finite sequences in Seq(S) such that
|p| = m and |q| = n. The concatenation or the product of p and q is the
sequence r given by

r(i) =

{
p(i) if 0 ≤ i ≤ m− 1
q(i−m) if m ≤ i ≤ m+ n− 1.

The concatenation of p and q is denoted by pq.

Example 1.85. Let S = {0, 1} and let p and q be the sequences

p = (0, 1, 0, 0, 1, 1),
q = (1, 1, 1, 0).

By Definition 1.84, we have

pq = (0, 1, 0, 0, 1, 1, 1, 1, 1, 0),
qp = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1).

The example above shows that, in general, pq �= qp.
It follows immediately from Definition 1.84 that

λλλp = pλλλ = p

for every sequence p ∈ Seq(S).
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Definition 1.86. Let x be a sequence, x ∈ Seq(S). A sequence y ∈ Seq(S)
is:
(i) a prefix of x if x = yv for some v ∈ Seq(S);
(ii) a suffix of x if x = uy for some v ∈ Seq(S); and
(iii) an infix of x if x = uyv for some u, v ∈ Seq(S).

A sequence y is a proper prefix (a proper suffix, a proper infix) of x if y
is a prefix (suffix, infix) and y �∈ {λλλ,x}.

Example 1.87. Let S = {a, b, c, d} and x = (b, a, b, a, c, a). The sequence y =
(b, a, b, a) is a prefix of x, z = (a, c, a) is a suffix of x, and t = (b, a) is an infix
of the same sequence.

For a sequence x = (x0, . . . , xn−1), we denote by xij the infix (xi, . . . , xj)
for 0 ≤ i ≤ j ≤ n− 1. If j < i, xi,j = λλλ.

Definition 1.88. Let S be a set and let r, s ∈ Seq(S) such that |r| ≤ |s|.
The sequence r is a subsequence of s, denoted r � s, if there is a function
f : {0, . . . ,m− 1} −→ {0, . . . , n− 1} such that f(0) < f(1) < · · · < f(m− 1)
and r = sf .

Note that the mapping f mentioned above is necessarily injective.
If r � s, as in Definition 1.88, we have ri = sf(i) for 0 ≤ i ≤ m−1. In other

words, we can write r = (si0 , . . . , sim−1), where ip = f(p) for 0 ≤ p ≤ m− 1.
The set of subsequences of a sequence s is denoted by SUBSEQ(s). There

is only one subsequence of s of length 0, namely λλλ.

Example 1.89. For S = {a, b, c, d} and x = (b, a, b, a, c, a) we have y =
(b, b, c) � x because y = xf , where f : {0, 1, 2} −→ {0, 1, 2, 3, 4} is defined
by f(0) = 0, f(1) = 2, and f(2) = 4. Note that set(y) = {b, c} ⊆ set(x) =
{a, b, c}.

Definition 1.90. Let T be a set. An infinite sequence on T is a function of
the form s : N −→ T .

The set of infinite sequences on T is denoted by Seq∞(T ). If s ∈ Seq∞(T ),
we write |s| = ∞.

For s ∈ Seq∞(T ) such that s(n) = sn for n ∈ N, we also use the notation
s = (s0, . . . , sn, . . .).

The notion of a subsequence for infinite sequences has a definition that is
similar to the case of finite sequences. Let s ∈ Seq∞(T ) and let r : D −→ T
be a function, where D is either a set of the form {0, . . . ,m − 1} or the set
N. Then, r is a subsequence of s if there exists a function f : D −→ N such
that f(0) < f(1) < · · · < f(k − 1) < · · · such that r = sf . In other words,
a subsequence of an infinite sequence can be a finite sequence (when D is
finite) or an infinite sequence. Observe that r(k) = s(f(k)) = sf(k) for k ∈ D.
Thus, as was the case for finite sequences, the members of the sequence r are
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extracted among the members of the sequence s. We denote this by r � s, as
we did for the similar notion for finite sequences.

Example 1.91. Let s ∈ Seq∞(R) be the sequence defined by s(n) = (−1)n for
n ∈ N, s = (1,−1, 1,−1, . . .). If f : N −→ N is the function given by f(n) = 2n
for n ∈ N, then r = sf is defined by rk = r(k) = s(f(k)) = (−1)2k = 1 for
k ∈ N.

Occurrences in Sequences

Let x,y ∈ Seq(S). An occurrence of y in x is a pair (y, i) such that 0 ≤ i ≤
|x| − |y| and y(k) = x(i+ k) for every k, 0 ≤ k ≤ |y| − 1.

The set of all occurrences of y in x is denoted by OCCy(x).
There is an occurrence (y, i) of y in x if and only if y is an infix of x. If

|y| = 1, then an occurrence of y in x is called an occurrence of the symbol
y(0) in x.
|OCC(s)(x)| will be referred to as the number of occurrences of a symbol

s in a finite sequence x and be denoted by |x|s.
Observe that there are |x| + 1 occurrences of the null sequence λλλ in any

sequence x.
Let x ∈ Seq(S) and let (y, i) and (y′, j) be occurrences of y and y′ in x.

The occurrence (y′, j) is a part of the occurrence (y, i) if 0 ≤ j− i ≤ |y|− |y′|.

Example 1.92. Let S = {a, b, c} and let x ∈ Seq(S) be defined by x =
(a, a, b, a, b, a, c). The occurrences ((a, b), 1), ((b, a), 2), and ((a, b), 3) are parts
of the occurrence ((a, b, a, b), 1).

Theorem 1.93. If (y, j) ∈ OCCy(x) and (z, i) ∈ OCCz(y), then (z, i + j) ∈
OCCz(x).

Proof. The argument is left to the reader. 	


Definition 1.94. Let x be a finite sequence and let (y, i) be an occurrence of
y in x. If x = x0yx1, where |x0| = i, then the sequence which results from
the replacement of the occurrence (y, i) in x by the finite sequence y′ is the
sequence x0y

′x1, denoted by replace (x, (y, i),y′).

Example 1.95. For the occurrences ((a, b), 1), ((a, b), 3) of the sequence (a, b)
in the sequence x = (a, a, b, a, b, a, c), we have

replace (x, ((a, b), 1), (c, a, c)) = (a, c, a, c, a, b, a, c)
replace (x, ((a, b), 3), (c, a, c)) = (a, a, b, c, a, c, a, c).
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Sequences of Sets

Next we examine sets defined by sequences of sets.
Let s be a sequence of sets. The intersection of s is denoted by

⋂n−1
i=0 Si if s

is a sequence of length n and by
⋂∞

i=0 Si if s is an infinite sequence. Similarly,
the union of s is denoted by

⋃n−1
i=0 Si if s is a sequence of length n and by⋃∞

i=0 Si if s is an infinite sequence.

Definition 1.96. A sequence of sets s = (S0, S1, . . .) is expanding if i < j
implies Si ⊆ Sj for every i, j in the domain of s.

If i < j implies Sj ⊆ Si for every i, j in the domain of s, then we say that
s is a contracting sequence of sets.

A sequence of sets is monotonic if it is expanding or contracting.

Definition 1.97. Let s be an infinite sequence of subsets of a set S, where
s(i) = Si for i ∈ N.

The set
⋃∞

i=0

⋂∞
j=i Sj is referred to as the lower limit of s; the set⋂∞

i=0

⋃∞
j=i Sj is the upper limit of s. These two sets will be denoted by lim inf s

and lim sup s, respectively.

If x ∈ lim inf s, then there exists i such that x ∈
⋂∞

j=i Sj ; in other words,
x belongs to almost all sets Si.

If x ∈ lim sup s, then for every i there exists j ≥ i such that x ∈ Sj ; in
this case, x belongs to infinitely many sets of the sequence.

Clearly, we have lim inf s ⊆ lim sup s.

Definition 1.98. A sequence of sets s is convergent if lim inf s = lim sup s.
In this case, the set L = lim inf s = lim sup s is said to be the limit of the
sequence s.

The limit of s will be denoted by lim s.

Example 1.99. Every expanding sequence of sets is convergent. Indeed, since
s is expanding, we have

⋂∞
j=i Sj = Si. Therefore, lim inf s =

⋃∞
i=0 Si. On the

other hand,
⋃∞

j=i Sj ⊆
⋃∞

i=0 Si and therefore lim sup s ⊆ lim inf s. This shows
that lim inf s = lim sup s, that is, s is convergent.

A similar argument can be used to show that s is convergent when s is
contracting.

Let C be a collection of subsets of a set S. Denote by Cσ the collection of
all unions of subcollections of C indexed by N and by Cδ the collection of all
intersections of such subcollections of C,

Cσ =

⎧⎨
⎩
⋃
n≤0

Cn | Cn ∈ C

⎫⎬
⎭ ,

Cδ =

⎧⎨
⎩
⋂
n≤0

Cn | Cn ∈ C

⎫⎬
⎭ .
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Observe that by taking Cn = C ∈ C for n ≥ 0, it follows that C ⊆ Cσ and
C ⊆ Cδ.

Theorem 1.100. For any collection of subsets C of a set S, we have (Cσ)σ =
Cσ and (Cδ)δ = Cδ.

Proof. The argument is left to the reader. 	

The operations σ and δ can be applied iteratively. We shall denote se-

quences of applications of these operations by subscripts adorning the affected
collection. The order of application coincides with the order of these symbols
in the subscript. For example, (C)σδσ means ((Cσ)δ)σ. Thus, Theorem 1.100
can be restated as the equalities Cσσ = Cσ and Cδδ = Cδ.

Observe that if c = (C0, C1, . . .) is a sequence of sets, then lim sup c =⋂∞
i=0

⋃∞
j=i Cj ∈ Cσδ and lim inf c =

⋃∞
i=0

⋂∞
j=i Cj belongs to Cδσ, where C =

{Cn | n ∈ N}.

1.3.6 Equivalence Relations

Equivalence relations occur in many data mining problems and are closely
related to the notion of partition, which we discuss in Section 1.3.7.

Definition 1.101. An equivalence relation on a set S is a relation that is
reflexive, symmetric, and transitive.

The set of equivalences on A is denoted by EQS(S).
An important example of an equivalence relation is presented next.

Definition 1.102. Let U and V be two sets, and consider a function f :
U −→ V . The relation ker(f) ⊆ U × U , called the kernel of f , is given by

ker(f) = {(u, u′) ∈ U × U | f(u) = f(u′)}.

In other words, (u, u′) ∈ ker(f) if f maps both u and u′ into the same element
of V .

It is easy to verify that the relation introduced above is an equivalence.
Indeed, it is clear that (u, u) ∈ ker(f) for any u ∈ U , which shows that
ιU ⊆ ker(f).

The relation ker(f) is symmetric since (u, u′) ∈ ker(f) means that f(u) =
f(u′); hence, f(u′) = f(u), which implies (u′, u) ∈ ker(f).

Suppose that (u, u′), (u′, u′′) ∈ ker(f). Then, we have f(u) = f(u′) and
f(u′) = f(u′′), which gives f(u) = f(u′′). This shows that (u, u′′) ∈ ker(f);
hence, ker(f) is transitive.

Example 1.103. Let m ∈ N be a positive natural number. Define the function
fm : Z −→ N by fm(n) = r if r is the remainder of the division of n by m.
The range of the function fm is the set {0, . . . ,m− 1}.

The relation ker(fm) is usually denoted by ≡m. We have (p, q) ∈≡m if
and only if p− q is divisible by m; if (p, q) ∈≡m, we also write p ≡ q(mod m).
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Definition 1.104. Let ρ be an equivalence on a set U and let u ∈ U .
The equivalence class of u is the set [u]ρ, given by

[u]ρ = {y ∈ U | (u, y) ∈ ρ}.

When there is no risk of confusion, we write simply [u] instead of [u]ρ.
Note that an equivalence class [u] of an element u is never empty since

u ∈ [u] because of the reflexivity of ρ.

Theorem 1.105. Let ρ be an equivalence on a set U and let u, v ∈ U . The
following three statements are equivalent:
(i) (u, v) ∈ ρ;
(ii) [u] = [v];
(iii) [u] ∩ [v] �= ∅.

Proof. The argument is immediate and we omit it. 	


Definition 1.106. Let S be a set and let ρ ∈ EQS(S). A subset U of S is
ρ-saturated if it equals a union of equivalence classes of ρ.

It is easy to see that U is a ρ-saturated set if and only if x ∈ U and
(x, y) ∈ ρ imply y ∈ U . It is clear that both ∅ and S are ρ-saturated sets.

The following statement is immediate.

Theorem 1.107. Let S be a set, ρ ∈ EQS(S), and C = {Ui | i ∈ I} be a
collection of ρ-saturated sets. Then, both

⋃
C and

⋂
C are ρ-saturated sets.

Also, the complement of every ρ-saturated set is a ρ-saturated set.

Proof. We leave the argument to the reader. 	

A more general class of relations that generalizes equivalence relations is

introduced next.

Definition 1.108. A tolerance relation (or, for short, a tolerance on a set S
is a relation that is reflexive and symmetric.

The set of tolerances on A is denoted by TOL(S).

Example 1.109. Let a be a nonnegative number and let ρa ⊆ R × R be the
relation defined by

ρa = {(x, y) ∈ S × S | |x− y| ≤ a}.

It is clear that ρa is reflexive and symmetric; however, ρa is not transitive
in general. For example, we have (3, 5) ∈ ρ2 and (5, 6) ∈ ρ2, but (3, 6) �∈ ρ2.
Thus, ρ2 is a tolerance but is not an equivalence.
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1.3.7 Partitions and Covers

Next, we introduce the notion of partition of a set, a special collection of
subsets of a set.

Definition 1.110. Let S be a nonempty set. A partition of S is a nonempty
collection of nonempty subsets of S, π = {Bi | i ∈ I}, such that

⋃
{Bi | i ∈

I} = S, and Bi ∩Bj = ∅ for every i, j ∈ I such that i �= j.
Each set Bi of π is a block of the partition π.
The set of partitions of a set S is denoted by PART(S). The partition of

S that consists of all singletons of the form {s} with s ∈ S will be denoted by
αS; the partition that consists of the set S itself will be denoted by ωS.

Example 1.111. For the two-element set S = {a, b}, there are two partitions:
the partition αS = {{a}, {b}} and the partition ωS = {{a, b}}.

For the one-element set T = {c}, there exists only one partition, αT =
ωT = {{t}}.

Example 1.112. A complete list of partitions of a set S = {a, b, c} consists of
the following:

π0 = {{a}, {b}, {c}},
π1 = {{a, b}, {c}},
π2 = {{a}, {b, c}},
π3 = {{a, c}, {b}},
π4 = {{a, b, c}}.

Clearly, π0 = αS and π4 = ωS .

Definition 1.113. Let S be a set and let π, σ ∈ PART(S). The partition π is
finer than the partition σ if every block C of σ is a union of blocks of π. This
is denoted by π ≤ σ.

Theorem 1.114. Let π = {Bi | i ∈ I} and σ = {Cj | j ∈ J} be two
partitions of a set S.

For π, σ ∈ PART(S), we have π ≤ σ if and only if for every block Bi ∈ π
there exists a block Cj ∈ σ such that Bi ⊆ Cj.

Proof. If π ≤ σ, then it is clear for every block Bi ∈ π there exists a block
Cj ∈ σ such that Bi ⊆ Cj .

Conversely, suppose that for every block Bi ∈ π there exists a block Cj ∈ σ
such that Bi ⊆ Cj . Since two distinct blocks of σ are disjoint, it follows that
for any block Bi of π the block Cj of σ that contains Bi is unique. Therefore,
if a block B of π intersects a block C of σ, then B ⊆ C.

Let Q =
⋃
{Bi ∈ π | Bi ⊆ Cj}. Clearly, Q ⊆ Cj . Suppose that there

exists u ∈ Cj −Q. Then, there is a block B� ∈ π such that x ∈ B�∩Cj , which
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implies that B� ⊆ Cj . This means that u ∈ B� ⊆ C, which contradicts the
assumption we made about x. Consequently, Cj = Q, which concludes the
argument. 	


Note that αS ≤ π ≤ ωS for every π ∈ PART(S).
We saw that two equivalence classes either coincide or are disjoint. There-

fore, starting from an equivalence ρ ∈ EQS(U), we can build a partition of
the set U .

Definition 1.115. The quotient set of the set U with respect to the equiva-
lence ρ is the partition U/ρ, where

U/ρ = {[u]ρ | u ∈ U}.

An alternative notation for the partition U/ρ is πρ.
Moreover, we can prove that any partition defines an equivalence.

Theorem 1.116. Let π = {Bi | i ∈ I} be a partition of the set U . Define the
relation ρπ by (x, y) ∈ ρπ if there is a set Bi ∈ π such that {x, y} ⊆ Bi. The
relation ρπ is an equivalence.

Proof. Let Bi be the block of the partition that contains u. Since {u} ⊆ Bi,
we have (u, u) ∈ ρπ for any u ∈ U , which shows that ρπ is reflexive.

The relation ρπ is clearly symmetric. To prove the transitivity of ρπ, con-
sider (u, v), (v, w) ∈ ρπ. We have the blocks Bi and Bj such that {u, v} ⊆ Bi

and {v, w} ⊆ Bj . Since v ∈ Bi ∩ Bj , we obtain Bi = Bj by the definition of
partitions; hence, (u,w) ∈ ρπ. 	


Corollary 1.117. For any equivalence ρ ∈ EQS(U), we have ρ = ρπρ
. For

any partition π ∈ PART(U), we have π = πρπ
.

Proof. The argument is left to the reader. 	

The previous corollary amounts to the fact that there is a bijection φ :

EQS(U) −→ PART(U), where φ(ρ) = πρ. The inverse of this mapping, Ψ :
PART(U) −→ EQS(U), is given by ψ(π) = ρπ.

Also, note that, for π, π′ ∈ PART(S), we have π ≤ π′ if and only if
ρπ ⊆ ρπ′ .

We say that a subset T of a set S is π-saturated if it is a ρπ-saturated set.

Theorem 1.118. For any mapping f : U −→ V , there is a bijection h :
U/ker(f) −→ f(U).

Proof. Consider the ker(f) class [u] of an element u ∈ U , and define h([x]) =
f(x). The mapping h is well-defined for if u′ ∈ [u], then (u, u′) ∈ ker(f),
which gives f(u) = f(u′).

Further, h is onto since if y ∈ f(U), then there is u ∈ U such that f(u) = y,
and this gives y = h([u]).
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To prove the injectivity of h, assume that h([u]) = h([v]). This means that
f(u) = f(v); hence, (u, v) ∈ ker(f), which means, of course, that [u] = [v].
	


An important consequence of the previous proposition is the following
decomposition theorem for mappings.

Theorem 1.119. Every mapping f : U −→ V can be decomposed as a com-
position of three mappings: a surjection g : U −→ U/ker(f), a bijection
h : U/ker(f) −→ f(U), and an injection k : f(U) −→ V .

Proof. The mapping g : U −→ U/ker(f) is defined by g(u) = [u] for u ∈ U ,
while k : f(A) −→ B is the inclusion mapping given by k(v) = v for all
v ∈ f(U). Therefore, k(h(g(u))) = k(h([u])) = k(f(u)) = f(u) for all u ∈ U .
	


A generalization of the notion of partition is introduced next.

Definition 1.120. Let S be a set. A cover of S is a nonempty collection C of
nonempty subsets of S, C = {Bi | i ∈ I}, such that

⋃
{Bi | i ∈ I} = S.

The set of covers of a set S is denoted by COVERS(S).

Example 1.121. Let S be a set. The collection Pk(S) of subsets of S that
contain k elements is a cover of S for every k ≥ 1. For k = 1, P1(S) is actually
the partition αS .

The notion of collection refinement introduced in Definition 1.12 is clearly
applicable to covers and will be used in Section 12.4.

1.4 The Axiom of Choice

The Axiom of Choice, one of the fundamental principles of set theory was
formulated by Ernst Zermello at the beginning of the twentieth century. To
state this axiom, we need the notion introduced next.

Definition 1.122. Let C be a nonempty collection of nonempty sets that are
pairwise disjoint. A selective set for C is a set K such that for every set S ∈ C

the intersection K ∩M contains exactly one element.

A related notion is the notion of a choice function.

Definition 1.123. A choice function for a collection of sets C is a mapping
f : C −→

⋃
C, such that, for each S ∈ C if S �= ∅, then f(S) ∈ S.

A selective function for set M is a choice function for the collection P(M).

Attempts at proving this axiom from other principles of set theory have
failed; instead many equivalent formulations of the Axiom of Choice were
obtained, and we present a few of these formulations in this section.
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Axiom of Choice Every collection of sets has a choice function.

Note that the Axiom of Choice merely states the existence of a choice
function but states no criterion for choosing its values.

Theorem 1.124. The Axiom of Choice is equivalent to the following state-
ments:
(i) Every collection of nonempty, pairwise disjoint sets has a selective set.
(ii) For every set, there exists a selective function.
(iii) The Cartesian product of every family of nonempty sets is nonempty.

Proof. The Axiom of Choice implies (i): Consider a collection C that
consists of nonempty sets that are pairwise disjoint. The Axiom of Choice
implies the existence of a selective function f for C.

We claim that the set K = {f(M)|M ∈ C} is a selective set for C. Indeed,
we have f(M) ∈ K ∩M for every M ∈ C, and since the sets of C are pairwise
disjoint, it follows that K ∩M consists of exactly one element f(M).

(i) implies (ii): If M = ∅, then the function f : P(∅) −→ {∅} defined by
f(∅) = ∅ can serve as a selective function. Therefore, we may assume that M
is nonempty. Consider the collection C of all sets having the form K×{K} for
K ⊆M . Observe that, if K �= H, the sets K×{K} and H×{H} are disjoint.
Indeed, if we have t ∈ (K ×{K})∩ (H ×{H}), then t = (x,K) = (y,H), and
this implies K = H.

Let D be a selective set for C. For every K ⊆ M , there is x ∈ K such
that D ∩ (K × {K}) = {(x,K)}. We can define the selective function on M
by f(K) = x, where (x,K) ∈ D. Since x ∈ K, it follows that f is indeed a
selective function for the set M .

(ii) implies (iii): Consider a collection of nonempty sets C = {Mi|i ∈ I},
and let M =

⋃
{Mi|i ∈ I}. If f is a selective function for M , then for every

Mi ∈ C, we have f(Mi) ∈ Mi. Consider the mapping t : I −→ M defined by
t(i) = f(Mi). We have t ∈

∏
i∈I Mi by Definition 1.77.

(iii) implies the Axiom of Choice: Let C = {Mi|i ∈ I} be a collection of sets.
Consider the set of indices J = {i|i ∈ I,Mi ∈ C,Mi �= ∅} and the collection
D = {Mi|Mi, i ∈ J}.

Let t ∈
∏

D. For every i ∈ J , we have t(i) ∈ Mi, which means that for
every Mi ∈ C, Mi �= ∅, we have t(i) ∈ Mi. This means that t is a choice
function for C. 	


1.5 Countable Sets

A set is called countable if it is either empty or the range of a sequence. A set
that is not countable is called uncountable.

Note that if S is a countable set and f : S −→ T is a surjection, then T is
also countable.
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Example 1.125. Every finite set is countable. Let S be a finite set. If S = ∅,
then S is countable. Otherwise, suppose that S = {a0, . . . , an−1}, where n ≥ 1.
Define the sequence s as

s(i) =

{
ai if 0 ≤ i ≤ n− 1,
an−1 otherwise.

It is immediate that Ran(s) = S.

Example 1.126. The set N is countable because N = Ran s, where s is the
sequence s(n) = n for n ∈ N. A similar argument can be used to show that
the set Z is countable. Indeed, let t be the sequence defined by

t(n) =

{
n−1

2 if n is odd
−n

2 if n is even.

Let m be an integer. If m > 0, then m = t(2m − 1); otherwise (that is, if
m ≤ 0), m = t(−2m), so z = Ran(t).

Example 1.127. We shall prove now that the set N ×N is countable. To this
end, consider the representation of pairs of natural numbers shown in Fig-
ure 1.2. The pairs of the set N×N are scanned in the order suggested by the
dotted arrows. The 0th pair is (0, 0), followed by (0, 1), (1, 0), (0, 2), (1, 1),
(2, 0), etc. We define the bijection β : N × N −→ N as β(p, q) = n, where n
is the place occupied by the pair (p, q) in the previous list. Thus, β(0, 0) = 0,
β(0, 1) = 1, β(2, 0) = 5, and so on.

In general, bijections of the form h : N×N −→ N are referred to as pairing
functions, so β is an example of a pairing function.

The existence of the inverse bijection β−1 : N −→ N×N shows that N×N

is indeed a countable set because N× N = Ran(β−1).
Another example of a bijection between N × N and P can be found in

Exercise 22.

Starting from countable sets, it is possible to construct uncountable sets,
as we see in the next example.

Example 1.128. Let F be the set of all functions of the form f : N −→ {0, 1}.
We claim that F is not countable.

If F were countable, we could write F = {f0, f1, . . . , fn, . . .}. Define the
function g : N −→ {0, 1} by g(n) = fn(n) for n ∈ N, where 0̄ = 1 and 1̄ = 0.
Note that g �= fn for every fn in F because g(n) = fn(n) �= fn(n), that is, g
is different from fn at least on n for every n ∈ N. But g is a function defined
on N with values in {0, 1}, so it must equal some function fm from F . This
contradiction implies that F is not countable.

Theorem 1.129. A subset T of a countable set S is countable.
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Fig. 1.2. Representation of N × N.

Proof. If either S or T are empty, the statement is immediate. Suppose there-
fore that neither S nor T are empty and that S = {a0, . . . , an−1}. Since T
is a subset of S, we can write T = {ai0 , . . . , aim−1}, so T is the range of the
sequence t : {0, . . . ,m−1} −→ S given by t(j) = aij

for 0 ≤ j ≤ m−1. Thus,
T is countable. 	


Theorem 1.130. Let C = {Ci | i ∈ I} be a collection of sets such that each
set Ci is countable and the indexing set is countable. Then,

⋃
C is a countable

set.

Proof. Without loss of generality, we can assume that none of the sets Ci is
empty. Also, if I = ∅, then

⋃
C is empty and therefore countable.

Suppose, therefore, that Ci is the range of the sequence si for i ∈ I and
that I �= ∅. Since I is a countable set, we can assume that I is the range of a
sequence z.

Define the function f : N×N −→
⋃

C by f(p, q) = sz(p)(q) for p, q ∈ N. It
is easy to verify that f is a surjection. Indeed, if c ∈

⋃
C, there exists a set Ci

such that c ∈ Ci and, since Ci is the range of the sequence si, it follows that
c = si(q) for some q ∈ N.

Suppose that i = z(p). Then, we can write c = sz(p)(q) = f(p, q), which
allows us to conclude that

⋃
C = Ran(f). To obtain the enumerability of
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C, observe that this set can now be regarded as the range of the sequence

u given by u(n) = f(β−1(n)), where β is the pairing function introduced in
Example 1.127. 	


Theorem 1.131. The set Q of rational numbers is countable.

Proof. We show first that the set of positive rational numbers Q≥0 is count-
able. Indeed, note that the function f : N× N −→ Q≥0 defined by f(m,n) =

m
n+1 is a surjection. A similar argument shows that the set of negative ratio-
nal numbers is countable. By Theorem 1.130, the countability of Q follows
immediately. 	


1.6 Elementary Combinatorics

In this section, we discuss some counting techniques for certain collections of
objects. We begin with a study of bijections of finite sets that is useful for the
presentation of these techniques.

Definition 1.132. A permutation of a set S is a bijection f : S −→ S.

A permutation f of a finite set S = {s0, . . . , sn−1} is completely described
by the sequence (f(s0), . . . , f(sn−1)). No two distinct components of such a
sequence may be equal because of the injectivity of f , and all elements of the
set S appear in this sequence because f is surjective. Therefore, the number
of permutations equals the number of such sequences, which allows us to
conclude that there are n(n − 1) · · · 2 · 1 permutations of a finite set S with
|S| = n.

The number n(n − 1) · · · 2 · 1 is usually denoted by n!. This notation is
extended by defining 0! = 1, which is consistent with the interpretation of n!
as the number of bijections of a set that has n elements.

The set of permutations of the set S = {1, . . . , n} is denoted by PERMn.
If f ∈ PERMn is such a permutation, we write

f :
(

1 · · · i · · · n
a1 · · · ai · · · an

)
,

where ai = f(i) for 1 ≤ i ≤ n. To simplify the notation, we shall specify f
just by the sequence (a1, . . . , ai, . . . , an).

Definition 1.133. Let S be a finite set, f be a permutation of S, and x ∈ S.
The cycle of x is the set of elements of the form Cf,x = {f i(x) | i ∈ N}. The
number |Cf,x| is the length of the cycle.

Cycles of length 1 are said to be trivial.
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Let S be a finite set. Since Cf,x ⊆ S, it is clear that Cf,x is a finite set. If
|Cf,x| = �, then

Cf,x = {x, f(x), . . . , f �−1(x)}.
Note that each pair of elements f i(x) and f j(x) are distinct for 0 ≤ i, j ≤ �−1,
and i �= j because otherwise we would have |Cf,x| < �. Moreover, f �(x) = x.

If z ∈ Cf,x, then z = fk(x) for some k, 0 ≤ k ≤ � − 1, where � = |Cf,x|.
Since x = f �(x), it follows that x = f �−k(z), which shows that x ∈ Cf,z.
Thus, Cf,x = Cf,z.

Thus, the cycles of a permutation of a finite set S form a partition πf of
S.

Definition 1.134. A k-cyclic permutation of a finite set S is a permutation
such that πf consists of a cycle of length k and a number of |S| − k cycles of
length 1.

A transposition of S is a 2-cyclic permutation.

Note that if f is a transposition of S, then f2 = 1S .

Theorem 1.135. Let S be a finite set, f be a permutation, and πf =
{Cf,x1 , . . . , Cf,xm

} be the cycle partition associated to f . Define the cyclic
permutations g1, . . . , gm of S as

gp(t) =

{
f(t) if t ∈ Cf,xp

,

t otherwise.

Then, gpgq = gqgp for every p, q such that 1 ≤ p, q ≤ m.

Proof. Observe first that u ∈ Cf,x if and only if f(x) ∈ Cf,x for any cycle
Cf,x.

We can assume that p �= q. Then, the cycles Cf,xp
and Cf,xq

are disjoint.
If u �∈ Cf,xp

∪Cf,xq
, then we can write gp(gq(u)) = gp(u) = u and gq(gp(u)) =

gq(u) = u.
Suppose now that u ∈ Cf,xp

− Cf,xq
. We have gp(gq(u)) = gp(u) = f(u).

On the other hand, gq(gp(u)) = gq(f(u)) = f(u) because f(u) �∈ Cf,xq
.

Thus, gp(gq(u)) = gq(gp(u)). The case where u ∈ Cf,xq
− Cf,xp

is treated
similarly. Also, note that Cf,xp

∩ Cf,xq
= ∅, so, in all cases, we have

gp(gq(x)) = gq(gp(u)). 	

The set of cycles {g1, . . . , gm} is the cyclic decomposition of the permuta-

tion f .

Definition 1.136. A standard transposition is a transposition that changes
the places of two adjacent elements.

Example 1.137. The permutation f ∈ PERM5 given by
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f :
(

1 2 3 4 5
1 3 2 4 5

)

is a standard transposition of the set {1, 2, 3, 4, 5}.
On the other hand, the permutation

g :
(

1 2 3 4 5
1 5 3 4 2

)

is a transposition but not a standard transposition of the same set because
the pair of elements involved is not consecutive.

If f ∈ PERMn is specified by the sequence (a1, . . . , an), we refer to each
pair (ai, aj) such that i < j and ai > aj as an inversion of the permutation
f . The set of all such inversions will be denoted by INV(f). The number of
elements of INV(f) is denoted by inv(f).

A descent of a permutation f of S = {1, . . . , n} is a number j such that
1 ≤ j ≤ n− 1 and aj > aj+1. The set of descents of f is denoted by D(f).

Example 1.138. Let f ∈ PERM6 be:

f :
(

1 2 3 4 5 6
4 2 5 1 6 3

)
.

We have

INV(f) = {(4, 2), (4, 1), (4, 3), (2, 1), (5, 1), (5, 3), (6, 3)}.

and inv(f) = 7. Furthermore, D(f) = {1, 3, 5}.

It is easy to see that the following conditions are equivalent for a permu-
tation f of the finite set S:
(i) f = 1S ;
(ii) inv(f) = 0;
(iii) D(f) = ∅.

Theorem 1.139. Every permutation f ∈ PERMn can be written as a com-
position of transpositions.

Proof. If D(f) = ∅, then f = 1S and the statement is vacuous. Suppose
therefore that D(f) �= ∅, and let j ∈ D(f), which means that (aj , aj+1) is an
inversion f . Let g be the standard transposition that exchanges aj and aj+1.
It is clear that inv(gf) = inv(f) − 1. Thus, if gi are the transpositions that
correspond to all standard inversions of f for 1 ≤ i ≤ p = inv(f), it follows
that gp · · · g1f has 0 inversions and, as observed above, gp · · · g1f = 1S . Since
g2 = 1S for every transposition g, we have f = gp · · · g1, which gives the
desired conclusion. 	
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Theorem 1.140. If f is a permutation of the finite set S, then inv(f) is the
least number of standard transpositions, and the number of standard trans-
positions involved in any other factorization of f as a product of standard
transposition differs from inv(f) by an even number.

Proof. Let f = hq · · ·h1 be a factorization of f as a product of standard trans-
positions. Then, h1 · · ·hqf = 1S and we can define the sequence of permuta-
tions fl = hl · · ·h1f for 1 ≤ l ≤ q. Since each hi is a standard transposition,
we have inv(fl+1)− inf(fl) = 1 or inv(fl+1)− inf(fl) = −1. If

|{l | 1 ≤ l ≤ q − 1 and inv(fl+1)− inv(fl) = 1}| = r,

then |{l | 1 ≤ l ≤ q − 1 and inv(fl+1) − inv(fl) = −1}| = q − r, so inv(f) +
r − (q − r) = 0, which means that q = inv(f) + 2r. This implies the desired
conclusion. 	


Definition 1.141. A permutation f of {1, . . . , n} is even (odd) if inv(f) is
an even (odd) number.

Note that any transposition is an odd permutation.

Theorem 1.142. The set of subsets of a set that contains n elements consists
of 2n subsets.

Proof. Let S be a set that contains n elements. The argument is by induction
on n.

In the basis step, n = 0, so S is the empty subset and P(S) is nonempty
because it contains ∅; thus, |P(∅)| = 1.

Suppose now that S contains n elements, say S = {s0, . . . , sn−1}, and let
S′ = S − {sn−1}. Any subset Z of S belongs to one of the following two
disjoint classes:
1. sn−1 �∈ Z, so Z ⊆ S′, or
2. sn−1 ∈ Z, so Z − sn−1 ⊆ S′.

By the inductive hypothesis, both these collections contain 2n−1 subsets.
Therefore, P(S) contains 2 · 2n−1 = 2n subsets. 	


Let S be a finite nonempty set, S = {s1, . . . , sn}. We seek to count the
sequences of S having length k without repetitions.

Suppose initially that k ≥ 1. For the first place in a sequence s of length
k, we have n choices. Once an element of S has been chosen for the first place,
since the sequence may not contain repetitions, we have n− 1 choices for the
second place, etc. For the kth component of s, there are n − 1 + k choices.
Thus, the number of sequences of length k without repetitions is given by
n(n− 1) · · · (n− k + 1). We shall denote this number by A(n, k).

There exists only one sequence of length 0, namely the empty sequence,
so we extend the definition of A by A(n, 0) = 1 for every n ∈ N.
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An important special case of this counting problem occurs when k = n. In
this case, a sequence of length n without repetitions is essentially a permuta-
tion of the set S. Thus, the number of permutations of S is n(n−1) · · · 1; this
number is denoted by n!, and we refer to it as the factorial of n.

In the case n = 0, we define 0! = 1 to maintain consistency with the
definition of A(n, 0).

Theorem 1.143. Let S and T be two finite sets. We have

|S ∪ T | = |S|+ |T | − |S ∩ T |,
|S ⊕ T | = |S|+ |T | − 2 · |S ∩ T |.

Proof. If S∩T = ∅, then S∪T = S⊕T and the equalities above are obviously
true. Therefore, we may assume that S ∩ T = {z1, . . . , zp}, where p ≥ 1.
Thus, the sets S and T can be written as S = {x0, . . . , xm−1, z1, . . . , zp} and
T = {y0, . . . , yn−1, z1, . . . , zp}. The symmetric difference S⊕T can be written
as

S ⊕ T = {x0, . . . , xm−1, y0, . . . , yn−1}.
Since |S| = m+ p, T = n+ p, |S ∪ T | = m+ n+ p, and |S ⊕ T | = m+ p, the
equalities of the theorem follow immediately. 	


Let us now count the number of k-element subsets of a set that contains
n elements.

Let S be a set such that |S| = n. Define the equivalence ∼ on the set
Seq(S) by s ∼ t if there exists a bijection f such that s = tf .

It is easy to verify that ∼ is an equivalence, and we leave it to the reader to
perform this verification. If s : {0, . . . , p−1} −→ S and t : {0, . . . , q−1} −→ S,
s ∼ t, and f : {0, . . . , p − 1} −→ {0, . . . , q − 1} is a bijection, then we have
p = q, by Theorem 1.72.

If T is a subset of S such that |T | = k, there exists a bijection t : {0, . . . , k−
1} −→ T ; clearly, this is a sequence without repetitions and there exist A(n, k)
such sequences. Note that if u is an equivalent sequence (that is, if t ∼ u), then
the range of this sequence is again the set T and there are k! such sequences
(due to the existence of the k! permutations f) that correspond to the same
set T . Therefore, we may conclude that Pk(S) contains A(n,k)

k! elements. We
denote this number by

(
n
k

)
and we refer to it as the (n, k)-binomial coefficient.

We can write
(
n
k

)
using factorials:

(
n

k

)
=
A(n, k)
k!

=
n(n− 1) · · · (n− k + 1)

k!

=
n(n− 1) · · · (n− k + 1)(n− k) · · · 2 · 1

k!(n− k)!

=
n!

k!(n− k)! .
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We mention the following useful identities:

k

(
n

k

)
= n

(
n− 1
k − 1

)
, (1.1)(

n

m

)
=
n

m

(
n− 1
m− 1

)
. (1.2)

Equality (1.1) can be extended as

k(k − 1) · · · (k − �)
(
n

k

)
= n(n− 1) · · · (n− �)

(
n− �− 1
k − �− 1

)
(1.3)

for 0 ≤ � ≤ k − 1.
Consider now the n-degree polynomial in x

p(x) = (x+ a0) · · · (x+ an−2)(x+ an−1).

Observe that the coefficient of xn−k consists of the sum of all monomials
of the form ai0 · · · aik−1 , where the subscripts i0, . . . , ik−1 are distinct. Thus,
the coefficient of xn−k contains

(
n
k

)
terms corresponding to the k-element

subsets of the set {0, . . . , n− 1}. Consequently, the coefficient of xn−k in the
power (x+ a)n can be obtained from the similar coefficient in p(x) by taking
a0 = · · · = an−1 = a; thus, the coefficient is

(
n
k

)
ak. This allows us to write:

(x+ a)n =
n∑

k=0

(
n

k

)
xn−kak. (1.4)

This equality is known as Newton’s binomial formula and has numerous ap-
plications.

Example 1.144. If we take x = a = 1 in Formula (1.4) we obtain the identity

2n =
n∑

k=0

(
n

k

)
. (1.5)

Note that this equality can be obtained directly by observing that the right
member enumerates the subsets of a set having n elements by their cardinality
k.

A similar interesting equality can be obtained by taking x = 1 and a = −1
in Formula (1.4). This yields

0 =
n∑

k=0

(
n

k

)
(−1)k

=
(
n

0

)
+
(
n

2

)
+
(
n

4

)
+ · · ·

−
(
n

0

)
−
(
n

2

)
−
(
n

4

)
− · · · .
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This inequality shows that each set contains an equal number of subsets having
an even or odd number of elements.

Example 1.145. Consider the equality (x + a)n = (x + a)n−1(x + a). The
coefficient of xn−kak in the left member is

(
n
k

)
. In the right member xn−kak

has the coefficient (
(
n−1

k

)
+
(
n−1
k−1

)
), so we obtain the equality(

n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
, (1.6)

for 0 ≤ k ≤ n− 1.

Multinomial coefficients are generalizations of binomial coefficients that
can be introduced as follows. The nth power of the sum x1 + · · ·+ xk can be
written as

(x1 + · · ·+ xk)n =
∑

(r1,...,rk)

c(n, r1, . . . , rk)xr1
1 · · ·xrk

k ,

where the sum involves all (r1, . . . , rk) ∈ N
k such that

∑k
i=1 ri = n. By

analogy with the binomial coefficients, we denote c(n, r1, . . . , rk) by
(

n
r1,...,rn

)
.

As we did with binomial coefficients in Example 1.145, starting from the
equality (x1 + · · ·+xk)n = (x1 + · · ·+xk)n−1(x1 + · · ·+xk), the coefficient of
the monomial xr1

1 · · ·xrk

k in the right member is
(

n
r1,...,rn

)
. On the left member,

the same coefficient is

k∑
i=1

(
n− 1

r1, . . . , ri − 1, . . . , rn

)
,

so we obtain the identity

(
n

r1, . . . , rn

)
=

k∑
i=1

(
n− 1

r1, . . . , ri − 1, . . . , rn

)
, (1.7)

a generalization of the identity (1.6).

1.7 Multisets

Multisets generalize the notion of a set by allowing multiple copies of an
element. Formally, we have the following definition.

Definition 1.146. A multiset on a set S is a function M : S −→ N. Its
carrier is the set carr(M) = {x ∈ S | M(x) > 0}. The multiplicity of an
element x of S in the multiset M is the number M(x).

The set of all multisets on S is denoted by M(S).
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Example 1.147. Let PRIMES be the set of prime numbers:

PRIMES = {2, 3, 5, 7, 11, . . .}. (1.8)

A number is determined by the multiset of its prime divisors in the fol-
lowing sense. If n ∈ N, n ≥ 1, can be factored as a product of prime
numbers, n = pk1

i1
· · · pk�

i�
, where pi is the ith prime number and k1, . . . , k�

are positive numbers, then the multiset of its prime divisors is the multiset
Mn : PRIMES −→ N, where Mn(p) is the exponent of the prime number p in
the product (1.8).

For example, M1960 is given by

M1960(p) =

⎧⎪⎨
⎪⎩

3 if p = 2,
1 if p = 5,
2 if p = 7.

Thus, carr(M1960) = {2, 5, 7}.
Note that if m,n ∈ N, we have Mm = Mn if and only if m = n.

We denote a multiset by using square brackets instead of braces. If x has
the multiplicity n in a multiset M , we write x a number of times n inside the
square brackets. For example, the multiset of Example 1.147 can be written
as [2, 2, 2, 5, 7, 7].

Note that while multiplicity counts in a multiset, order does not matter;
therefore, the multiset [2, 2, 2, 5, 7, 7] could also be denoted by [5, 2, 7, 2, 2, 7]
or [7, 5, 2, 7, 2, 2]. We also use the abbreviation n ∗ x in a multiset to mean
that x has the multiplicity n in M . For example, the multiset M1960 can be
written as M1960 = [3 ∗ 2, 1 ∗ 5, 2 ∗ 7].

The multiset M on the set S defined by M(x) = 0 for x ∈ S is the empty
multiset.

Multisets can be combined to construct new multisets. Common set-
theoretical operations such as union and intersection have natural general-
izations to multisets.

Definition 1.148. Let M and N be two multisets on a set S.
The union of M and N is the multiset M ∪N defined by

(M ∪N)(x) = max{M(x), N(x)}

for x ∈ S.
The intersection of M and N is the multiset M ∩N defined by

(M ∩N)(x) = min{M(x), N(x)}

for x ∈ S.
The sum of M and N is the multiset M +N given by

(M +N)(x) = M(x) +N(x)

for x ∈ S.
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Example 1.149. Let m,n ∈ N be two numbers that have the prime factoriza-
tions

m = pk1
i1
· · · pkr

ir
,

n = ph1
j1
· · · phs

hs
,

and let Mm,Mn be the multisets of their prime divisors, as defined in Exam-
ple 1.147. Denote by gcd(m,n) the greatest common divisor of m and n, and
by lcm(m,n) the least common multiple of these numbers.

We have

Mgcd(m,n) = Mm ∩Mn,

Mlcm(m,n) = Mm ∪Mn,

Mmn = Mm +Mn,

as the reader can easily verify.

A multiset on the set P(S) is referred to as a multicollection of sets on S.

1.8 Relational Databases

Relational databases are the mainstay of contemporary databases. The prin-
ciples of relational databases were developed by C. D. Codd in the early
1970s [30, 31], and various extensions have been considered since. In this sec-
tion, we illustrate applications of several notions introduced earlier to the
formalization of database concepts.

The notion of a tabular variable (or relational variable) was introduced by
C. J. Date in [35]; we also formalize the notion of table of a relational variable.
To reflect the implementations of a relational database system we assume
that table contents are sequences of tuples (and not just sets of tuples, a
simplification often adopted in the literature that is quite distant from reality).

Let U be a countably infinite injective sequence having pairwise distinct
members, U = (A0, A1, . . .). The components of U are referred to as attributes
and denoted, in general, by capital letters from the beginning of the alphabet,
A,B,C, . . .. We also consider a collection of sets indexed by the components
of U, D = {DA | A ∈ U}. The set DA is referred to as the domain of the
attribute A and denoted alternatively as Dom(A). We assume that each set
DA contains at least two elements.

Let H be a finite subset of set(U), H = {Ai1 , . . . , Aip
}. We refer to such

a set as a heading. In keeping with the tradition of the field of relational
databases, we shall denote H as H = Ai1 · · ·Aip

. For example, instead of
writing H = {A,B,C,D,E}, we shall write H = ABCDE.

The set of tuples on H = Ai1 · · ·Aip
is the set DAi1

× · · · ×DAip
denoted

by tupl(H). Thus, a tuple t on the heading H = Ai1 · · ·Aip
is a sequence

t = (t1, . . . , tp) such that tj ∈ Dom(Aij
) for 1 ≤ j ≤ p.
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A tabular variable is a pair τ = (T,H), where T is a word over an alphabet
to be defined later and H is a heading.

A value of a tabular variable τ = (T,H) is a triple θ = (T,H, r), where
r is a sequence on tupl(H). We refer to such a triple as a table of the tabular
variable τ or, a τ -table; when the tabular variable is clear from the context or
irrelevant, we refer to θ just as a table.

The set set(r) of tuples that constitute the components of a tuple sequence
r is a p-ary relation on the collection of sets tupl(H); this justifies the term
“relational” used for the basic database model.

Example 1.150. Consider a tabular variable that is intended to capture the
description of a collection of objects,

τ = (OBJECTS, shape length width height color),

where
Dom(shape) = Dom(color) = {a, . . . , z}∗ and
Dom(length) = Dom(width) = Dom(color) = N.

A value of this variable is

(OBJECTS, shape length width height color, r),

where r consists of the tuples

(cube, 5, 5, 5, red),
(sphere, 3, 3, 3,blue),
(pyramid, 5, 6, 4,blue),
(cube, 2, 2, 2, red),
(sphere, 3, 3, 3,blue),

that belong to tupl(shape length width height color). It is convenient to rep-
resent this table graphically as

OBJECTS
shape length width height color
cube 5 5 5 red
sphere 3 3 3 blue
pyramid 5 6 4 blue
cube 2 2 2 red
sphere 3 3 3 blue

The set set(r) of tuples that corresponds to the sequence r of tuples of the
table is

set(r) = {(cube, 5, 5, 5, red), (sphere, 3, 3, 3,blue),
(pyramid, 5, 6, 4,blue), (cube, 2, 2, 2, red)}.

Note that duplicate tuples do not exist in set(r).
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We can now formalize the notion of a relational database.

Definition 1.151. A relational database is a finite, nonempty collection D

of tabular variables τi = (Tk,Hk), where 1 ≤ k ≤ m such that i �= j implies
Ti �= Tj for 1 ≤ i, j ≤ m.

In other words, a relational database D is a finite collection of tabular variables
that have pairwise distinct names.

Let D = {τ1, . . . , τm} be a relational database. A state of D is a sequence
of tables (θ1, . . . , θm) such that θi is a table of τi for 1 ≤ i ≤ m. The set of
states of a relational database D will be denoted by SD.

To discuss further applications we need to introduce table projection, an
operation on tables that allows us to build new tables by extracting “vertical
slices” of the original tables.

Definition 1.152. Let θ = (T,H, r) be a table, where H = A1 · · ·Ap and
r = (t1, . . . , tn), and let K = Ai1 · · ·Aiq

be a subsequence of set(H).
The projection of a tuple t ∈ tupl(H) on K is the tuple t[K] ∈ tupl(K)

defined by t[K](j) = t(ij) for every j, 1 ≤ i ≤ q.
The projection of the table θ on K is the table θ[K] = (T [K],K, r[K]),

where r[K] is the sequence (t1[K], . . . , tn[K]).

Observe that, for every tuple t ∈ tupl(H), we have t[∅] = λλλ; also, t[H] = t.

Example 1.153. The projection of the table

OBJECTS
shape length width height color
cube 5 5 5 red
sphere 3 3 3 blue
pyramid 5 6 4 blue
cube 2 2 2 red
sphere 3 3 3 blue

on the set K = shape color is the table

OBJECTS[shape color]
shape color
cube red
sphere blue
pyramid blue
cube red
sphere blue

Two simple but important properties of projection are given next.
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Theorem 1.154. Let H be a set of attributes, u, v ∈ tupl(H), and let K and
L be two subsets of H. The following statements hold:
(i) u[K][K ∩ L] = u[L][K ∩ L] = u[K ∩ L].
(ii) The equality u[KL] = v[KL] holds if and only if u[K] = v[K] and u[L] =

v[L].

Proof. The argument is a straightforward application of Definition 1.152 and
is left to the reader. 	


Exercises and Supplements

1. Prove that for any set S we have
⋃

P(S) = S.
2. A set is transitive if X ⊆ P(X). Prove that {∅, {∅}, {{∅}}} is transitive.
3. Let C and D be two collections of sets such that C ⊆ D. Prove that⋃

C ⊆
⋃

D; also, if C �= ∅, then show that
⋂

C ⊇
⋂

D.
4. Let {Ci | i ∈ I} be a family of hereditary collections of sets. Prove that⋂

i∈I Ci is also a hereditary collection of sets.
5. Let C be a nonempty collection of nonempty subsets of a set S. Prove that

C is a partition of S if and only if every element a ∈ S belongs to exactly
one member of the collection C.

6. Let S be a set and let U be a subset of S. For a ∈ {0, 1}, define the set

Ua =

{
U if a = 1,
S − U if a = 0.

a) Prove that if D = {D1, . . . , Dr} is a finite collection of subsets of S,
then the nonempty sets that belong to the collection

{Da1
1 ∩Da2

2 ∩ · · · ∩Dar
r | (a1, a2, . . . , ar) ∈ {0, 1}r},

constitute a partition πD of S.
b) Prove that each set of D is a πC-saturated set.
Solution: For a = (a1, . . . , ar) ∈ {0, 1}r, denote by Da the set Da1

1 ∩
Da2

2 ∩ · · · ∩Dar
r .

Let a,b ∈ {0, 1}r such that a �= b and a = (a1, . . . , ar) and b =
(b1, . . . , br). Note that Da∩Db = ∅. Further, let x ∈ S. Define di as di = 1
if x ∈ Di and di = 0 otherwise for 1 ≤ i ≤ r, and let d = (d1, . . . , dr).
Then, it is clear that x ∈ Dd and therefore S =

⋃
{Dd | d ∈ {0, 1}r}.

This concludes the argument for the first part.
For the second part, note that each set Di ∈ D can be written as

Di =
⋃
{Da1

1 ∩Da2
2 ∩ · · · ∩Di ∩ · · · ∩Dar

r

| (a1, . . . , ai−1, 1, ai+1, . . . , ar) ∈ {0, 1}r}.
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7. Prove that if π, π′ ∈ PART(S) and π′ ≤ π, then every π-saturated set is
a π′-saturated set.

8. Let C and D be two collections of subsets of a set S. Prove that if T is a
subset of S, then (C ∪D)T = CT ∪DT and (C ∩D)T ⊆ CT ∩DT .

9. Let S be a set and let C be a collection of subsets of S. The elements x
and y of S are separated by C if there exists C ∈ C such that either x ∈ C
and y �∈ C or x �∈ C and y ∈ C. Let ρ ⊆ S × C be the relation defined in
Example 1.47.
Prove that x and y are separated by C if and only if ρ(x) �= ρ(y).

10. Prove that for all sets R,S, T we have
a) (R ∪ S)⊕ (R ∩ S) = R⊕ S,
b) R ∩ (S ⊕ T ) = (R ∩ S)⊕ (R ∩ T ).

11. Let P and Q be two subsets of a set S.
a) Prove that P ∪Q = S if and only if S − P ⊆ Q.
b) Prove that P ∩Q = ∅ if and only if Q ⊆ S − P .

12. Let S be a nonempty set and let s0 be a fixed element of S. Define the
collection [x, y] = {{x, s0}, {y, {s0}}}. Prove that if [x, x′] = [y, y′], then
x = y and x′ = y′.

13. Let S and T be two sets. Suppose that the function p : S×T −→ T given
by p(x, y) = y for x ∈ S and y ∈ T is a bijection. What can be said about
the set S?

14. Let S and T be two sets. The functions p1 : S×T −→ S and p2 : S×T −→
T defined by p1(x, y) = x and p2(x, y) = y for x ∈ S and y ∈ T are the
projections of the Cartesian product S × T on S and T , respectively. Let
U be a set such that f : U −→ S and g : U −→ T are two functions.
Prove that there is a unique function h : U −→ S × T such that p1h = f
and p2h = g.

15. Let C be a collection of subsets of a set S. Define the relations ρC and σC

on S by

σC = {(x, y) ∈ S × S | |x ∈ C if and only if y ∈ C for every C ∈ C}

and

ρC = {(x, y) ∈ S × S | |x ∈ C implies y ∈ C for every C ∈ C}.

Prove that, for every collection C, the relation σC is an equivalence and
that ρC is a reflexive and transitive relation.

16. Prove that a relation ρ is a function if and only if ρ−1ρ ⊆ ιRan(ρ).
17. Prove that ρ is a one-to-one relation if and only if ρρ−1 ⊆ ιDom(ρ).
18. Prove that ρ is a total relation from A to B if and only if ιA ⊆ ρρ−1.
19. Prove that ρ is an onto relation from A to B if and only if ιB ⊆ ρ−1ρ.
20. Prove that the composition of two injections (surjections, bijections) is an

injection (a surjection, a bijection, respectively).
21. Let f : S1 −→ S2 be a function. Prove that, for every set L ∈ P(S2), we

have
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S1 − f−1(S2 − L) = f−1(L).

22. Prove that the function γ : N × N −→ P defined by γ(p, q) = 2p(2q + 1)
for p, q ∈ N is a bijection.

23. Let f : S −→ T be a function. Prove that f is an injection if and only if
f(U ∩ V ) = f(U) ∩ f(V ) for every U, V ∈ P(S).

24. Let S be a set and let fi : S −→ S be m injective mappings for 1 ≤≤ m. If
s = (i1, i2, . . . , ik) ∈ Seq({1, . . . ,m}) let fs be the injection fi1fi2 · · · fik

and let Ts be the set fi1(fi2(· · · (fik
(T ) · · · ))).

a) Prove that if (i1, i2, . . .) ∈ Seq∞({1, . . . ,m}), then T ⊇ Ti1 ⊇ Ti1i2 ⊇
· · · .

b) Prove that if {Ti1 , Ti2 , . . . , Tim
} is a partition of the set T , then {Tu |

u ∈ Seqp({1, . . . , n})} is a partition of T for every p ≥ 1.
Solution: One can prove by induction on |s| that Tsi ⊆ Ts for every

sequence s ∈ Seq({1, . . . ,m}) and i ∈ {1, . . . ,m}. This implies the first
statement. A proof of the second statement can be obtained by induction
on p.

25. Let f : S −→ T be a function. Prove that for every U ∈ P(S) we have
U ⊆ f−1(f(U)) and for every V ∈ P(T ) we have f(f−1(V )) = V .

26. Let S be a finite set and let C be a collection of subsets of S. For x ∈ S,
define the mapping φx : C −→ P(S) by

φx(C) =

{
C − {x} if x ∈ C and C − {x} �∈ C,

C otherwise,

for C ∈ C. Prove that |C| = |φx(C) | C ∈ C|.
Solution: To prove the equality, it suffices to show that φx is injective.

Suppose that φx(C1) = φx(C2). Observe that in this case both φx(C1)
and φx(C2) are computed by applying the same case of the definition of
φx. Indeed, if this were not the case, suppose that φx(C1) is obtained
by applying the first case and φx(C2) is obtained by applying the second
case. This entails C1 − {x} = C2, x ∈ C1, and C1 − {x} �∈ C, which is
contradictory. Thus, we have C1 = C2.

27. Let C = {Ci | i ∈ I} and D = {Di | i ∈ I} be two collections of sets
indexed by the same set I. Define the collections

C ∨I D = {Ci ∨Di | i ∈ I},
C ∧I D = {Ci ∧Di | i ∈ I}.

Prove that (∏
C
)
∩
(∏

D
)

=
∏

(C ∧I D) ,(∏
C
)
∪
(∏

D
)
⊆
∏

(C ∨I D) .

28. Prove that the relation ρ ⊆ S × S is
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a) reflexive if ιS ⊆ ρ,
b) irreflexive if ιS ∩ ρ = ∅,
c) symmetric if ρ−1 = ρ,
d) antisymmetric if ρ ∩ ρ−1 ⊆ ιS ,
e) asymmetric if ρ−1 ∩ ρ = ∅,
f) transitive if ρ2 ⊆ ρ.

29. Prove that if S is a finite set such that |S| = n, then there are 2n2
binary

relations on S.
30. Prove that there are 2n(n−1) binary reflexive relations on a finite set S

that has n elements.
31. Prove that the number of antisymmetric relations on a finite set that has

n elements is 2n · 3n(n−1)
2 .

32. Let S be a set and let ρ be a relation on S. Prove that ρ is an equivalence
on S if and only if there exists a collection C of pairwise disjoint subsets
of S such that S =

⋃
C and ρ =

⋃
{C × C | C ∈ C}.

33. Let ρ and ρ′ be two equivalence relations on the set S. Prove that ρ ∪ ρ′
is an equivalence on S if and only if ρρ′ ∪ ρ′ρ ⊆ ρ ∪ ρ′.

34. Let E = {ρi | i ∈ I} be a collection of equivalence relations on a set S
such that, for ρi, ρj ∈ E, we have ρi ⊆ ρj or ρj ⊆ ρi, where i, j ∈ I. Prove
that

⋃
E is an equivalence on S.

35. Let ρ be a relation on a set S. Prove that the relation σ =
⋃

n∈N
(ρ∪ρ−1∪

ιS)n is the least equivalence on S that includes ρ.
36. Let x = (x0, . . . , xn−1) be a sequence in Seq(R), where n ≥ 2. The se-

quence is said to be unimodal if there exists j, 0 ≤ j ≤ n − 1 such that
x0 ≤ x1 ≤ · · · ≤ xj and xj ≥ xj+1 ≥ · · · ≥ xn.
Prove that if x ∈ Seq(R>0) and xp−1xp+1 ≤ x2

p for 1 ≤ p ≤ n− 2, then x
is a unimodal sequence.

37. Let p1, p2, p3, . . . be the sequence of prime numbers 2, 3, 5, · · · . Define the
function f : Seq(N) −→ N by f(n1, . . . , nk) = pn1

1 · · · pnk

k . Prove that
f(n1, . . . , nk) = f(m1, . . . ,mk) implies (n1, . . . , nk) = (m1, . . . ,mk).

38. Prove that the Axiom of Choice is equivalent to the statement “every
surjective function has a right inverse”.

Solution: Let f : U −→ V be a surjective function. If V = ∅, then
X = ∅, so f is the empty function. The desired right inverse is also the
empty function. Suppose that V �= ∅ and consider the nonempty collection
Cf = {f−1(v) | v ∈ V } that consists of nonempty sets, that are pairwise
disjoint. LetK be a selective set for Cf and let h : V −→ U be the function
defined by h(v) = u if K ∩ f−1(y) = {u}. It is easy to see that h is a right
inverse for f .

Conversely, let C be a nonempty collection of nonempty, pairwise dis-
joint sets and let f :

⋃
C −→ C be the function defined by f(x) = C

if x ∈ C. It is clear that f is a surjection, so it has a right inverse,
h : C −→

⋃
C. Then, K = h(C) is a selective set for C.

39. Give a selective set for the collection of sets C = {(z, z + 1) | z ∈ Z}.
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40. Let f : S −→ T be a function such that f−1(t) is a countable set for every
t ∈ T . Prove that the set S is countable.

41. Prove that P(N) is not countable.
42. Let S = (S0, S1, . . .) be a sequence of countable sets. Prove that lim inf S

and lim supS are both countable sets.
43. Let S be a countable set. Prove that Seq(S) is countable. How about

Seq∞(S)?
44. Let f and g be two transpositions on a set S. Prove that there is i ∈

{1, 2, 3} such that (fg)i = 1S .
45. Let x ∈ R and let m ∈ N. Prove that if x ≥ 0 and m ≥ 1, then

xm−1

(m− 1)!
+
xm

m!
≤ (x+ 1)m

m!
.

46. Starting from Newton’s binomial formula, prove the following identities:

n∑
k=0

(n− k)
(
n

k

)
= n2n−1,

n∑
k=0

(
n
k

)
n− k + 1

=
2n+1 − 1
n+ 1

.

47. Prove that (
m+ n
k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)

for m,n, k ∈ N and k ≤ m+ n.
48. Prove that max{

(
n
k

)
| 0 ≤ k ≤ n} =

(
n


n
2 �
)

=
(

n
�n

2 
)
.

49. Prove that
22n

2n+ 1
≤
(

2n
n

)
≤ 22n

for n ≥ 0.
50. Let S and T be two finite sets such that |S| = m and |T | = n.

a) Prove that the set of functions S −→ T contains nm elements.
b) Prove that the set of partial functions S � T contains (n + 1)m

elements.
51. Let I be a finite set. A system of distinct representatives for a collection

of sets C = {Ci | i ∈ I} is an injection r : I →
⋃

C such that r(i) ∈ Ci

for i ∈ I.
Define the mapping ΦC : P(I) ≤ P(

⋃
C) by ΦC(L) =

⋃
i∈L Ci for L ⊆ I.

a) Show that if C has a system of distinct representatives, then |ΦC(L)| ≥
|L| for every L such that L ⊆ {1, . . . , n}.

b) A subset L of I is Φ-critical if |ΦC(L)| = |L|. Let x ∈
⋃

C. Define
Φ′ : P(I) ≤ P(

⋃
C) by Φ′(L) = ΦC(L)−{x}. Prove that if no nonempty

set L is Φ-critical, then |Φ′(L)| ≥ |L| for every L.



54 1 Sets, Relations, and Functions

c) Let L be a nonempty minimal ΦC-critical set such that L ⊂ I. Define
the collection D = {Ci−Φ(L) | i ∈ I−L}. Prove that |ΦD(H)| ≥ |H|
for every H ⊆ I − L.

d) Prove, by induction on the number n = |I|, the converse of the first
statement: If |ΦC(L)| ≥ |L| for every L in P(I), then a system of
distinct representatives exists for the collection C (Hall’s matching
theorem).

52. Prove the inequality (
n

i− 1

)(
n

i+ 1

)
≤
((
n

i

))2

for 1 ≤ i ≤ n− 1.
53. Let C be a collection of subsets of a finite set S.

a) Prove that if C ∩D �= ∅ for every pair (C,D) of members of C, then
|C| ≤ 2|S|−1.

b) Prove that if C ∪D ⊂ S for every pair (C,D) of members of C, then
|C| ≤ 2|S|−1.

54. Let C be a collection of subsets of a finite set S such that C ⊆ Pk(S) for
some k < |S|. The shadow of C is the collection ΔC = {D ∈ Pk−1(S) |
D ⊆ C for some C ∈ C}. The shade of C is the collection ∇C = {D ∈
Pk+1(S) | C ⊆ T for some C ∈ C}.
Prove that:
a) |ΔC| ≥ k

n−k+1 |C| for k > 0;
b) |∇C| ≥ n−k

k+1 |C| for k < n;

c) |ΔC|
( n

k−1)
≥ |C|

(n
k)

for k > 0;

d) |∇C|
( n

k+1)
≥ |C|

(n
k)

for k < n;

e) if k ≤ n−1
2 , then |∇C| ≥ |C|;

f) if k ≥ n+1
2 , then |ΔC| ≥ |C|.

Solution: We discuss only the first inequality since the argument for
the second is similar. If C ∈ C, there are k elements that can be removed
from C to yield a set D ∈ ΔC. Thus, there are |C|k pairs (C,D) ∈ C×ΔC

such that D ⊆ C. If D ∈ ΔC, since |D| = k − 1, it is possible to get
n− k + 1 sets C such that D ⊆ C. Thus, k|C| ≤ (n− k + 1)|ΔC|.

The last two parts of this supplement show that the fraction of sets of
size k− 1 that are in the shadow of C and the fraction of sets of size k+1
that are in the shade of C are at least as large as the fraction of the size of
sets k in the collection C. This fact is known as the normalized matching
property of sets.

55. Let Mn and Mp be the multisets of prime divisors of the numbers n and
p, respectively, where n, p ∈ N. Prove that Mn +Mp = Mnp.

56. For two multisets M and P on a set S, denote by M ≤ P the fact that
M(x) ≤ P (x) for every x ∈ S. Prove that M ≤ P implies M ∪Q ≤ P ∪Q
and M ∩Q ≤ P ∩Q for every multiset Q on S.
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57. Let M and P be two multisets on a set S. Define the multiset difference
M − P by (M − P )(x) = max{0,M(x)− P (x)} for x ∈ S.
a) Prove that P ≤ Q implies M − P ≥M −Q and P −M ≤ Q−M for

all multisets M,P,Q on S.
b) Prove that

M − (P ∪Q) = (M − P ) ∩ (M −Q),
M − (P ∩Q) = (M − P ) ∪ (M −Q),

for all multisets M,P,Q on S.
58. Define the symmetric difference of two multisets M and P as (M ⊕ P ) =

(M ∪ P )− (M ∩ P ). Determine which properties of the symmetrical dif-
ference of sets can be extended to the symmetric difference of multisets.

Bibliographical Comments

The reader may find [51] a useful reference for a detailed presentation of
many aspects discussed in this chapter and especially for various variants
of mathematical induction. Suggested introductory references to set theory
are [62, 131].



2

Algebras

2.1 Introduction

This chapter briefly presents several algebraic structures to the extent that
they are necessary for the material presented in the subsequent chapters. Lin-
ear spaces and matrices, which are also discussed here, will receive an extensive
treatment in the separate volume dedicated to linear algebra tools for data
mining. We emphasize notions like operations, morphisms, and congruences
that are of interest for the study of any algebraic structure.

2.2 Operations and Algebras

The notion of operation on a set is needed for introducing various algebraic
structures on sets.

Definition 2.1. Let n ∈ N. An n-ary operation on a set S is a function
f : Sn −→ S. The number n is the arity of the operation f .

If n = 0, we have the special case of zero-ary operations. A zero-ary oper-
ation is a function f : S0 = {∅} −→ S, which is essentially a constant element
of S, f(). Operations of arity 1 are referred to as unary operations.

Binary operations (of arity 2) are frequently used. For example, the union,
intersection, and difference of subsets of a set S are binary operations on the
set P(S).

If f is a binary operation on a set, we denote the result f(x, y) of the
application of f to x, y by xfy rather than f(x, y).

We now introduce certain important types of binary operations.

Definition 2.2. An operation f on a set S is
(i) associative if (xfy)fz = xf(yfz) for every x, y, z ∈ S,
(ii) commutative if xfy = yfx for every x, y,∈ S, and
(iii) idempotent if xfx = x for every x ∈ S.

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 2, c© Springer-Verlag London Limited 2008
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Example 2.3. Set union and intersection are both associative, commutative,
and idempotent operations on every set of the form P(S).

The addition of real numbers “+” is an associative and commutative op-
eration on R; however, “+” is not idempotent.

The binary operation g : R
2 −→ R given by g(x, y) = x+y

2 for x, y ∈ R is a
commutative and idempotent operation of R that is not associative. Indeed,
we have (xgy)gz = x+y+2z

4 and xg(ygz) = 2x+y+z
4 .

Example 2.4. The binary operations max{x, y} and min{x, y} are associative,
commutative, and idempotent operations on the set R.

Next, we introduce special elements relative to a binary operation on a
set.

Definition 2.5. Let f be a binary operation on a set S.
(i) An element u is a unit for f if xfu = ufx = x for every x ∈ S.
(ii) An element z is a zero for f if zfu = ufz = z for every x ∈ S.

Note that if an operation f has a unit, then this unit is unique. Indeed,
suppose that u and u′ were two units of the operation f . According to Defini-
tion 2.5, we would have ufx = xfu = x and, in particular, ufu′ = u′fu = u′.
Applying the same definition to u′ yields u′fx = xfu′ = x and, in particular,
u′fu = ufu′ = u. Thus, u = u′.

Similarly, if an operation f has a zero, then this zero is unique. Suppose
that z and z′ were two zeros for f . Since z is a zero, we have zfx = xfz = z
for every x ∈ S; in particular, for x = z′, we have zfz′ = z′fz = z. Since z′ is
zero, we also have z′fx = xfz′ = z′ for every x ∈ S; in particular, for x = z,
we have z′fz = zfz′ = z′, and this implies z = z′.

Definition 2.6. Let f be a binary associative operation on S such that f has
the unit u. An element x has an inverse relative to f if there exists y ∈ S such
that xfy = yfx = u.

An element x of S has at most one inverse relative to f . Indeed, suppose
that both y and y′ are inverses of x. Then, we have

y = yfu = yf(xfy′) = (yfx)fy′ = ufy′ = y′,

which shows that y coincides with y′.
If the operation f is denoted by “+”, then we will refer to the inverse of x

as the additive inverse of x, or the opposite element of x; similarly, when f is
denoted by “·”, we refer to the inverse of x as the multiplicative inverse of x.
The additive inverse of x is usually denoted by −x, while the multiplicative
inverse of x is denoted by x−1.

Definition 2.7. Let I = {fi|i ∈ I} be a set of operations on a set S indexed
by a set I. An algebra type is a mapping θ : I −→ N.

An algebra of type θ is a pair A = (A, I) such that
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(i) A is a set, and
(ii) the operation fi has arity θ(i) for every i ∈ I.

The algebra A = (A, I) is finite if the set A is finite. The set A will be
referred to as the carrier of the algebra A.

If the indexing set I is finite, we say that the type θ is a finite type and
refer to A as an algebra of finite type.

If θ : I −→ N is a finite algebra type, we assume, in general, that the
indexing set I has the form (0, 1, . . . , n− 1). In this case, we denote θ by the
sequence (θ(0), θ(1), . . . , θ(n− 1)).

Next, we discuss several algebra types.

Definition 2.8. A groupoid is an algebra of type (2), A = (A, {f}). If f is
an associative operation, then we refer to this algebra as a semigroup.

In other words, a groupoid is a set equipped with a binary operation f .

Example 2.9. The algebra (R, {f}), where f(x, y) = x+y
2 is a groupoid. How-

ever, it is not a semigroup because f is not an associative operation.

Example 2.10. Define the binary operation g on R by xgy = ln(ex + ey) for
x, y ∈ R. Since

(xgy)gz = ln(exgy+ez

) = ln(ex + ey + ez)
xg(ygz) = ln(x+ eygz) = ln(ex + ey + ez),

for every x, y, z ∈ R it follows that g is an associative operation. Thus, (R, g)
is a semigroup. It is easy to verify that this semigroup has no unit element.

Definition 2.11. A monoid is an algebra of type (0, 2), A = (A, {e, f}), where
e is a zero-ary operation, f is a binary operation, and e is the unit element
for f .

Example 2.12. The algebras (N, {1, ·}) and (N, {0, gcd}) are monoids. In the
first case, the binary operation is the multiplication of natural numbers, the
unit element is 1, and the algebra is clearly a monoid. In the second case, the
binary operation gcd(m,n) yields the greatest common divisor of the numbers
m and n and the unit element is 0.

We claim that gcd is an associative operation. Let m,n, p ∈ N. We need
to verify that gcd(m, gcd(n, p)) = gcd(gcd(m,n), p).

Let k = gcd(m, gcd(n, p)). Then, (k,m) ∈ δ and (k, gcd(n, p)) ∈ δ, where δ
is the divisibility relation introduced in Example 1.29. Since gcd(n, p) divides
evenly both n and p, it follows that (k, n) ∈ δ and (k, p) ∈ δ. Thus, k divides
gcd(m,n), and therefore k divides h = gcd(gcd(m,n), p).

Conversely, h being gcd(gcd(m,n), p), it divides both gcd(m,n) and p.
Since h divides gcd(m,n), it follows that it divides both m and p. Conse-
quently, h divides gcd(n, p) and therefore divides k = gcd(m, gcd(n, p)). Since
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k and h are both natural numbers that divide each other evenly, it follows that
k = h, which allows us to conclude that gcd is an associative operation. Since
n divides 0 evenly, for any n ∈ N, it follows that gcd(0, n) = gcd(n, 0) = n,
which shows that 0 is the unit for gcd.

Definition 2.13. A group is an algebra of type (0, 2, 1), A = (A, {e, f, h}),
where e is a zero-ary operation, f is a binary operation, e is the unit element
for f , and h is a unary operation such that f(h(x), x) = f(x, h(x)) = e for
every x ∈ A.

Note that if we have xfy = yfx = e, then y = h(x). Indeed, we can write

h(x) = h(x)fe = h(x)f(xfy) = (h(x)fx)fy = efy = y.

We refer to the unique element h(x) as the inverse of x. The usual notation
for h(x) is x−1.

A special class of groups are the Abelian groups, also known as commutative
groups. A group A = (A, {e, f, h}) is Abelian if xfy = yfx for all x, y ∈ A.

Example 2.14. The algebra (Z, {0,+,−}) is an Abelian group, where “+” is
the usual addition of integers, and the additive inverse of an integer n is −n.

Traditionally, the binary operation of an Abelian group is denoted by “+”.

Definition 2.15. A ring is an algebra of type (0, 2, 1, 2), A = (A, {e, f, h, g}),
such that A = (A, {e, f, h}) is an Abelian group and g is a binary associative
operation such that

xg(ufv) = (xgu)f(xgv),
(ufv)gx = (ugx)f(vgx),

for every x, u, v ∈ A. These equalities are known as left and right distributivity
laws, respectively.

The operation f is known as the ring addition, while · is known as the
ring multiplication. Frequently, these operations are denoted by “+” and “·”,
respectively.

Example 2.16. The algebra (Z, {0,+,−, ·}) is a ring. The distributivity laws
amount to the well-known distributivity properties

p · (q + r) = (p · q) + (p · r),
(q + r) · p = (q · p) + (r · p),

for p, q, r ∈ Z, of integer addition and multiplication.

Example 2.17. A more interesting type of ring can be defined on the set of
numbers of the formm+n

√
2, wherem and n are integers. The ring operations

are given by
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(m+ n
√

2) + (p+ q
√

2) = m+ p+ (n+ q)
√

2,

(m+ n
√

2) · (p+ q
√

2) = m · p+ 2 · n · q + (m · q + n · p)
√

2.

If the multiplicative operation of a ring has a unit element 1, then we
say that the ring is a unitary ring. We consider a unitary ring as an algebra
of type (0, 0, 2, 1, 2) by regarding the multiplicative unit as another zero-ary
operation.

Observe, for example, that the ring (Z, {0, 1,+,−, ·}) is a unitary ring.
Also, note that the set of even numbers also generates a ring ({2k | k ∈
Z}, {0,+,−, ·}). However, no multiplicative unit exists in this ring.

Rings with commutative multiplicative operations are known as commu-
tative rings. All examples of rings considered so far are commutative rings. In
Section 2.5, we shall see an important example of a noncommutative ring.

Definition 2.18. A field is a pair A = (A, {e, f, h, g, u}) such that A =
(A, {e, f, h, g}) is a commutative and unitary ring and u is a unit for the
binary operation g such that every element x �= e has an inverse relative to
the operation g.

Example 2.19. The pair R = (R, {0,+,−, ·, 1}) is a field. Indeed, the multi-
plication “·” is a commutative operation and 1 is a multiplicative unit. In
addition, each element x �= 0 has the inverse 1

x .

2.3 Morphisms, Congruences, and Subalgebras

Morphisms are mappings between algebras of the same type that satisfy cer-
tain compatibility conditions with the operations of the type.

Let θ : I −→ N be a type. To simplify notation, we denote the operations
that correspond to the same element i with the same symbol in every algebra
of this type.

Definition 2.20. Let θ : I −→ N be a finite algebra type and let A = (A, I)
and B = (B, I) be two algebras of the type θ. A morphism is a function
h : A −→ B such that, for every operation fi ∈ I, we have

h(fi(x1, . . . , xni
)) = fi(h(x1), . . . , h(xni

))

for (x1, . . . , xni
) ∈ Ani , where ni = θ(i).

If the algebras A and B are the same, then we refer to f as an endomor-
phism of the algebra A.

The set of morphisms between A and B is denoted by MOR(A,B).

Example 2.21. A morphism between the groupoids A = (A, {f}) and B =
(B, {f}) is a mapping h : A −→ B such that
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h(f(x1, x2)) = f(h(x1), h(x2)) (2.1)

for every x1 and x2 in A. Exactly the same definition is valid for semigroup
morphisms.

If A = (A, {e, f}) and B = (B, {e, f}}) are two monoids, where e is a
zero-ary operation and f is a binary operation, then a morphism of monoids
must satisfy the equalities h(e) = e and h(f(x1, x2)) = f(h(x1), h(x2)) for
x1, x2 ∈ A.

Example 2.22. Let (N, {0, gcd}) be the monoid introduced in Example 2.12.
The function h : N −→ N defined by h(n) = n2 for n ∈ N is an endomorphism
of this monoid because gcd(p, q)2 = gcd(p2, q2) for p, q ∈ N.

Example 2.23. A morphism between two groups A = (A, {e, ·,−1}) and B =
(B, {e, ·,−1}) satisfies the conditions h(e) = e, h(x1 · x2) = h(x1) · h(x2), as
well as h(x−1

1 ) = (h(x1))−1, for x1, x2 ∈ A.
It is interesting to observe that, in the case of groups, the first and last

conditions are consequences of the second condition, so they are superfluous.
Indeed, choose x2 = e in the equality h(x1 · x2) = h(x1) · h(x2); this yields
h(x1) = h(x1)h(e). By multiplying both sides with h(x1)−1 at the left and
applying the associativity of the binary operation, we obtain h(e) = e. On the
other hand, by choosing x2 = x−1

1 , we have e = h(e) = h(x1)h(x−1
1 ), which

implies h(x−1
1 ) = (h(x1))−1.

Example 2.24. Let A = (A, {0,+,−1, ·}) and B = (B, {0,+,−1, ·}) be two
rings. Then, h : A −→ B is a ring morphism if h(0) = 0, h(x1 + x2) =
h(x1) + h(x2), and h(x1 · x2) = h(x1) · h(x2).

Definition 2.25. Let A = (A, I) be an algebra. An equivalence ρ ∈ EQS(A)
is a congruence if, for every operation f of the algebra, f : An −→ A,
(xi, yi) ∈ ρ for 1 ≤ i ≤ n implies (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ ρ for
x1, . . . , xn, y1, . . . , yn ∈ A.

Recall that we introduce the kernel of a mapping in Definition 1.102. When
the mapping f is a morphism, we have further properties of ker(f).

Theorem 2.26. Let A = (A, I) and B = (B, I) be two algebras of the type θ
and let h : A −→ B be a morphism. The relation ker(h) is a congruence of
the algebra A.

Proof. Let x1, . . . , xn, y1, . . . , yn ∈ A such that (xi, yi) ∈ ker(h) for 1 ≤ i ≤ n;
that is, h(xi) = h(yi) for 1 ≤ i ≤ n. By applying the definition of morphism,
we can write for every n-ary operation in I

h(f(x1, . . . , xn)) = f(h(x1), . . . , h(xn))
= f(h(y1), . . . , h(yn))
= h(f(y1, . . . , yn)),
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which means that (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ ker(f). Thus, ker(f) is a
congruence. 	


If A = (A, I) is an algebra and ρ is a congruence of A, then the quotient set
A/ρ (see Definition 1.115) can be naturally equipped with operations derived
from the operations of A by

f([x1]ρ, . . . , [xn]ρ) = [f(x1, . . . , xn)]ρ (2.2)

for x1, . . . , xn ∈ A. Observe first that the definition of the operation that
acts on the A/ρ is a correct one for if yi ∈ [xi]ρ for 1 ≤ i ≤ n, then
[f(y1, . . . , yn)]ρ = [f(x1, . . . , xn)]ρ.

Definition 2.27. The quotient algebra of an algebra A = (A, I) and a con-
gruence ρ is the algebra A/ρ = (A/ρ, I), where each operation in I is defined
starting from the corresponding operation f in A by Equality (2.2).

Example 2.28. Let A = (A, {e, ·,−1}) be a group. An equivalence ρ is a con-
gruence if (x1, x2), (y1, y2) ∈ ρ imply (x−1

1 , x−1
2 ) ∈ ρ and (x1 · y1, x2 · y2) ∈ ρ.

Definition 2.29. Let A = (A, I) be an algebra. A subset B of A is closed if
for every n-ary operation f ∈ I, x1, . . . , xn ∈ B implies f(x1, . . . , xn) ∈ B.

Note that if the set B is closed, then for every zero-ary operation e of I we
have e ∈ B.

Let A = (A, I) be an algebra and let B be a closed subset of A. The pair
(B, I′), where I′ = {gi = fi �B | i ∈ I}, is an algebra of the same type as A.
We refer to it as a subalgebra of A. Often we will refer to the set B itself as a
subalgebra of the algebra A.

It is clear that the empty set is closed in an algebra A = (A, I) if and only
if there is no zero-ary operation in I.

We refer to subalgebras of particular algebras with more specific terms.
For example, subalgebras of monoids or groups are referred to as submonoids
or subgroups, respectively.

Theorem 2.30. Let A = (A, {e, ·,−1}) be a group. A nonempty subset B of
A is a subgroup if and only if x · y−1 ∈ B for every x, y ∈ B.

Proof. The necessity of the condition is immediate. To prove that the condi-
tion is sufficient, observe that since B �= ∅ there is x ∈ B, so x · x−1 = e ∈ B.

Next, let x ∈ B. Since e · x−1 = x−1 it follows that x−1 ∈ B. Finally,
if x, y ∈ B, then x · y = x · (y−1)−1 ∈ B, which shows that B is indeed a
subgroup. 	


Example 2.31. Let A = (A, {e, ·,−1}) be a group. For u ∈ A, define the set
Cu = {x ∈ G | xu = ux}. If x ∈ Cu, then xu = ux, which implies xux−1 = u,
so ux−1 = x−1u. Thus, x−1 ∈ Cu. It is easy to see that e ∈ Cu and x, y ∈ Cu

implies xy ∈ Cu. Thus Cu is a subgroup.



64 2 Algebras

2.4 Linear Spaces

Linear spaces are studied in a distinct mathematical discipline, named linear
algebra. Applications of linear spaces in data mining will be the object of a
dedicated volume. In this section, we discuss basic properties of linear spaces
that are useful for the present volume.

Definition 2.32. Let L be a nonempty set and let F = (F, {0,+,−, ·, }) be a
field whose carrier is a set F . An F-linear space is a triple (L,+, ·) such that
(L, {0,+,−}) is an Abelian group and · : F × L −→ L is an operation such
that the following conditions are satisfied

(i) a · (b · x) = (a · b) · x,
(ii) 1 · x = x,
(iii) a · (x + y) = a · x + a · y, and
(iv) (a+ b) · x = a · x + b · x
for every a, b ∈ F and x,y ∈ L.

If F is the field of real numbers R, then we will refer to any R-linear space
as a real linear space.

Note that the commutative binary operation of L is denoted by the same
symbol “+” as the corresponding operation of the field F . The operation
· : F ×L −→ L is an external operation since its two arguments belong to two
different sets, F and L. Again, this operation is denoted by the same symbol
used for denoting the multiplication on F .

The elements of the set L will be denoted using bold letters x,y, z, etc.
The members of the field will be denoted by small letters from the beginning
of the alphabet.

The additive element 0 is a special element called the zero element; every
F-linear space must contain at least this element.

Example 2.33. The set R
n of n-tuples of real numbers is an R-linear space

under the definitions

x + y = (x1 + y1, . . . , xn + yn),
a · x = (a · x1, . . . , a · xn),

of the operations + and ·, where x = (x1, . . . , xn) and y = (y1, . . . , yn). In
this linear space, the zero of the Abelian group is the n-tuple 0 = (0, . . . , 0).

Example 2.34. Let S be a set. The set of real-valued functions defined on S
is a real linear space. The addition of functions is given by (f + g)(s) =
f(s)+ g(s), and the multiplication of a function with a real number is defined
by (af)(s) = af(s) for s ∈ S and a ∈ R.

Example 2.35. Let C be the set of real-valued continuous functions defined on
R,
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C = {f : R −→ R | f is continuous}.
Define f + g by (f + g)(x) = f(x) + g(x) and (a · f)(x) = a · f(x) for x ∈ R.

The triple (C,+, ·) is a real linear space.

Definition 2.36. Let F = (F, {0,+,−, ·, }) be a field and let L = (L,+, ·)
be an F-linear space. For a finite subset K = {x1, . . . ,xn} of L, a linear
combination of K is a member of L of the form c1x1 + · · · + cnxn, where
c1, . . . , cn ∈ F .

A subset K = {x1, . . . ,xn} of L is linearly independent if c1x1 + · · · +
cnxn = 0 implies c1 = · · · = cn = 0. If K is not linearly independent, we refer
to K as a linearly dependent set.

If x �= 0, then the set {x} is linearly independent. Of course, the set {0}
is not linearly independent because 10 = 0.

It is easy to see that if K is a linearly independent subset of a linear space,
then any subset of K is linearly independent.

Example 2.37. Let ei = (0, . . . , 0, 1, 0, . . .) be a binary vector that has a unique
nonzero component in place i, where 1 ≤ i ≤ n. The set E = {e1, . . . , en}
is linearly independent. Indeed, suppose that c1e1 + · · · + cnen = 0. This is
equivalent to (c1, . . . , cn) = (0, . . . , 0), that is, c1 = · · · = cn = 0. Thus, E is
linearly independent.

If U is an arbitrary subset of a linear space, we say that x ∈ L is a linear
combination of U if there exists a finite subset K of U such that x is a linear
combination of K.

Theorem 2.38. Let (L,+, ·) be an F-linear space. A subset K of L is linearly
independent if and only if for every x ∈ L that is a linear combination of K,
x =

∑
i cixi, the coefficients ci are uniquely determined.

Proof. Suppose that x = c1x1 + · · · + cnxn = c′1x1 + · · · + c′nxn and there
exists i such that ci �= c′i. This implies

∑n
i=1(ci− c′i)xi = 0, which contradicts

the linear independence of K. 	


Definition 2.39. A subset S of a linear space (L,+, ·) spans the space L
(or S generates the linear space) if every x ∈ L can be written as a linear
combination of S.

A basis of the linear space (L,+, ·) is a linearly independent subset that
spans the linear space.

In view of Theorem 2.38, a set B is a basis if every x ∈ L can be written
uniquely as a linear combination of elements of B.

Definition 2.40. Let F = (F, {0,+,−, ·, }) be a field. A subspace of a F-
linear space (L,+, ·) is a nonempty subset U of L such that x,y ∈ U implies
x + y ∈ U and a · x ∈ U for every a ∈ F .
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Note that the set U0 = {0} is a subspace of any F-linear space (L,+, ·).
Moreover, U0 is included in any subspace of the linear space.

If {Ki | i ∈ I} is a nonempty collection of subspaces of a linear space,
then

⋂
{Ki | i ∈ I} is also a linear subspace.

Theorem 2.41. Let L = (L,+, ·) be an F-linear space. The following state-
ments are equivalent:
(i) The finite set K = {x1, . . . ,xn} is spanning the linear space (L,+, ·) and
K is minimal with this property.

(ii) K is a finite basis for (L,+, ·).
(iii) The finite set K is linearly independent, and K is maximal with this prop-

erty.

Proof. (i) implies (ii): We need to prove that K is linearly independent. Sup-
pose that this is not the case. Then, there exist c1, . . . , cn ∈ F such that
c1x1 + · · ·+ cnxn = 0 and at least one of c1, . . . , cn, say ci, is nonzero. Then,
xi = − c1

ci
x1−· · ·− cn

ci
xn, and this implies that K−{xi} also spans the linear

space, thus contradicting the minimality of K.
(ii) implies (i): Let K be a finite basis. Suppose that K ′ is a proper subset

of K that spans L. Then, if z ∈ K−K ′, z′ is a linear combination of elements
of K ′, which contradicts the fact that K is a basis.

We leave to the reader the proof of the equivalence between (ii) and (iii).
	


Corollary 2.42. Every linear space that is spanned by a finite subset has a
finite basis. Further, if B is a finite basis for an F-linear space (L,+, ·), then
each finite subset U of L such that |U | = |B|+ 1 is linearly dependent.

Proof. This statement follows directly from Theorem 2.41. 	


Corollary 2.43. If B and B′ are two finite bases for a linear space (L,+, ·),
then |B| = |B′|.

Proof. If B is a finite basis, then |B| is the maximum number of linearly
independent elements in L. Thus, |B′| ≤ |B|. Reversing the roles of B and
B′, we obtain |B| ≤ |B′|, so |B| = |B′|. 	


Thus, the number of elements of a finite basis of L is a characteristic of L
and does not depend on any particular basis.

Definition 2.44. A linear space (L,+, ·) is n-dimensional if there exists a
basis of L such that |B| = n. The number n is the dimension of L and is
denoted by dim(L).

Definition 2.45. An inner product on a real linear space (L,+, ·) is a func-
tion p : L2 −→ R that has the following properties
(i) p(x,y) = p(y,x),
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(ii) p(x, ay) = ap(x,y),
(iii) p(x,y + y′) = p(x,y) + p(x,y′), and
(iv) p(x,x) ≥ 0 and p(x,x) = 0 implies x = 0,
for every x,y ∈ L and a ∈ R.

The linear product p(x,y) is denoted by x · y.

Example 2.46. An inner product on R
n is defined by

x · y = x1y1 + · · ·+ xnyn

for every x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n.

Definition 2.47. A norm on a real linear space (L,+, ·) is a mapping ν :
L −→ R≥0 such that
(i) ν(x) ≥ 0, and ν(x) = 0 implies x = 0,
(ii) ν(ax) = |a|ν(x), and
(iii) ν(x + y) ≤ ν(x) + ν(y)
for every a ∈ R and x,y ∈ L.

Theorem 2.48. Let (L,+, ·) be a linear space and let x,y ∈ L. We have the
inequality ∣∣∣ν(x)− ν(y)

∣∣∣ ≤ ν(x− y).

Proof. By applying the definition of the norms, we can write

ν(x) ≤ ν(x− y) + ν(y),
ν(y) ≤ ν(y− x) + ν(x),

which are equivalent to

ν(x)− ν(y) ≤ ν(x− y) and
ν(y)− ν(x) ≤ ν(y− x),

respectively.
Since ν(x− y) = ν(y− x) (by the second property of Definition 2.47), it

follows that
−ν(x− y) ≤ ν(x)− ν(y) ≤ ν(x− y),

which gives the desired inequality. 	


Theorem 2.49 (Cauchy’s Inequality). Let (L,+, ·) be a linear space. For
every x,y ∈ L, we have

(x · y)2 ≤ (x · x)(y · y),

where u · v denotes the inner product of u, v ∈ L.
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Proof. Consider the function f : R −→ R defined by f(λ) = (x+λy) ·(x+λy)
for λ ∈ R. Observe that f(λ) = x · x + 2λx · y + λ2y · y. By Definition 2.45,
we have f(λ) ≥ 0 for every λ and this implies that the discriminant of the
quadratic expression, (x ·y)2− (x ·x)(y ·y) must be not greater than 0. This
gives the desired inequality. 	


If an inner product exists on a real linear space (L,+, ·), a norm can be
defined by

ν(x) =
√

x · x,
for every x ∈ L. We leave it to the reader to verify that ν is indeed a norm.
The satisfaction of the third condition of Definition 2.47 follows immediately
from Cauchy’s inequality.

An alternative notation for the norm of an element x ∈ L is ‖ x ‖.

Example 2.50. The norm ‖ x ‖2 on R
n defined by

‖ x ‖2=
√
x2

1 + · · ·+ x2
n,

where x = (x1, . . . , xn) ∈ R
n, is induced by the inner product on R

n defined
in Example 2.46 because ‖ x ‖2=

√
x · x.

This norm is known as the Euclidean norm on R
n.

There exist norms in linear spaces that cannot be generated by inner products
(see Exercises 18 and 19).

Definition 2.51. Let w be a vector in R
n and let t ∈ R. A hyperplane in R

n

is a subset Hw,t of R
n defined by

Hw,t = {x ∈ R
n | wx = t}.

The vector w is said to be normal to the hyperplane Hw,t.

2.5 Matrices

We define a class of two-argument functions that is ubiquitous in mathematics
and is very important for the applications that we consider here.

Definition 2.52. Let S be a nonempty set. A matrix on S is a function

M : {1, . . . ,m} × {1, . . . , n} −→ S.

The pair (m,n) is the format of the matrix M .

Matrices can be conceived as two-dimensional arrays as shown below:
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⎜⎜⎜⎝
M(1, 1) M(1, 2) . . . M(1, n)
M(2, 1) M(2, 2) . . . M(2, n)

...
... . . .

...
M(i, 1) M(i, 2) . . . M(i, n)

⎞
⎟⎟⎟⎠ .

Alternatively, a matrix M : {1, . . . ,m}× {1, . . . , n} −→ S can be regarded as
consisting of m rows, where each row is a sequence of the form

(M(i, 1),M(i, 2), . . . ,M(i, n)),

for 1 ≤ i ≤ n, or as a collection of n columns of the form⎛
⎜⎜⎜⎝
M(1, j)
M(2, j)

...
M(m, j)

⎞
⎟⎟⎟⎠ ,

where 1 ≤ j ≤ m.
If M : {1, . . . ,m} × {1, . . . , n} −→ S is a matrix on S, we shall say that

M is an (m×n)-matrix on S. The set of all such matrices will be denoted by
Sm×n.

Example 2.53. Let S = {0, 1}. The matrix(
1 0 1
0 1 1

)
,

is a (3× 2)-matrix on the set S.

The element M(i, j) of the matrix M will usually be denoted by Mij .
Regardless of the set S, we can consider the following two types of matrices

over S.

Definition 2.54. A square matrix on S is an (n×n)-matrix on the set S for
some n ≥ 1.

An (n × n)-square matrix on S is symmetric if Mij = Mji for every i, j
such that 1 ≤ i, j ≤ n.

Example 2.55. The (3× 3)-matrix⎛
⎝ 1 0.5 1

0.5 1 2
1 2 0.3

⎞
⎠

over the set of reals R is symmetric.

Definition 2.56. The transpose of an (m×n)-matrix M is an (n×m)-matrix
M tran defined by M tran

ij = Mji.
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In other words, the transposeM tran of a matrixM has as rows the transposed
columns of M ; equivalently, the columns of M tran are the transposed rows of
M .

It is easy to verify that, for any matrix M ∈ Sm×n, we have

(M tran)tran = M.

If the set S is equipped with the structure of a unitary ring (S, {0,+,−, ·}),
then we can consider more interesting facts on the set Sm×n.

Definition 2.57. The (n × n)-unit matrix on the ring (S, {0,+,−, ·}) is the
square matrix In ∈ Sn×n given by

In =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ ,

whose entries located outside its main diagonal are 0s.
The (m× n)-zero matrix is the (m× n)-matrix Om,n ∈ Sn×n given by

Om,n =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ .

The ring structure (S, {0,+,−, ·}) allows the definition of matrix addition
and matrix multiplication.

Definition 2.58. Let (S, {0,+,−, ·}) be a ring and let M,P ∈ Sm×n be two
matrices that have the same format. The sum of the matrices M and P is the
matrix M + P having the same format and defined by

(M + P )ij = Mij + Pij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2.59. Let M,P ∈ R
2×3 be two matrices given by

M =
(

1 −2 3
0 2 −1

)
and P =

(
−1 2 3
1 4 2

)
.

Their sum is the matrix

M + P =
(

0 0 6
1 6 1

)
.
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It is easy to verify that the matrix sum is an associative and commutative
operation on Sm×n; that is,

M + (P +Q) = (M + P ) +Q,
M + P = P +M,

for all M,P,Q ∈ Sm×n.
The zero matrix Om,n acts as an additive unit on the set Sm×n; that is,

M +Om,n = Om,n +M

for every M ∈ Sm×n.
The additive inverse, or the opposite of a matrix M ∈ Sm×n, is the matrix

−M given by (−M)ij = −Mij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2.60. The opposite of M ∈ R
2×3, given by

M =
(

1 −2 3
0 2 −1

)

is the matrix

−M =
(
−1 2 −3
0 −2 1

)
.

It is immediate that M + (−M) = O2,3.

The discussion above shows that the set of matrices Sm×n defined on a ring
(S, {0,+,−, ·}) is an Abelian group (Sm×n, {Om,n,+,−}).

Definition 2.61. Let (S, {0,+,−, ·}) be a ring and let M ∈ Sm×n and P ∈
Sn×p be two matrices. The product of the matrices M,P is the matrix Q ∈
Sm×p defined by

Qik =
n∑

j=1

MijPjk,

where 1 ≤ i ≤ m and 1 ≤ k ≤ p. The product of the matrices M,P will be
denoted by MP .

The matrix product is a partial operation because in order to multiply two
matrices M and P , they must have the formats m×n and n×p, respectively.
In other words, the number of columns of the first matrix must equal the
number of rows of the second matrix.

Theorem 2.62. Matrix multiplication is associative.
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Proof. Let M ∈ Sm×n, P ∈ Sn×p, and R ∈ Sp×r be three matrices, where
(S, {0,+,−, ·}) is a ring. We need to prove that (MP )R = M(PR).

By applying the definition of the matrix product, we have

((MP )R)i� =
p∑

k=1

(MP )ikRk�

=
p∑

k=1

⎛
⎝ n∑

j=1

MijPjk

⎞
⎠Rk�

=
n∑

j=1

Mij

p∑
k=1

PjkRk�

=
n∑

j=1

Mij(PR)j�

= (M(PR))i�

for 1 ≤ i ≤ m and 1 ≤ � ≤ r, which shows that matrix multiplication is indeed
associative. 	


Theorem 2.63. If M ∈ Sm×n, then ImM = MIn = M .

Proof. The statement follows immediately from the definition of a matrix
product. 	


Note that if M ∈ Sn×n, then InM = MIn = M , so In is a unit relative to
matrix multiplication considered as an operation on the set of square matrices
Sn×n.

The product of matrices is not commutative. Indeed, consider the matrices
M,P ∈ Z

2×2 defined by

M =
(

0 1
2 3

)
and P =

(
−1 1
1 0

)
.

We have

MP =
(

1 0
1 2

)
and P =

(
2 2
0 1

)
,

so MP �= PM .
Matrices are used in studying partitions.

Definition 2.64. Let π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} of a finite
set S = {s1, . . . , s�}. The contingency matrix of the partitions π and σ is
the (m × n)-matrix Q(π, σ), where Q(π, σ)ij = |Bi ∩ Cj | for 1 ≤ i ≤ m and
1 ≤ j ≤ n. The element Q(π, σ)ij will be denoted by qij for 1 ≤ i ≤ m and
1 ≤ j ≤ n.
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Starting from a contingency matrix Q(π, σ), we introduce the marginal
totals of such a matrix:

q·j =
m∑

i=1

qij for 1 ≤ j ≤ n and

qi· =
n∑

j=1

qij for 1 ≤ i ≤ m.

Clearly, |Cj | = q·j , |Bi| = qi·, and |S| =
∑m

i=1 qi· =
∑n

j=1 q·j = |S|. Also, we
have

m∑
i=1

n∑
j=1

qij =
m∑

i=1

qi· =
n∑

j=1

q·j = �.

Let ρπ and ρσ be the equivalence relations that correspond to the partitions
π and σ, introduced in Theorem 1.116.

The set of unordered pairs of elements of S was denoted by P2(S). If
|S| = �, then it is easy to see that |P2(S)| = �2−�

2 distinct unordered pairs
of elements. An unordered pair {s, s′} belongs to one of the following four
classes:
1. Type 1 pairs are those pairs such that (s, s′) ∈ ρπ and (s, s′) ∈ ρσ.
2. Type 2 pairs are those pairs such that (s, s′) �∈ ρπ and (s, s′) �∈ ρσ.
3. Type 3 pairs are those pairs such that (s, s′) �∈ ρπ and (s, s′) ∈ ρσ.
4. Type 4 pairs are those pairs such that (s, s′) ∈ ρπ and (s, s′) �∈ ρσ.

The number of agreements agr(π, σ) of the partitions π and σ is the total
number of pairs of types 1 and 2; the number of disagreements of these par-
titions dagr(π, σ) is the total number of pairs of types 3 and 4. Clearly, we
have

agr(π, σ) + dagr(π, σ) =
�2 − �

2
.

Note that the number of pairs of type 1 equals

�1 =
m∑

i=1

n∑
j=1

q2ij − qij
2

=
1
2

⎛
⎝ m∑

i=1

n∑
j=1

q2ij − �

⎞
⎠ .

The number of pairs of type 3 is

�3 =
n∑

j=1

q2·j − q·j
2

−
m∑

i=1

n∑
j=1

q2ij − qij
2

=
1
2

⎛
⎝ n∑

j=1

q2·j −
m∑

i=1

n∑
j=1

q2ij

⎞
⎠ ,

while the number of pairs of type 4 is:

�4 =
m∑

i=1

q2i· − qi·
2

−
m∑

i=1

n∑
j=1

q2ij − qij
2

=
1
2

⎛
⎝ m∑

i=1

q2i· −
m∑

i=1

n∑
j=1

q2ij

⎞
⎠ .
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The equalities above allow us to compute the number of pairs of type 2 as

�2 =
�2 − �

2
− �1 − �3 − �4

=
1
2

⎛
⎝�2 +

m∑
i=1

n∑
j=1

q2ij −
m∑

i=1

q2i· −
n∑

j=1

q2·j

⎞
⎠ .

Thus, we obtain

agr(π, σ) =
1
2

⎛
⎝2

m∑
i=1

n∑
j=1

q2ij + �2 − �−
m∑

i=1

q2i· −
n∑

j=1

q2·j

⎞
⎠ , (2.3)

dagr(π, σ) =
1
2

⎛
⎝ n∑

j=1

q2·j +
m∑

i=1

q2i· − 2
m∑

i=1

n∑
j=1

q2ij

⎞
⎠ . (2.4)

Exercises and Supplements

1. Let a, b, c, d be four real numbers and let f : R
2 −→ R be the binary

operation on R defined by

f(x, y) = axy + bx+ cy + d

for x, y ∈ R.
a) Prove that f is a commutative operation if and only if b = c.
b) Prove that f is an idempotent operation if and only if a = d = 0 and
b+ c = 1.

c) Prove that f is an associative operation if and only if b = c and
b2 − b− ad = 0.

2. Let ∗ be an operation defined on a set T and let f : S −→ T be a bijection.
Define the operation ◦ on S by x◦y = f−1(f(x)∗f(y)) for x, y ∈ T . Prove
that:
a) The operation ◦ is commutative (associative) if and only if ∗ is com-

mutative (associative).
b) If u is a unit element for ∗, then v = f−1(u) is a unit element for ◦.

3. Prove that the algebra (R>0, {∗}), where ∗ is a binary operation defined
by x ∗ y = xlog y, is a commutative semigroup.

4. Define the binary operation ◦ on Z × Z by (x1, y1) ◦ (x2, y2) = (x1x2 +
2y1y2, x1y2 + x2y1). Prove that the algebra (Z×Z, {◦}) is a commutative
monoid.

5. Let A = (A, {e, ·,−1}) be a group and let ρ be a congruence of A. Prove
that the set {x ∈ A | (x, e) ∈ ρ} is a subalgebra of A, that is, a subgroup.
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Let S be a set and let (G, {u, ·,−1}) be a group. A group action on S is a
binary function f : G× S −→ S that satisfies the following conditions:
(i) f(x · y, s) = f(x, f(y, s)) for all x, y ∈ G and s ∈ S;
(ii) f(u, s) = s for every s ∈ S.
The element f(x, s) is denoted by xs. If an action of a group on a set S is
defined, we say that the group is acting on the set S.

The orbit of an element s ∈ S is the subset Os of S defined by Os = {xs |
x ∈ G}. The stabilizer of s is the subset of G given by Tx = {x ∈ G | xs = s}.

6. Let (G, {u, ·,−1}) be a group acting on a set S. Prove that if Os∩Oz �= ∅,
then Os = Oz.

7. Let (G, {u, ·,−1}) be a group acting on a set S. Prove that:
a) If Os ∩Oz �= ∅, then Os = Oz for every s, z ∈ S.
b) For every s ∈ S, the stabilizer of s is a subgroup of G.

8. Let B be a subgroup of a group A = (A, {e, ·,−1}). Prove that:
a) The relations ρB and σB defined by

ρB = {(x, y) ∈ A×A | x · y−1 ∈ B},
σB = {(x, y) ∈ A×A | x−1 · y ∈ B},

are equivalence relations on A.
b) (x, y) ∈ ρB implies (x·z, y·z) ∈ ρB and (x, y) ∈ σB implies (z·x, z·y) ∈
σB for every z ∈ A.

c) If A is a finite set, then |[u]ρB
| = |[u]σB

= |B| for every u ∈ G.
d) If A is finite and B is a subgroup of A, then |B| divides |A|.

9. If B is a subgroup of group A = (A, {e, ·,−1}), let xB = {x · y | y ∈ B}
and Bx = {y · x | y ∈ B}. Prove that ρB = σB if and only if xB = Bx
for every x ∈ A; also, show that in this case ρB is a congruence of A.

10. Let A and B be two algebras of the same type. Prove that f : A −→ B
belongs to MOR(A,B) if and only if the set {(x, h(x)) | x ∈ A} is a
subalgebra of the product algebra A×B.

Let A = (A, I) be an algebra. The set Poln(A) of n-ary polynomials of the
algebra A consists of the following functions:
(i) Every projection pi : An −→ A is an n-ary polynomial.
(ii) If f is an m-ary operation and g1, . . . , gm are n-ary polynomials, then

f(g1, . . . , gn) is an n-ary polynomial.
The set of polynomials of the algebra A is the set Pol(A) =

⋃
n∈N

Poln(A).
A k-ary algebraic function of A is a function h : Ak −→ A for which there

exists a polynomial p ∈ Poln(A) and n − k elements ai1 , . . . , ain−k
of A such

that h(x1, . . . , xk) = p(x1, . . . , ai1 , . . . , ain−k
, . . . , xk) for x1, . . . , xk ∈ A.

11. Let ρ be a congruence of an algebra A = (A, I) and let f ∈ Poln(A). Prove
that if (xi, yi) ∈ ρ for 1 ≤ i ≤ n, then (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ ρ.
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12. Let A = (A, I) be an algebra and let S be a subset of A. Define the se-
quence of sets S = (S0, S1, . . .) as S0 = S and Sn+1 = Sn∪{f(a1, . . . , am) |
f is an m-ary operation, a1, . . . , am ∈ Sn}.
a) Prove that the least subalgebra of A that contains S is

⋃
n∈N

Sn.
b) Prove by induction on n that if a ∈ Sn, then there is a finite subset
U of A such that a belongs to the least subalgebra that contains U .

13. Let A = (A, I) be an algebra, S be a subset of A, and a be an element
in the least subalgebra of A that contains S. Prove that there is a finite
subset T of S such that a belongs to the least subalgebra of A that contains
T .

Let A = {Ai | i ∈ I} be a collection of algebras of the same type indexed
by the set I, where Ai = (Ai, I). The product of the collection A is the al-
gebra

∏
i∈I Ai = (

∏
i∈I Ai, I), whose operations are defined componentwise,

as follows. If f ∈ I is an n-ary operation and t1, . . . , tn ∈
∏

i∈I Ai, where
tk = (tki)i∈I for 1 ≤ k ≤ n, then f(t1, . . . , tn) = s, where s = (si)i∈I and
si = f(t1i, . . . , tni) for i ∈ I.

14. Let A = {Ai | i ∈ I} be a collection of algebras of the same type θ indexed
by the set I, where Ai = (Ai, I), and let A =

∏
i∈I Ai be their product.

Prove that each projection pi :
∏

i∈I Ai −→ Ai belongs to MOR(A,Ai).
Furthermore, prove that if B is an algebra of type θ and hi ∈ MOR(B,Ai)
for every i ∈ I, then there exists a unique morphism h ∈ MOR(B,A) such
that hi = pih for every i ∈ I.

15. Let (L,+, ·) be an F-linear space. Prove that if ax = 0 for a ∈ F and
x ∈ L, then either a = 0 or x = 0.

16. Prove that a subset K of a linear space is linearly dependent if and only of
there is x ∈ K that can be expressed as a linear combination of K −{x}.

17. Let K be a finite set that spans the F-linear space (L,+, ·) and let H be a
subset of L that is linearly independent. There exists a basis B such that
H ⊆ B ⊆ K.

18. Prove that every norm ν on R
n that is generated by an inner product

satisfies the equality

ν(x + y)2 + ν(x− y)2 = 2(ν(x)2 + ν(y)2)

for every x,y ∈ R
n (the parallelogram equality).

19. Prove that the norms ν1 and ν∞ on R
n are not generated by an inner

product.
Hint:Use Exercise 18.

20. Let ν be a norm on R
n that satisfies the parallelogram equality as intro-

duced in Exercise 18. Prove that the function p : R
n × R

n −→ R given
by

p(x,y) =
1
4
(
ν(x + y)2 − ν(x− y)2

)
is an inner product on R

n.
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21. Let S be a finite set S = {x1, . . . , xn} and let ∗ be a binary operation
on S. For t in S, define the matrices Lt,Mt ∈ Sn×n as (Lt)ij = u if
(xi ∗ t) ∗ xj = u and (Rt)ij = v if xi ∗ (t ∗ xj) = u.
Prove that “∗” is an associative operation on S if and only if for every
t ∈ S we have Lt = Rt.

22. Let A = (aij) be an (m× n)-matrix of real numbers. Prove that

max
j

min
i
aij ≤ min

i
max

j
aij

(the minimax inequality).
Solution: Note that aij0 ≤ maxj aij for every i and j0, so mini aij0 ≤

mini maxj aij , again for every j0. Thus, maxj mini aij ≤ mini maxj aij .

Bibliographical Comments

This chapter is a limited introduction to algebras and linear spaces. The read-
ers interested in a deeper study of those structures should consult the vast
mathematical literature concerning general and universal algebra [32, 14, 52,
113] as well as linear algebra [85, 58, 55, 121].
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Graphs and Hypergraphs

3.1 Introduction

Graphs model relations between elements of sets. The term “graph” is sug-
gested by the fact that these mathematical structures can be graphically rep-
resented. We discuss two types of graphs: directed graphs, which are suitable
for representing arbitrary binary relations, and undirected graphs that are
useful for representing symmetric binary relations. Special attention is paid
to trees, a type of graph that plays a prominent role in many data mining
tasks.

3.2 Basic Notions of Graph Theory

Definition 3.1. An undirected graph, or simply a graph, is a pair G = (V,E),
where V is a set of vertices or nodes and E is a collection of two-element sets.
If {x, y} ∈ E, we say that e = {x, y} is an edge of G that joins x to y. The
vertices x and y are the endpoints of the edge e.

A graph G = (V,E) is finite if both V and E are finite. The number of
vertices |V | is referred to as the order of the graph.

If u is an endpoint of an edge e, we say that e is incident to u. To simplify
the notation, we denote an edge e = {x, y} by (x, y). If e = (x, y) is an edge,
we say that x and y are adjacent vertices. If e and e′ are two distinct edges in
a graph G, then |e ∩ e′| ≤ 1.

Graphs can be drawn by representing each vertex by a point in a plane
and each edge (x, y) by an arc joining x and y.

Example 3.2. Figure 3.1 contains the drawing of the graph G = ({vi | 1 ≤ i ≤
8}, E), where

E = {(v1, v2), (v1, v3), (v2, v3), (v4, v5),
(v5, v6), (v6, v7), (v7, v8), (v5, v8)}.

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 3, c© Springer-Verlag London Limited 2008
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Fig. 3.1. Graph G = ({vi | 1 ≤ i ≤ 8}, E).

An equivalent representation is to use a two-column table TG in which
each row represents an edge (vi, vj), where i < j. For example, the graph
introduced in Example 3.2 can also be represented in tabular form, as shown
in Table 3.1.

Table 3.1. Tabular representation of a graph.

First Second
Vertex Vertex

v1 v2

v1 v3

v2 v3

v4 v5

v5 v6

v6 v7

v7 v8

v5 v8

The set of vertices that are adjacent to the vertex x in the graph G is
denoted by ΓG(x), or simply by Γ (x) if the graph is clear from the context.

3.2.1 Degrees of Vertices

Definition 3.3. Let G = (V,E) be a graph. The degree of a vertex v is the
number

dG(v) = |ΓG(x)|.
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When the graph G is clear from the context, we omit the subscript and
simply write d(x) and Γ (x) instead of dG(x) and ΓG(x), respectively.

If d(v) = 0, then v is an isolated vertex. Note that the degree of a vertex v
equals the number of rows of the table in which v occurs and the total number
of rows equals the number of edges. For a graph G = (V,E), we have∑

{d(v) | v ∈ V } = 2|E| (3.1)

because when adding the degrees of the vertices of the graph we count the
number of edges twice. Since the sum of the degrees is an even number, it
follows that a finite graph has an even number of vertices that have odd
degrees. Also, for every vertex v, we have d(v) ≤ |V | − 1.

Definition 3.4. A sequence (d1, . . . , dn) ∈ Seqn(N) is a graphic sequence if
there is a graph G = ({v1, . . . , vn}, E) such that d(vi) = di for 1 ≤ i ≤ n.

Clearly, not every sequence of natural numbers is graphic since we must
have di ≤ n − 1 and

∑n
i=1 di must be an even number. For example, the

sequence (5, 5, 4, 3, 3, 2, 1) is not graphic since the sum of its components is
not even. A characterization of graphic sequences obtained in [66, 60] is given
next.

Theorem 3.5 (The Havel-Hakimi Theorem). Let d = (d1, . . . , dn) be a
sequence of natural numbers such that d1 ≥ d2 ≥ · · · ≥ dn, n ≥ 2, d1 ≥ 1, and
di ≤ n−1 for 1 ≤ i ≤ n. The sequence d is graphic if and only if the sequence

e = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn)

is graphic.

Proof. Suppose that d = (d1, . . . , dn) is a graphic sequence, and let G =
({v1, . . . , vn}, E) be a graph having d as the sequence of degrees of its vertices.

If there exists a vertex v1 of degree d1 that is adjacent with vertices having
degrees d2, d3, . . . , dd1+1, then the graph G′ obtained from G by removing the
vertex v1 and the edges having v1 as an endpoint has e as its degree sequence,
so e is graphic.

If no such vertex exists, then there are vertices vi, vj such that i < j (and
thus di ≥ dj), such that (v1, vj) is an edge but (v1, vi) is not. Since di ≥ dj

there exists a vertex vk such that vk is adjacent to vi but not to vj .
Now let Ĝ be the graph obtained from G by removing the edges (v1, vj)

and (vi, vk) shown in Figure 3.2(a) and adding the edges (v1, vi) and (vj , vk)
shown in Figure 3.2(b). Observe that the degree sequence of Ĝ remains the
same but the sum of the degrees of the vertices adjacent to v1 increases. This
process may be repeated only a finite number of times before ending with a
graph that belongs to the first case.
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Fig. 3.2. Construction of graph Ĝ.

Conversely, suppose that e is a graphic sequence, and let G1 be a graph that
has e as the sequence of vertex degrees. Let G2 be a graph obtained from G1 by
adding a new vertex v adjacent to vertices of degrees d2−1, d3−1, . . . , dd1+1−1.
Clearly, the new vertex has degree d1 and the degree sequence of the new graph
is precisely d. 	


Example 3.6. Let us determine if the sequence (5, 4, 4, 3, 3, 3, 3, 1) is a graphic
sequence. Note that the sum of its components is an even number. The se-
quence derived from it by applying the transformation of Theorem 3.5 is
(3, 3, 2, 2, 2, 3, 1). Rearranging the sequence in nonincreasing order, we have
the same question for the sequence (3, 3, 3, 2, 2, 2, 1). A new transformation
yields the sequence (2, 2, 1, 2, 2, 1). Placing the components of this sequence
in increasing order yields (2, 2, 2, 2, 1, 1). A new transformation produces the
shorter sequence (1, 1, 2, 1, 1). The new resulting sequence (2, 1, 1, 1, 1) can be
easily seen to be the degree sequence of the graph shown in Figure 3.3(a). We
show the degree of each vertex.

The process is summarized in Table 3.2.

Table 3.2. Degree sequences.

d1 Sequence

(5, 4, 4, 3, 3, 3, 3, 1)
5 (3, 3, 3, 2, 2, 2, 1)
3 (2, 2, 2, 2, 1, 1)
2 (2, 1, 1, 1, 1)
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Starting from the graph having degree sequence (2, 1, 1, 1, 1), we add a new
vertex and two edges linking this vertex to two vertices of degree 1 to obtain
the graph of Figure 3.3(b), which has the degree sequence (2, 2, 2, 2, 1, 1).

In the next step, a new vertex is added that is linked by three edges to
vertices of degrees 2, 2, and 1. The resulting graph shown in Figure 3.3(c) has
the degree sequence (3, 3, 3, 2, 2, 2, 1). Finally, a vertex of degree 5 is added
to produce the graph shown in Figure 3.3(d), which has the desired degree
sequence.
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Fig. 3.3. Construction of a graph with a prescribed degree sequence.

A graph G is k-regular if all vertices have the same degree. If G is k-regular
for some k, then we say that the graph is regular.

Definition 3.7. A bipartite graph is a graph G = (V,E) such that there is a
two-block partition π = {V1, V2} for which E ⊆ V1 × V2. If E = V1 × V2, then
we say that G is bipartite complete.

In other words, G is bipartite if every edge of the graph has its endpoints
in two distinct classes.
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A bipartite complete graph, where |V1| = p and |V2| = q is denoted by
Kp,q.

Example 3.8. The bipartite graph K3,3 is shown in Figure 3.4.

� �

� �

� �

v1 v4

v2 v5

v3 v6

Fig. 3.4. Bipartite graph K3,3.

3.2.2 Graph Representations

Finite graphs are often represented using matrices.

Definition 3.9. Let G = (V,E) be a finite graph, where V = {v1, . . . , vm}
and E = {e1, . . . , en}.

The incidence matrix of G is the m× n matrix IG = (ipr) given by

ipr =

{
1 if vp is incident to er,
0 otherwise,

for 1 ≤ p ≤ m and 1 ≤ r ≤ n.
The adjacency matrix of G is the m×m matrix AG = (apq) given by

apq =

{
1 if vp is adjacent to vq,

0 otherwise,

for 1 ≤ p, q ≤ m.

Example 3.10. Let G be the graph shown in Figure 3.5. Its incidence matrix
is the 6× 7 matrix

IG =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 1 0
0 0 1 1 0 0 1
0 1 0 1 1 0 0
0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Fig. 3.5. Graph G = ({v1, . . . , v5}, {e1, . . . , e7}).

The adjacency matrix is the 6× 6-matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

3.2.3 Paths

Definition 3.11. A path of length n in a graph G = (V,E) is a sequence of
vertices p = (v0, . . . , vn) such that (vi, vi+1) is an edge of G for 0 ≤ i ≤ n− 1.
The vertices v0 and vn are the endpoints of p, and we say that the path p
connects the vertices v0 and vn. The length of the path p will be denoted by
�(p).

A path is simple if all vertices of the path are distinct.
A path p = (v0, . . . , vn) is a cycle if n ≥ 3 and v0 = vn. A cycle is simple

if all vertices are distinct with the exception of the first and the last. A cycle
of length 3 is called a triangle.

A graph with no cycles is said to be acyclic.

For every vertex v of a graph G = (V,E), there is a unique path (v) of
length 0 that joins v to itself.

Definition 3.12. Let G = (V,E) be a graph and let x, y ∈ V be two vertices.
The distance d(x, y) between x and y is the length of the shortest path that has
x and y as its endpoints. If no such path exists, then we define d(x, y) = ∞.

Example 3.13. The distances between the vertices of the graph shown in Fig-
ure 3.1 are given in the following table.
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d v1 v2 v3 v4 v5 v6 v7 v8
v1 0 1 1 ∞∞∞∞ ∞
v2 1 0 1 ∞∞∞∞ ∞
v3 1 1 0 ∞∞∞∞ ∞
v4 ∞∞∞ 0 1 2 3 2
v5 ∞∞∞ 1 0 1 2 1
v6 ∞∞∞ 2 1 0 1 2
v7 ∞∞∞ 3 2 1 0 1
v8 ∞∞∞ 2 1 2 1 0

3.2.4 Directed Graphs

Directed graphs differ from graphs in that every edge in such a graph has an
orientation. The formal definition that follows captures this aspect of directed
graphs by defining an edge as an ordered pair of vertices rather than a two-
element set.

Definition 3.14. A directed graph (or, for short, a digraph ) is a pair G =
(V,E), where V is a set of vertices or nodes and E ⊆ V × V is the set of
edges.

A digraph G = (V,E) is finite if both V and E are finite.

If e = (u, v) ∈ E, we refer to u as the source of the edge e and to v as
the destination of e. The source and the destination of an edge e are denoted
by source(e) and dest(e), respectively. Thus, we have the mappings source :
E −→ V and dest : E −→ V , which allow us to define for every subset U of
the set of vertices the sets

out(U) = {source−1(U)− dest−1(U)},
in(U) = {dest−1(U)− source−1(U)}.

In other words, out(U) is the set of edges that originate in U without ending
in this set and in(U) is the set of edges that end in U without originating in
U .

Definition 3.15. Let G = (V,E) be a digraph. The in-degree of a vertex v is
the number

do(v) = |{e ∈ E | source(e) = v}|,
and the out-degree of a vertex v is the number

di(v) = |{e ∈ E | dest(e) = v}|.

Clearly, we have ∑
v∈V

do(v) =
∑
v∈V

di(v) = |E|.

The notion of a path for digraphs is similar to the notion of a path for graphs.
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Definition 3.16. Let G = (V,E) be a digraph. A path in G is a sequence of
vertices p = (v0, . . . , vn) such that (vi, vi+1) ∈ E for every i, 0 ≤ i ≤ n − 1.
The number n is the length of p. We refer to p as a path that joins v0 to
vn−1.

If all vertices of the sequence (v0, . . . , vn−1, vn) are distinct, with the pos-
sible exception of v0 and vn, then p is a simple path.

If v0 = vn, then p is a cycle. A directed graph with no cycles is said to be
acyclic.

Note that a path p may have length 0; in this case, p is the null sequence
of edges and the sequence of vertices of p consists of a single vertex.

If there is a path p from u to v in a directed acyclic graph, then there
is no path from v to u, where u and v are two distinct nodes of G, because
otherwise we would have a cycle.

Definition 3.17. Let G = (V,E) be an acyclic digraph and let u, v ∈ V . The
vertex u is an ancestor of v, and v is a descendant of u if there is a path p
from u to v.

Note that every vertex is both an ancestor and a descendant of itself due
to the existence of paths of length 0. If u is an ancestor of v and u �= v, then
we say that u is a proper ancestor of v. Similarly, if v is a descendant of u and
u �= v, we refer to v as a proper descendant of u.

Definition 3.18. A forest is an acyclic digraph G = (V,E) such that di(v) ≤ 1
for every vertex v.

Theorem 3.19. Let V0 be the set of vertices of a finite forest G = (V,E)
having in-degree 0. For every vertex v ∈ V − V0, there exists a unique vertex
v0 ∈ V0 and a unique path that joins v0 to v.

Proof. Since v ∈ V − V0, we have di(v) = 1 and there exists at least one edge
whose destination is v. Let p = (v0, v1, . . . , vn−1) be a maximal path whose
destination is v (so vn−1 = v). We have di(v0) = 0. Indeed, if this is not the
case, then there is a vertex v′ such that an edge (v′, v) exists in E and v′ is
distinct from every vertex of p because otherwise G would not be acyclic. This
implies the existence of a path p′ = (v′, v0, v1, . . . , vn−1), which contradicts
the maximality of p.

The path that joins a vertex of in-degree 0 to v is unique. Indeed, suppose
that q is another path in G that joins a vertex of in-degree 0 to v. Let u be
the first vertex having a positive in-degree that is common to both paths. The
predecessors of u on p and q must be distinct, which implies that di(u) > 1.
This contradicts the fact that G is a forest. The uniqueness of the path implies
also the uniqueness of the source. 	
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Theorem 3.20. Let G = (V,E) be a graph. The relation γG on V that consists
of all pairs of vertices (x, y) such that there is a path that joins x to y is an
equivalence on V .

Proof. The reflexivity of γG follows from the fact that there is a path of length
0 that joins any vertex x to itself.

If a path p = (v0, . . . , vn) joins x to y (which means that x = v0 and y =
vn), then the path q = (vn, . . . , v0) joins y to x. Therefore, γG is symmetric.

Finally, suppose that (x, y) ∈ γG and (y, z) ∈ γG. There is a path p =
(v0, . . . , vn) with x = v0 and y = vn and a path q = (v′0, . . . , v

′
m) such that

y = v′0 and z = v′m. The path r = (v0, . . . , vn = v′0, . . . , v
′
m) joins x to z, so

(x, z) ∈ γG. Thus, γG is transitive, so it is an equivalence. 	


Definition 3.21. Let G = (V,E) be a graph. The connected components of G

are the equivalence classes of the relation γG.
A graph is connected if it has only one connected component.

Example 3.22. The sequences (v4, v5, v8, v7) and (v4, v5, v6, v7) are both paths
of length 3 in the graph shown in Figure 3.1.

The connected components of this graph are

{v1, v2, v3} and {v4, v5, v6, v7, v8}.

Definition 3.23. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′),
where V ′ ⊆ V and E′ ⊆ E.

The subgraph of G induced by a set of vertices U is the subgraph GU =
(U,EU ), where EU = {e ∈ E | e = (u, u′) and u, u′ ∈ U}.

A spanning subgraph of a graph G = (V,E) is a subgraph of the form
G′ = (V,E′); that is, a subgraph that has the same set of vertices as G.

Example 3.24. Consider the graph G shown in Figure 3.1. In Figures 3.6(a)-
(d), we show the subgraphs of the graph G induced by the sets

{v4, v5, v8}, {v4, v5, v6, v8}, {v4, v5, v7}, {v5, v6, v7, v9},

respectively.

Example 3.25. The graph shown in Figure 3.7 is a spanning subgraph of the
graph defined in Example 3.2.

Theorem 3.26. If G = (V,E) is a connected graph, then |E| ≥ |V | − 1.

Proof. We prove the statement by induction on |E|. If |E| = 0, then |V | ≤ 1
because G is connected and the inequality is clearly satisfied.

Suppose that the inequality holds for graphs having fewer than n edges,
and let G = (V,E) be a connected graph with |E| = n. Let e = (x, y) be an
arbitrary edge and let G′ = (V,E − {e}) be the graph obtained by removing
the edge e. The graph G′ may have one or two connected components, so we
need to consider the following cases:
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Fig. 3.6. Subgraphs of the graph G.
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Fig. 3.7. Spanning subgraph of the graph defined in Example 3.2.

1. If G′ is connected, then, by the inductive hypothesis, we have |E′| ≥ |V |−1,
which implies |E| = |E′|+ 1 ≥ |V | − 1.

2. If G′ contains two connected components V0 and V1, let E0 and E1 be the
set of edges whose endpoints belong to V0 and V1, respectively. By the
inductive hypothesis, |E0| ≥ |V0| − 1 and |E1| ≥ |V1| − 1. This implies

|E| = |E0|+ |E1|+ 1 ≥ |V0|+ |V1| − 1 = |V | − 1.
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This concludes the argument. 	


Corollary 3.27. Let G = (V,E) be a graph that has k connected components.
We have |E| ≤ |V | − k.

Proof. Let Vi and Ei be the set of edges of the ith connected component of G,
where 1 ≤ i ≤ k. It is clear that

V =
k⋃

i=1

Vi and E =
k⋃

i=1

Ei.

Since the sets V1, . . . , Vk form a partition of V and the sets E1, . . . , Ek form
a partition of E, we have

|E| =
k∑

i=1

|E|i ≤
k∑

i=1

|V |i − k = |V | − k,

which is the desired inequality. 	


Definition 3.28. A graph G = (V,E) is complete, if for every u, v ∈ E such
that u �= v, we have (u, v) ∈ E.

The complete graph G = ({1, . . . , n}, E) will be denoted by Kn.

Example 3.29. The graph shown in Figure 3.8 is complete.
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Fig. 3.8. Complete graph.
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A subset U of the set of vertices of a graph G = (V,E) is complete if the
subgraph induced by it is complete.

A set of vertices W is a clique in G if it is maximally complete. In other
words, W is a clique if the graph induced by W is complete and there is no
set of vertices Z such that W ⊂ Z and Z is complete.

Example 3.30. The cliques of the graph shown in Figure 3.9 are {v1, v2, v3, v4}
and {v3, v5, v6}.
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Fig. 3.9. Graph and its two cliques.

Definition 3.31. Let Gi = (Vi, Ei) be two graphs, where i ∈ {1, 2}. The
graphs G1 and G2 are isomorphic if there exists a bijection f : V1 −→ V2

such that (f(u), f(v)) ∈ E′ if and only if (u, v) ∈ E. The mapping f in this
case is called a graph isomorphism. If G1 = G2, then we say that f is a graph
automorphism of G1.

Two isomorphic graphs can be represented by drawings that differ only
with respect to the labels of the vertices.

Example 3.32. The graphs

G1 = ({v1, v2, v3, v4, v5}, E1) and G2 = ({u1, u2, u3, u4, u5}, E2),

shown in Figures 3.10(a) and (b), respectively, are isomorphic. Indeed, the
function f : {v1, v2, v3, v4, v5} −→ {u1, u2, u3, u4, u5} defined by

f(v1) = u1, f(v2) = u3, f(v3) = u5, f(v4) = u2, f(v5) = u4

can be easily seen to be a graph isomorphism. On the other hand, both graphs
shown in Figure 3.11 have six vertices but cannot be isomorphic. Indeed, the
first graph consists of one connected component, while the second has two
connected components ({u1, u3, u5} and {u2, u4, u6}).
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Fig. 3.10. Two isomorphic graphs.
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Fig. 3.11. Two graphs that are not isomorphic.

If two graphs are isomorphic, they have the same degree sequences. The inverse
is not true; indeed, the graphs shown in Figure 3.11 have the same degree
sequence d = (2, 2, 2, 2, 2, 2) but are not isomorphic.

In general, an invariant of graphs is a set of numbers that is the same for
two isomorphic graphs. Thus, the degree sequence is an invariant of graphs.

3.3 Trees

Trees are graphs of special interest to data mining due to the presence of
tree-structured data in areas such as Web and text mining and computational
biology.

Definition 3.33. A tree is a graph G = (V,E) that is both connected and
acyclic. A forest is a graph G = (V,E) whose connected components are trees.

Example 3.34. The graph shown in Figure 3.12 is a tree having

V = {t, u, v, w, x, y, z}
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as its set of vertices and

E = {(t, v), (v, w), (y, u), (y, v), (x, y), (x, z)}

as its set of edges.
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Fig. 3.12. Tree having V = {t, u, v, w, x, y, z} as its set of vertices.

Next, we give several equivalent characterizations of trees.

Theorem 3.35. Let G = (V,E) be a graph. The following statements are
equivalent:
(i) G is a tree.
(ii) Any two vertices x, y ∈ V are connected by a unique simple path.
(iii) G is minimally connected; in other words, if an edge e is removed from E,

the resulting graph G′ = (E, V − {e}) is not connected.
(iv) G is connected, and |E| = |V | − 1.
(v) G is an acyclic graph, and |E| = |V | − 1.

Proof. (i) implies (ii): Let G be a graph that is connected and acyclic and let
u and v be two vertices of the graph. If p and q are two distinct simple paths
that connect u to v, then pq is a cycle in G, which contradicts its acyclicity.
Therefore, (ii) follows.

(ii) implies (iii): Suppose that any two vertices of G are connected by a
unique simple path. If e = (u, v) is an edge in G, then (u, v) is a simple path
in G and therefore it must be the unique simple path connecting u and v. If e
is removed, then it is impossible to reach v from u, and this contradicts the
connectivity of G.

(iii) implies (iv): The argument is by induction on |V |. If |V | = 1, there is no
edge, so the equality is satisfied. Suppose that the statement holds for graphs
with fewer than n vertices and that |V | = n. Choose an edge (u, v) ∈ E.
If the edge (u, v) is removed, then the graph separates into two connected
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components G0 = (V0, E0) and G1 = (V1, E1) with fewer vertices because
G is minimally connected. By the inductive hypothesis, |E0| = |V0| − 1 and
|E1| = |V1|−1. Therefore, |E| = |E0|+|E1|+1 = |V0|−1+|V1|−1+1 = |V |−1.

(iv) implies (v): Let G be a connected graph such that |E| = |V | − 1.
Suppose that G has a simple cycle c = (v1, . . . , vp, v1). Let G0 = (V0, E0) be
the subgraph of G that consists of the cycle. Clearly, G0 contains p vertices
and an equal number of edges.

Let U = V − {v1, . . . , vp}. Since G is connected, there is a vertex u1 ∈ U
and a vertex v of the cycle c such that an edge (u1, v) exists in the graph G.
Let G1 = (V1, E1), where V1 = V0 ∪ {u1} and E1 = E0 ∪ {(u1, v)}. It is clear
that |V1| = |E1|. If V − V1 �= ∅, there exists a vertex v2 ∈ V − V2 and an edge
(v2, w), where w ∈ V1. This yields the graph G2 = (V1 ∪ {v2}, E1 ∪ {(v2, w)}),
which, again has an equal number of vertices and edges. The process may
continue until we exhaust all vertices. Thus, we have a sequence G0,G1, . . . ,Gm

of subgraphs of G, where Gm = (Vm, Em), |Em| = |Vm| and Vm = V . Since
Gm is a subgraph of G, we have |V | = |Vm| = |Em| ≤ |E|, which contradicts
the fact that |E| = |V | − 1. Therefore, G is acyclic.

(v) implies (i): Let G = (V,E) be an acyclic graph such that |E| = |V | − 1.
Suppose that G has k connected components, V1, . . . , Vk, and let Ei be the
set of edges that connect vertices that belong to the set Vi. Note that the
graphs Gi = (Vi, Ei) are both connected and acyclic so they are trees. We
have |E| =

∑n
i=1 |Ei| and |V | =

∑n
i=1 |Vi|. Therefore, |E| =

∑n
i=1 |Ei| =∑n

i=1 |Vi|−k = |V |−k. Since |E| = |V |−1 it follows that k = 1, so G = (V,E)
is connected. This implies that G is a tree.

This concludes our argument. 	


Corollary 3.36. The graph G = (V,E) is a tree if and only if it is maximally
acyclic; in other words, if an edge e is added to E, the resulting graph G′ =
(E, V ∪ {e}) contains a cycle.

Proof. Let G be a tree. If we add an edge e = (u, v) to the E, then, since u and
v are already connected by a path, we create a cycle. Thus, G is maximally
acyclic.

Conversely, suppose that G is maximally acyclic. For every pair of vertices
u and v in G, two cases may occur:
1. there is an edge (u, v) in G or
2. there is no edge (u, v) in G.

In the second case, adding the edge (u, v) creates a cycle, which means that
there is a path in G that connects u to v. Therefore, in either case, there is a
path connecting u to v, so G is a connected graph and therefore a tree. 	


Corollary 3.37. If G = (V,E) is a connected graph, then G contains a sub-
graph that is a tree that has V as its set of vertices.

Proof. Define the graph T = (V,E′) as a minimally connected subgraph hav-
ing the set V as its set of vertices. It is immediate that T is a tree. 	




3.3 Trees 95

We shall refer to a tree T whose existence was shown in Corollary 3.37 as
a spanning tree of G.

Corollary 3.38. If G is an acyclic graph, then G contains |V |− |E| connected
components.

Proof. This statement follows immediately from the proof of Theorem 3.35.
	


Definition 3.39. A rooted tree is a pair (T, v0), where T = (V,E) is a tree
and v0 is a vertex of T called the root of R.

If (T, v0) is a rooted tree and v is an arbitrary vertex of T there is a unique
path that joins v0 to v. The height of v is the length of this path, denoted by
height(v).

The number max{height(v) | v ∈ V } is the height of the rooted tree
(T, v0); this number is denoted by height(T, v0).

Rooted trees are generally drawn with the root at the top of the picture;
if (u, v) is an edge and height(u) = height(v) + 1, then u is drawn above v.

Example 3.40. Let (T, v0) be the rooted tree shown in Figure 3.13. The heights
of the vertices are shown in the following table:

v v1 v2 v3 v4 v5 v6 v7 v8
height(v) 1 2 3 1 2 2 3 3

A rooted tree (T, v0) may be regarded as a directed graph. Note that
if (u, v) is an edge in a rooted tree, the heights of u and v differ by 1. If
height(u) = height(v) + 1, then we say that u is an immediate descendant of
v and that v is an immediate ascendant of u. The unoriented edge {u, v} can
now be replaced by the oriented edge (u, v).

In a rooted tree, vertices can be partitioned into sets of nodes named levels.
Each level Li consists of those nodes whose height in the tree equals i. In a
rooted tree (T, v0) of height h there exist h+ 1 levels, L0, · · · , Lh.

Example 3.41. The directed graph that corresponds to the rooted tree from
Figure 3.13 is shown in Figure 3.14.

The levels of this rooted tree are

L0 = {v0},
L1 = {v1, v4},
L2 = {v2, v5, v6},
L3 = {v3, v7, v8}.
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Fig. 3.13. Rooted tree.
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Fig. 3.14. Directed graph of a rooted tree.



3.3 Trees 97

Often we associate to each vertex of a rooted tree a sequence of its im-
mediate descendants. The formal concept that corresponds to this idea is the
notion of an ordered rooted tree defined as a triple (T, v0, r), where T = (V,E)
and v0 have the same meaning as above, and r : V −→ Seq(V ) is a func-
tion defined on the set of vertices of T such that r(v) is a sequence, without
repetition, of the descendants of the node v. If v is a leaf, then r(v) = λ.

Example 3.42. In Figure 3.15, we present an ordered rooted tree that is created
starting from the rooted tree from Figure 3.14.
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Fig. 3.15. Ordered rooted tree.

In general, we omit the explicit specification of the sequences of descendants
for an ordered rooted tree and assume that each such sequence r(v) consists
of the direct descendants of v read from the graph from left to right.

Definition 3.43. A binary tree is a rooted tree (T, v0) such that each node
has at most two descendants.

The rooted tree is a subgraph of (T, v0) that consists of all descendants
of the left son of v0 is the left subtree of the binary tree. Similarly, the set of
descendants of the right son of v0 forms the right subtree of T.

In a binary tree, a level Li may contain up to 2i nodes; when this happens,
we say that the level is complete. Thus, in a binary tree of height h, we may
have at most 2h+1 nodes.
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The notion of an ordered binary tree corresponds to binary trees in which
we specify the order of the descendants of each node. If v, x, y are three nodes
of an ordered binary tree and r(v) = (x, y), then we say that x is the left son
of v and y is the right son of v.

An almost complete binary tree is a binary tree such that all levels, with
the possible exception of the last, are complete. The last level of an almost
complete binary tree is always filled from left to right.

Note that the ratio of the number of nodes of a right subtree and the
number of nodes of the left subtree of an almost complete binary tree is at
most 2. Thus, the size of these subtrees is not larger than 2

3 the size of the
almost complete binary tree.

Example 3.44. The binary tree shown in Figure 3.16 is an almost complete
binary tree.
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Fig. 3.16. An almost complete binary tree.

Almost complete binary trees are useful for defining a data structure known
as a heap.

Definition 3.45. A heap is a 4-tuple (T, v0, r, �) such that (T, v0, r) is an
almost complete binary tree and � : V −→ R is a function defined on the set
of vertices of T such that if r(v) = (v′, v′′), then �(v) ≤ min{�(v′), �(v′′)}.
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Example 3.46. Starting from the almost complete binary tree shown in Fig-
ure 3.15, we show a heap in Figure 3.17. The values of � are placed near the
names of the vertices of (T, v0, r).
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Fig. 3.17. A heap and its array.

A frequently used implementation of heaps makes use of arrays. The value
of �(v0) is stored in the first element of an array H[0]. If the value of �(vi)
is placed in H[i − 1], then the values of �(v′) and �(v′′), the left and right
sons of v, are placed in H[2i+1] and H[2i+2], respectively. Thus, for a node
represented in the position j ≥ 1, its parent is placed in the position

parent(j) = �j/2� − 1.

Note that parent(j) is defined only if j ≥ 1. Also, the numbers 2i + 1 and
2i+ 2 are denoted by leftchild(i) and rightchild(i), respectively.

For further applications, we need to examine in some detail how a heap
is put together starting from an array A of size A.size. Observe that the
leafs of the heap are stored in the last k nodes of the array, where k =
A.size− 2
log2 A.size�, and that the number of nonleaves is �A.size/2�.

The procedure called heapify(A, i) starts from an array A and rearranges
the elements of the portion of the array located between the positions i and
A.size− 1 of the array such that the resulting subarray is a heap. When this
procedure is called with the parameter i, we make the assumption that the
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trees that correspond to the positions leftchild(i) and rightchild(i) are already
heaps.

The procedure heapify(A, i) is

heapify(A, i){
left = leftchild(i);
right = rightchild(i);
if (left < A.size and A[left] < A[i])

then smallest = left;
else

smallest = right;
if (right < A.size and A[right] < A[smallest])

then smallest = right;
if (smallest! = i) {

swap(A[i],A[smallest]);
heapify(A,smallest);

}
}

The variable smallest is used to store the smallest of the elements contained
by A[i], A[leftchild(i)], and A[rightchild(i)]. If the smallest value is contained by
A[i], then the algorithm halts. Otherwise, the array does not satisfy the heap
condition, A[i] is swapped with the smallest of its children, and the algorithm
is applied to the subtree that now has A[i] at its root.

As we observed, the size of a subtree cannot exceed 2n
3 , where n = A.size.

Thus, the time T (n) required by the heapify for an array of size n can be
expressed as

T (n) = T

(
2n
3

)
+ a,

where a is a constant that takes into account the cost of the other operations.
Applying this recurrence repeatedly, we have

T (n) = T

((
2
3

)h

n

)
+ ha.

Let c, d ∈ R>0 be two fixed numbers such that c/d > 3/2. Choosing h such
that c ≤

(
2
3

)h
n ≤ d, it follows that h = O(log n), so T (n) = O(log n).

Observe that the part of the array located between positions A.size − k
and A.size−1 already satisfies the heap condition since it contains only values
associated to leaves (which have no children). Therefore, the algorithm that
constructs the heap begins with position �A.size/2� − 1 and halts at position
0:

build heap(A){
for i = �A.size/2� − 1 downto 0 do

heapify(A, i);
}
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The cost of this algorithm is O(n log n) since there are O(n) calls to heapify
and each call costs O(log n).

When using a heap, we need to define at least two operations: insert(A, x),
which returns a heap in which the number x is placed into the proper position,
and getsmallest(A), which returns the smallest element from the heap and a
new heap that contains the remaining elements. The pseudocode for the first
procedure is

insert(A, x){
A.size + +;
s = A.size− 1;
A[s] = x;
while ((s ≥ 1) and (A[s] < A[parent(s)]))

swap(A[s], A[parent(s)]);
s = parent(s);

endwhile;
}

The procedure begins with placing the new element in the last position of the
array. Then, the element percolates in the tree to its proper position through
swaps with its parent. The number of swaps is proportional to the height of
the tree; therefore, the time requirement of this procedure is O(log n).

The procedure getsmallest(A) extracts the element located at the top of the
array, then places the element located at the bottom of the heap, A[size− 1],
at the top of the heap, and then calls heapify(A, 0). This procedure is

getsmallest(A){
z = A[0];
A[0] = A[size− 1];
A.size−−;
i = 0;
heapify(A, 0);
return z;
}

The cost of this procedure is again O(log n).
Given a graph G = (V,E) and two unconnected vertices u, v ∈ V let

G + (u, v) be the graph (V,E ∪ {(u, v)}). If (r, s) is an edge in G, we denote
by G− (r, s) the graph (V,E − {(r, s)}).

Definition 3.47. A weighted graph is a pair (G, w), where G = (V,E) is a
graph and w : E −→ R is a weight function. If e ∈ E, we refer to w(e) as the
weight of the edge e.

The weight of a set of edges F is the number w(F ) defined by

w(F ) =
∑
{w(e)|e ∈ F}.
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A minimal spanning tree for G = (V,E) is a spanning graph for G that is
a tree T = (V, F ) such that w(F ) is minimal.

We present an effective construction of a minimal spanning tree for a
weighted graph (G, w), where G = (V,E) is a finite, connected graph known
as Kruskal’s algorithm. Suppose that e1, e2, . . . , em is the list of all edges of
G listed in increasing order of their weights; that is, w(e1) ≤ w(e2) ≤ . . . ≤
w(em). We use the following algorithm.

Algorithm 3.48 (Kruskal’s Algorithm)
Input: a weighted graph (G, w).
Output: a set of edges F that defines a minimal spanning tree.
Method:
initialize F = e1;
repeat

select the first edge e in the list such that e �∈ F
and the subgraph (V, F ∪ {e}) is acyclic;

F := F ∪ {e};
until no edges exist that satisfy these conditions;
output T = (V, F )

When the algorithm is completed, we built a maximal acyclic subgraph
T = (V, F ), that is, a spanning tree.

We claim that T = (V, F ) is a minimal spanning tree. Indeed, let T′ =
(V, F ′) be a minimal spanning tree such that |F ∩ F ′| is maximal. Suppose
that F ′ �= F , and let e = (x, y) be the first edge of F in the list of edges that
does not belong to F ′.

The tree T′ contains a unique path p that joins x to y. Note that this path
cannot be included in T since otherwise T would contain a cycle formed by
p and (x, y). Therefore, there exists an edge e′ on the path p that does not
belong to T.

Note that the weight of edge e cannot be larger than the weight of e′

because e was chosen for T by the algorithm and e′ is not an edge of T, which
shows that e precedes e′ in the previous list of edges. The set F1 = F ′−{e′}∪
{e} defines a spanning tree T1, and since w(F1) = w(F ′) − w(e′) + w(e) ≤
w(F ′), it follows that the tree T′ = (V, F ′) is a minimal spanning tree of G.
Since |F1 ∩ F | > |F ′ ∩ F |, this leads to a contradiction. Thus, F ′ = F and T

is indeed a minimal spanning tree.

Example 3.49. Consider the weighted graph given in Figure 3.18, whose edges
are marked by the weights. The list of edges in nondecreasing order of their
weights is

(v1, v2), (v1, v4), (v6, v7), (v5, v6),
(v3, v4), (v3, v5), (v5, v8), (v7, v8),
(v2, v3), (v1, v8), (v2, v6), (v4, v6).
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Fig. 3.18. Weighted graph (G, w).

The minimal spanning tree for this weighted graph is shown in thick lines in
Figure 3.19. The sequence of edges added to the set of edges of the minimal
spanning tree is

(v1, v2), (v1, v4), (v6, v7), (v5, v6), (v3, v4), (v3, v5), (v5, v8).
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Fig. 3.19. Minimal spanning tree for the weighted graph from Figure 3.18.

An alternative algorithm known as Prim’s algorithm is given next. In this
modality of constructing the minimal spanning tree of a finite, connected
graph G = (V,E), we construct a sequence of pairs of sets of vertices and
edges that begins with a pair (V1, E1) = ({v}, ∅), where v is an arbitrary
vertex.

Suppose that we constructed the pairs (V1, E1), . . . , (Vk, Ek). Define the
set of edges Hk = {(v, w) ∈ E|v ∈ Vk, w �∈ Vk}. If (vk, tk) is an edge in Hk
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of minimal weight, then Vk+1 = Vk ∪ {vk} and Ek+1 = Ek ∪ {(vk, tk)}. The
algorithm halts when Hk = ∅.

Consider the increasing sequences V1 ⊆ V2 ⊆ · · · and E1 ⊆ E2 ⊆ · · · . An
easy induction argument on k shows that the subgraphs (Vk, Ek) are acyclic.
The sequence halts with the pair (Vn, En), where Hn = ∅, so Vn = V . Thus,
(Vn, En) is indeed a spanning tree.

To prove that (Vn, En) = (V,En) is a minimal spanning tree, we will show
that for every subgraph (Vk, Ek), Ek is a subset of the set of edges of a minimal
spanning tree T = (V,E).

The argument is by induction on k. The basis case, k = 1, is immediate
since E1 = ∅.

Suppose that Ek is a subset of the set of edges of a minimal spanning tree
T = (V,E) and Ek+1 = Ek ∪ {(vk, tk)}.

Since T is a connected graph, there is a path in this graph that connects
vk to tk. Let (r, s) be the first edge in this path that has one endpoint in Vk.
By the definition of (vk, tk), we have w(vk, tk) ≤ w(r, s). Thus, if we replace
(r, s) by (vk, tk) in T, we obtain a minimal spanning tree whose set of edges
includes Ek+1.

Example 3.50. We apply Prim’s algorithm to the weighted graph introduced
in Example 3.49 starting with the vertex v3.

The sequences V1 ⊆ V2 ⊆ · · · and E1 ⊆ E2 ⊆ · · · are given in the following
table:

k Ek Vk

1 {v3} ∅
2 {v3, v5} {(v3, v5)}
3 {v3, v5, v6} {(v3, v5), (v5, v6)}
4 {v3, v5, v6, v7} {(v3, v5), (v5, v6), (v6, v7)}
5 {v3, v5, v6, v7, v4} {(v3, v5), (v5, v6), (v6, v7), (v3, v4)}
6 {v3, v5, v6, v7, v4, v1} {(v3, v5), (v5, v6), (v6, v7), (v3, v4), (v4, v1)}
7 {v3, v5, v6, v7, v4, v1, v2} {(v3, v5), (v5, v6), (v6, v7), (v3, v4), (v4, v1), (v1, v2)}
8 {v3, v5, v6, v7, v4, v1, v2} {(v3, v5), (v5, v6), (v6, v7), (v3, v4), (v4, v1), (v1, v2), (v5, v8)}

Next, we introduce three notions related to two-block partitions of the set
of vertices of a weighted graph. These concepts will be useful in presenting an
application of minimal spanning trees to clustering initiated by C. T. Zahn
in [147].

Definition 3.51. Let (G, w) be a weighted graph, where G = (V,E), and let
π = {V1, V2} be a two-block partition of the set of vertices V of G.

The separation of π is

sep(π) = min{w(v1, v2) | v1 ∈ V1 and v2 ∈ V2}.

The cut set of π is the set CS(π) = {(x, y) ∈ E | x ∈ V1 and y ∈ V2}.
Finally, the set of links of π is the set of edges

LK(π) = {(x, y) ∈ CS(π) | w(x, y) = sep(π)}.
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Theorem 3.52. For every partition π = {V1, V2} of a weighted graph (G, w)
and minimal spanning tree T, there exists an edge that belongs to T and to
LK(π).

Proof. Suppose that T is a minimal spanning graph that contains no edge
of LK(π). If an edge (v1, v2) ∈ LK({V1, V2}) is added to T, the resulting
graph G′ contains a unique cycle. The part of this cycle contained in T must
contain at least one other edge (s, t) ∈ CS({V1, V2}) because v1 ∈ V1 and
v2 ∈ V2. The edge (s, t) does not belong to LK({V1, V2}) by the supposition
we made concerning T. Consequently, w(s, t) > w(v1, v2), which means that
the spanning tree T1 obtained from T by removing (s, t) and adding (v1, v2)
will have a smaller weight than T. This would contradict the minimality of T.
	


Theorem 3.53. If (x, y) is an edge of a tree T = (V,E), then there exists a
partition π = {V1, V2} of V such that CS({V1, V2}) = {(x, y)}.

Proof. Since T is a minimally connected graph, removing an edge (x, y) results
in a graph that contains two disjoint connected components V1 and V2 such
that x ∈ V1 and y ∈ V2. Then, it is clear that {(x, y)} = CS({V1, V2}). 	


Theorem 3.54. Let (G, w) be a weighted graph and let T be a minimal span-
ning link of G. All minimal spanning tree edges are links of some partition of
(G, w).

Proof. Let G = (V,E) and let (x, y) be an edge in T. If (V1, V2) is the partition
of V that corresponds to the edge (x, y) that exists by Theorem 3.53, then, by
Theorem 3.52, T must contain an edge from CS({V1, V2}). Since T contains
only one such edge, it follows that this edge must belong to LK({V1, V2}). 	


Corollary 3.55. Let (G, w) be a weighted graph, where G = (V,E). If w :
E −→ R is an injective mapping (that is, if all weights of the edges are
distinct), then the minimal spanning tree is unique. Furthermore, this minimal
spanning tree has the form T = (V,L(G)), where L(G) is the set of all links of
G.

Proof. Let T = (V,E′) be a minimal spanning tree of (G, w). The injectivity
of w implies that, for any partition π of V , the set LK(π) consists of a unique
edge that belongs to each minimal spanning tree. Thus, L(G) ⊆ E′. The
reverse inclusion follows immediately from Theorem 3.54, so G has a unique
spanning tree T = (V,L(G)). 	


Theorem 3.56. Let (G, w) be a weighted graph, where G = (V,E). If U is a
nonempty subset of V such that sep({U1, U2}) < sep(U, V −U) for every two-
block partition π = {U1, U2} ∈ PART(U), then, for every minimal spanning
tree T of (G, w), the subgraph TU is a subtree of T.
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Proof. Let π = {U1, U2} be a two block partition of U . To prove the statement,
it suffices to show that every minimal spanning tree T of (G, w) contains an
edge in CS(π). This, in turn, will imply that the subgraph TU of T determined
by U has only one connected component, which means that TU is a subtree
of T.

To prove that T contains an edge from CS(π), it will suffice to show
that sep(U1, U2) < sep(U1, V − U) because this implies LK(U1, V − U1) ⊆
CS(U1, U2). Indeed, if this is the case, then the shortest link between a vertex
in U1 and one outside of U1 must be an edge that joins a vertex from U1 to a
vertex in U2.

Observe that

sep(U, V −U) = sep(U1 ∪U2, V −U) = min{sep(U1, V −U), sep(U2, V −U)},

and therefore sep(U1, V − U) ≥ sep(U, V − U).
By the hypothesis of the theorem, sep(U, V −U) > sep(U1, U2), and there-

fore
sep(U1, U2) < sep(U, V − U) ≤ sep(U1, V − U),

which leads to the desired conclusion. 	

Search enumeration trees were introduced by R. Rymon in [116] in order

to provide a unified search-based framework for several problems in artificial
intelligence; they are also useful for data mining algorithms.

Let S be a set and let d : S −→ N be an injective function. The number
d(x) is the index of x ∈ S. If P ⊆ S, the view of P is the subset

view(d, P ) =
{
s ∈ S | d(s) > max

p∈P
d(p)

}
.

Definition 3.57. Let C be a hereditary collection of subsets of a set S. The
graph G = (C, E) is a Rymon tree for C and the indexing function d if
(i) the root of G is the empty set, and
(ii) the children of a node P are the sets of the form P ∪ {s}, where s ∈

view(d, P ).
If S = {s1, . . . , sn} and d(si) = i for 1 ≤ i ≤ n, we will omit the indexing

function from the definition of the Rymon tree for P(S).

Example 3.58. Let S = {i1, i2, i3, i4} and let C be P(S), which is clearly a
hereditary collection of sets. Define the injective mapping d by d(ik) = k for
1 ≤ k ≤ 4. The Rymon tree for C and d is shown in Figure 3.20.

A key property of a Rymon tree is stated next.

Theorem 3.59. Let G be a Rymon tree for a hereditary collection C of subsets
of a set S and an indexing function d. Every set P of C occurs exactly once
in the tree.
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Fig. 3.20. Rymon tree for P({i1, i2, i3, i4}).

Proof. The argument is by induction on p = |P |. If p = 0, then P is the root
of the tree and the theorem obviously holds.

Suppose that the theorem holds for sets having fewer than p elements, and
let P ∈ C be such that |P | = p. Since C is hereditary, every set of the form
P − {x} with x ∈ P belongs to C and, by the inductive hypothesis, occurs
exactly once in the tree.

Let z be the element of P that has the largest value of the index function
d. Then view(P −{z}) contains z and P is a child of the vertex P −{z}. Since
the parent of P is unique, it follows that P occurs exactly once in the tree.
	


If a set U is located at the left of a set V in the tree GI , we shall write
U � V . Thus, we have

∅ � {i1} � {i1, i2} � {i1, i2, i3, i4}
� {i1, i2, i4} � {i1, i3} � {i1, i3, i4}
� {i1, i4} � {i2} � {i2, i3}
� {i2, i3, i4} � {i2, i4} � {i3}
� {i3, i4} � {i4}.

Note that in the Rymon tree of a collection of the form P(S), the collection
of sets of Sr that consists of sets located at distance r from the root denotes
all
(
n
r

)
subsets of size r of S.
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Definition 3.60. A numbering of a graph G = (V,E) is a bijection ν : V −→
1, . . . , |V |. The pair (G, ν) is referred to as a numbered graph.

Theorem 3.61. Let ν : V −→ {1, . . . , n} be a bijection on the set V , where
|V | = n. There are nn−2 numbered trees (T, ν) having V as the set of vertices.

Proof. The best-known argument for this theorem is based on a bijection
between the set of numbered trees having n vertices and the set of sequences
of length n−2 defined on the set {1, . . . , n} and has been formulated in [109].

Let (T, ν) be a numbered tree having n vertices. Define a sequence of trees
(T1, . . . ,Tn−1) and a Prüfer sequence (�1, . . . , �n−2) ∈ Seqn(N) as follows. The
initial tree T1 equals T. The tree Ti will have n−i+1 vertices for 1 ≤ i ≤ n−1.

The Ti+1 is obtained from Ti by seeking the leaf x of Ti such that ν(x) is
minimal and deleting the unique edge of the form (x, y). The number ν(y) is
added to the Prüfer sequence. Note that the label � of a vertex u will occur
exactly d(u)− 1 times in the Prüfer sequence, once for every vertex adjacent
to u that is removed in the process of building the sequence of trees.

Let L(T, ν) be the Prüfer sequence of (T, ν). If NTn is the set of numbered
trees on n vertices, then the mapping L : NTn −→ Seqn−2({1, . . . , n}) is a
bijection.

The edges that are removed in the process of constructing the Prüfer
sequences can be listed in a table:

Starting Tree Leaf Vertex Resulting Tree
T1 x1 y1 T2

...
...

...
...

Tn−2 xn−2 yn−2 Tn−1

Tn−1 xn−1 yn−1 −

Note that the edges of Ti are (xj , yj) for i ≤ j ≤ n− 1.
The next to the last tree in the sequence, Tn−2, has two edges and therefore

three vertices. The last tree in the sequence Tn−1 consists of a unique edge
(xn−1, yn−1). Since a tree with at least two vertices has at least two leaves, the
node whose label is n will never be the leaf with the minimal label. Therefore,
ν(yn−1) = n and n is always the last number of L(T, ν).

Also, observe that the leaves of the tree Ti are those vertices that do not
belong to {x1, . . . , xi−1, yi, . . . , yn−1}, which means that xi is the vertex that
has the minimal label and is not in the set above. In particular, x1 is the
vertex that has the least label and is not in L(T, ν). This shows that we can
uniquely determine the vertices xi from L(T, ν) and x1, . . . , xi−1. 	


Example 3.62. Consider the tree T shown in Figure 3.21.
The labels of the vertices are placed at the right of each rectangle that

represents a vertex. The table that contains the sequence of edges is
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Fig. 3.21. Enumerated tree.

Starting Tree Leaf Vertex y ν(y) Resulting Tree
T1 u y 5 T2

T2 w v 1 T3

T3 z x 7 T4

T4 t v 1 T5

T5 v y 5 T6

T6 y x 7 −

This means that L(T, μ) = (5, 1, 7, 1, 5) = ν−1(y, v, x, v, y). The vertex with
the smallest label that does occur in L(T, μ) = (5, 1, 7, 1, 5) is u because
�(u) = 2. This means that the first edge is (u, y) since �(y) = 5. The succes-
sion of trees is shown in Figure 3.22. Under each tree, we show the sequence
(x1, . . . , xi−1, yi, . . . , yn−1), which allows us to select the current leaf xi.

Example 3.63. Suppose again that we have a tree having the set of nodes
V = {x, y, z, u, v, w, t} with the numbering given by

Vertex x y z u v w t
ν(vertex) 7 5 4 2 1 3 6

We reconstruct the tree that has (2, 3, 5, 2, 3) as its Prüfer sequence. The first
leaf of this tree will be the vertex with the least value of ν that is not present
in the sequence ν−1(2, 3, 5, 2, 3) = (u,w, y, u, w); that is, v. This means that
we start with the following table.

Starting Tree Leaf Vertex y ν(y) Resulting Tree
T1 x u 2 T2

T2 w 3 T3

T3 y 5 T4

T4 u 2 T5

T5 w 3 T6

T6 x 7 −
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(u, w, z, t, v)

Fig. 3.22. Numbered trees with sequences (x1, . . . , xi−1, yi, . . . , yn−1).

For each step in filling in this table, we construct the sequence

(x1, . . . , xi−1, yi, . . . , yn−1)

and choose xi as the vertex having minimal numbering that is not in the
sequence. The final table is
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Starting Tree Leaf Vertex y ν(y) Resulting Tree
T1 x u 2 T2

T2 z w 3 T3

T3 t y 5 T4

T4 y u 2 T5

T5 u w 3 T6

T6 w x 7 −

and gives the tree shown in Figure 3.23.
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Fig. 3.23. Tree reconstructed from its Prüfer sequence.

3.4 Flows in Digraphs

Definition 3.64. A network is a 4-tuple N = (G, cap, s, t), where
• G = (V,E) is a finite digraph,
• cap : V × V −→ R≥0 is a function called the capacity function such that

(u, v) �∈ E implies cap(u, v) = 0, and
• s and t are two distinct vertices of G, referred to as the source and the

sink, respectively.
The number cap(e) is the capacity of the edge e. If p = (v0, . . . , vn)

is a path in the graph G the capacity of this path is the number cap(p) =
min{cap(vi, vi+1) | 0 ≤ i ≥ n− 1}.

Example 3.65. The network N = (G, cap, s, t) is shown in Figure 3.24. If (u, v)
is an edge in G, the number cap(u, v) is written near the edge.

The capacity of the path p = (v1, v2, v5, v6) is 3 because the smallest
capacity of an edge on this path is cap(v2, v5) = 3.
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Fig. 3.24. 6-vertex network.

Definition 3.66. A flow in the network N = (G, cap, s, t) is a function f :
V × V −→ R that satisfies the following conditions:
(i) For every edge (u, v) ∈ E we have 0 ≤ f(u, v) ≤ cap(u, v).
(ii) The function f is skew-symmetric, that is, f(u, v) = −f(v, u) for every

pair (u, v) ∈ V × V .
(iii) The equality ∑

{f(v, x) | v ∈ V } = 0,

known as Kirkhoff’s law, holds for every vertex x ∈ V − {s, t}.
The value of a flow f in a network N = (G, cap, s, t) is the number

val(f) =
∑
{f(s, v) | v ∈ V },

that is, the net flow that exits the source.
The set of flows of a network N is denoted by FL(N).
A flow h in N is maximal if val(f) ≤ val(h) for every flow f ∈ FL(N).
If f(u, v) = c(u, v) for an edge of G, then we say that the edge (u, v) is

saturated.

Let N = (G, cap, s, t) be a network, where G = (V,E). If f(u, v) = 0 for
every pair (u, v) ∈ V × V , then f is a flow in the network. We will refer to
this flow as the zero flow in N.

Theorem 3.67. Let N = (G, cap, s, t) be a network, f and g be two flows in
FL(N), and a and b be two real numbers. Define the function af + bg by

(af + bg)(u, v) = af(u, v) + bg(u, v)

for every (u, v) ∈ V × V . If 0 ≤ (af + bg)(u, v) ≤ c(u, v) for (u, v) ∈ V × V ,
then af + bg is a flow in the network N.

Proof. We leave this easy argument to the reader. 	

Note that if v ∈ V − {s, t}, Kirkhoff’s law can be written equivalently as
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{f(v, x) | v ∈ V, (v, x) ∈ E}+

∑
{f(v, x) | v ∈ V, (x, v) ∈ E} = 0,

which amounts to∑
{f(v, x) | v ∈ V, (v, x) ∈ E} =

∑
{f(x, v) | v ∈ V, (x, v) ∈ E}

due to the skew symmetry of f .

Theorem 3.68. Let N = (G, cap, s, t) be a network and let f be a flow in N.
If U is a set of vertices such that s ∈ U and t �∈ U , then∑

{f(u, v) | (u, v) ∈ out(U)} −
∑
{f(u, v) | (u, v) ∈ in(U)} = val(f).

Proof. If f is a flow in N and x is a vertex in G, then

∑
{f(x, v) | v ∈ V } −

∑
{f(v, x) | v ∈ V } =

{
val(f) if x = s,

0 if x ∈ U − {s}.

Therefore,∑
x∈U

(∑
{f(x, v) | v ∈ V } −

∑
{f(v, x) | v ∈ V }

)
= val(f).

If an edge that occurs in the inner sums has both its endpoints in U , then its
contribution in the first inner sum cancels with its contribution in the second
inner sum. Thus, the previous equality can be written as∑

{f(u, v) | (u, v) ∈ out(U)} −
∑
{f(u, v) | (u, v) ∈ in(U)} = val(f).

	


Corollary 3.69. Let N = (G, cap, s, t) be a network and let f be a flow in N.
For every vertex x, we have∑

{f(v, x) | v ∈ V } −
∑
{f(x, v) | v ∈ V } = val(f).

Proof. Choose U = V − {x}. For the set U , we have

out(U) = (V × {x}) ∩ E,
in(U) = ({x} × V ) ∩ E,

so it follows that∑
{f(v, x) | v ∈ v} −

∑
{f(x, v) | v ∈ V } = val(f).
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Definition 3.70. A cut in a network N = (G, cap, s, t) is a partition {C,C ′}
of the set of vertices V of the digraph G such that s ∈ C and t ∈ C ′.

The capacity of a cut (C,C ′) is the number

cap(C,C ′) =
∑
{cap(u,w) | u ∈ C and w ∈ C ′}.

A cut with minimal capacity is a minimal cut.
If f is a flow in N and (C,C ′) is a cut, the value of the flow f across the

cut (C,C ′) is the number

f(C,C ′) =
∑
{f(u,w) | u ∈ C and w ∈ C ′}.

The set of cuts of a network N is denoted by CUTS(N).

Thus, Theorem 3.68 can be rephrased as stating that the flow across any
cut equals the value of the flow. An essential observation is that since the
value of a flow across a cut cannot exceed the capacity of the cut, it follows
that the value of any flow is less than the capacity of any cut. As we shall see,
the maximum value of a flow equals the minimal capacity of a cut.

Definition 3.71. Let N = (G, cap, s, t) be a network and let f be a flow in
N. The residual network of N relative to f is the network RES(N, f) =
(N, cap′, s, t), where cap′(u, v) = cap(u, v)− f(u, v).

Theorem 3.72. Let f be a flow on the network N = (G, cap, s, t) and let
g be a maximal flow of N. The value of a maximal flow on RES(N, f) is
val(g)− val(f).

Proof. Let f ′ be a flow in the residual network RES(N, f). It is easy to see
that f+f ′ ∈ FL(N), so val(f ′) ≤ val(g)−val(f). On the other hand, h = g−f
is a flow on RES(N, f) and val(h) = val(g) − val(f), so h is a maximal flow
having the value val(g)− val(f). 	


Theorem 3.73. The following statements that concern a flow f in a network
N = (G, cap, s, t) are equivalent:
(i) f is a maximal flow.
(ii) There is no path that joins s to t in the residual network RES(N, f) with

a positive capacity.
(iii) val(f) = cap(C,C ′) for some cut (C,C ′) in N.

Proof. (i) implies (ii): Let f be a maximal flow in N, and suppose that there
is a path p in the residual network RES(N, f) with a positive capacity. Then,
the flow g defined by

g(u, v) =

{
f(u, v) + cap(p) if (u, v) is an edge on p,
f(u, v) otherwise,
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is a flow in N and val(g) = val(f) + cap(p), which contradicts the maximality
of the flow f .

(ii) implies (iii): Suppose that there is no path is the residual network
RES(N, f) that joins the source with the sink and has a positive capacity.

Let C be the set of vertices that can be reached from s via a path with
positive capacity (to which we add s) in the residual network RES(N, f) and
let C ′ = V − C. Then the pair (C,C ′) is a cut in N. Observe that if x ∈ C
and y ∈ C ′, then the residual capacity of the edge (x, y) is 0 by the definition
of C, which means that f(x, y) = cap(x, y). Thus, val(f) = f(C,C ′).

(iii) implies (i): Since any flow value is less than the capacity of any cut, it
is immediate that f is a maximal flow. 	


Any path that joins the source to the target of a network N and has a
positive capacity in that network is called an augmenting path for the network.

Theorem 3.73 suggests the following algorithm for constructing a maximal
flow in a network.

Algorithm 3.74 (The Ford-Fulkerson Algorithm)
Input: a network N = (G, cap, s, t).
Output: a maximal flow in N.
Method:
initialize flow f to the zero flow in N;
while (there exists an augmenting path p) do

augment flow f along p;
return f

Example 3.75. To find a maximal flow, we begin with the zero flow f0 shown
in Figure 3.25(a). There are several cuts in this graph having a minimal ca-
pacity equal to 9. One such cut is {{v1}, {v2, v3, v4, v5, v6}}; the edges that
join the two sets are (v1, v2) and (v1, v3), which have the capacities 4 and 5,
respectively.

The first augmenting path is (v1, v2, v4, v6), having capacity 2. The flow
f1 along this path has the value 2, it saturates the edge (v2, v4), and is shown
in Figure 3.25(b). The next augmenting path is (v1, v2, v5, v6), which has a
capacity of 3 and is shown in Figure 3.25(c). Now the edges (v1, v2) and
(v2, v5) become saturated. The next flow in also shown in Figure 3.25(c). In
Figure 3.25(d), we show the augmenting path (v1, v3, v5, v6) having capacity
3. This saturates the edge (v5, v6). Finally, the last augmenting path of capac-
ity 1 (shown in Figure 3.25(e)) is (v1, v3, v4, v6), and the corresponding flow
saturates the edge (v1, v3). The value of the flow is 9.

Corollary 3.76. Let N = (G, cap, s, t) be a network such that cap(e) is an
integer for every edge of the graph G. Then, a maximal flow ranges over the
set of natural numbers.

Proof. The argument for the corollary is on the number n of augmenting paths
used for the construction of a flow.
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Fig. 3.25. Construction of a flow in a network.

The basis step, n = 0, is immediate since the zero flow takes as values
natural numbers.

Suppose that the statement holds for the flow constructed after applying
n − 1 augmentations. Since the value of any path is a natural number and
the residual capacities are integers, the values obtained after using the nth
augmenting path are again integers. 	


Flows in networks that range over the set of integers are referred to as
integral flows.

Network flows can be used to prove several important graph-theoretical
results.

We begin with a technical result.

Lemma 3.77. Let N = (G, cap, x, y) be a network such that cap(u, v) = 1 for
every edge (u, v) ∈ E. If f is an integral flow in FL(N) and val(f) = m, then
there are m pairwise edge-disjoint simple paths from x to y.
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Proof. If f is a flow in N that ranges over integers, then f(u, v) ∈ {0, 1} for
every edge (u, v) ∈ E. Also, note that the capacity of any path that joins x
to y equals 1.

Let Ef be the set of edges saturated by the flow f ,

Ef = {(u, v) ∈ E | f(u, v) = 1}.

Note that no two distinct simple paths can share an edge because this would
violate Kirkhoff’s law. Since each path contributes a unit of flow to f , it
follows that there exist m pairwise edge-disjoint paths in N. 	


Theorem 3.78 (Menger’s Theorem). Let G = (V,E) be a directed graph
and let x and y be two vertices. The maximum number of paths that join x
to y whose sets of edges are pairwise disjoint equals the minimum number of
edges whose removal eliminates all paths from x to y.

Proof. Define a network N = (G, cap, x, y) such that cap(u, v) = 1 for every
edge (u, v) ∈ E, and let f be an maximal integral flow in N whose value is
m. By Lemma 3.77, this number equals the number of pairwise edge-disjoint
simple paths from x to y and is also equal to the minimum capacity of a cut
in N. Since this latter capacity equals the minimal number of edges whose
removal eliminates all paths from x to y, we obtain the desired equality. 	


Menger’s theorem allows us to prove the following statement involving
bipartite graphs.

Definition 3.79. Let G = (V,E) be a bipartite graph. A matching of G is a
set M of edges such that no two distinct edges have a common endpoint.

An edge cover of G is a set of vertices U such that, for every edge e ∈ V ,
one of its endpoints is in U .

Theorem 3.80 (König’s Theorem for Bipartite Graphs). Let G =
(V,E) be a bipartite graph. A maximum size of a matching of G equals the
minimum size of an edge cover of G.

Proof. Suppose that {V1, V2} is the partition of the vertices of the graph such
that E ⊆ V1 × V2. Define the digraph G′ = (V ∪ {s, t}, {(x, y) | (x, y) ∈
E} ∪ {(s, x) | x ∈ V } ∪ {(x, t) | x ∈ V }) and the network N = (G′, cap, s, t).
We assume that s, t are new vertices. The capacity of every edge equals 1.

A matching M of the bipartite graph G yields a number of |M | pairwise
disjoint paths in N.

An edge cover U in G produces a cut in the network N using the following
mechanism. Define the sets of vertices U1, U2 as Ui = U ∩ Vi for i ∈ {1, 2}.
Then, ({s}∪U1, U2∪{t}) is a cut in N and its capacity equals |U |. By removing
the edges having an endpoint in U , we eliminate all paths that join s to t.
Thus, the current statement follows immediately from Menger’s theorem. 	
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3.5 Hypergraphs

Definition 3.81. A hypergraph is a pair H = (V,E) such that
(i) V is a set and
(ii) E is a collection of nonempty subsets of V .
If
⋃

E = V , then we say that H is a full hypergraph. The hypergraph is simple
if X,Y ∈ E and X ⊆ Y implies X = Y . A simple hypergraph is also known
as Sperner family of sets.

The elements of V are the vertices of the hypergraph, while the sets of E

are the hyperedges of the hypergraph.
The order of the hypergraph H = (V,E) is |V |.

Note that a graph is a simple hypergraph whose hyperedges contain two
vertices.

Hyperedges are drawn as curves encircling the vertices they contain.

Example 3.82. The hypergraph H = ({v1, . . . , v9}, {U1, . . . , U5}), where

U1 = {v1, v2, v4},
U2 = {v3},
U3 = {v4, v7, v8, v9},
U4 = {v5, v8, v9},
U5 = {v5, v6},

is represented in Figure 3.26.

The incidence matrix of a hypergraph H = ({v1, . . . , vm}, {U1, . . . , Un}) is
an m× n matrix M , where

Mij =

{
1 if vi ∈ Uj ,

0 otherwise,

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 3.83. The incidence matrix of the hypergraph considered in Exam-
ple 3.82 is the 9× 5 matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 1 0 0
0 0 1 1 0
0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



3.5 Hypergraphs 119

�

�

�

	

�

�

�

	




�

�



�

�

�

�

�

�

�

	

�

�

�

�
�

�

�

�

�

U1

U2

U3

U4

U5

v1

v2

v3

v4

v5 v6

v7 v8

v9

Fig. 3.26. Graphical representation of a hypergraph.

The definition of a hypergraph implies that every column of the incidence
matrix contains at least a 1 (because hyperedges are nonempty subsets of
vertices). Also, if H is a full hypergraph, then each row must contain at least
one 1.

Theorem 3.84. If H = (V,E) is a simple hypergraph of order n, then we
have the inequality ∑

U∈E

1(
n
|U |
) ≤ 1. (3.2)

Moreover, we have

|E| ≤
(
n

�n
2 �

)
. (3.3)

Proof. Let V be a finite set such that |S| = n. Define the digraph GS =
(P(V ), E) having the set of edges

E = {(T,U) ∈ P(V )× P(V ) | T ⊂ U and |T | = |U | − 1}.

If U ∈ E, the number of paths in G from ∅ to U is |U |!. Note that there are
|U |!(n− |U |)! paths from ∅ to V that pass through U . If U is a hyperedge of
H, then no such path contains another hyperedge of the graph because H is
a simple hypergraph. Therefore, we have
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n! ≥
∑
U∈E

|U |!(n− |U |)!,

which gives Inequality (3.2).
For the second inequality, observe that

(
n
|U |
)
≤
(

n

n

2 �
)
. Therefore,

|E|(
n


n
2 �
) ≤ 1(

n
|U |
) ≤ 1,

which implies Inequality (3.3). 	


Definition 3.85. A hitting set (or a transversal) of a hypergraph H = (V,E)
is a subset T of V such that T ∩ E �= ∅ for every hyperedge E of H.
T is a minimal transversal (or a minimal hitting set) of H if T is a

transversal and for no U ⊂ T is U a transversal (or a hitting set).

The set of minimal transversals of a hypergraph H denoted by M(H)
defines a simple hypergraph MINTR(H) = (V,M(H).

Theorem 3.86. Let H = (V,E) and H′ = (V,E′) be two simple hypergraphs
on the set V . Then H′ = MINTR(H) if and only if for every two-block parti-
tion π = {A,B} of V exactly one of the following situations occurs:
(i) There exists an E ∈ E such that E ⊆ A.
(ii) There exists an E′ ∈ E′ such that E′ ⊆ B.

Proof. Suppose that H′ = MINTR(H), and consider a two-block partition
π = {A,B} ∈ PART(V ).

If there exists U ∈ E such that U ⊆ A, then we have (i); otherwise,
B = V − A intersects each U ∈ E, which means that B is a transversal
of H and therefore contains a minimum transversal U ′ of H. Thus, U ′ is a
hyperedge of H′ and U ′ ⊆ B and we have (ii).

Note that (i) and (ii) cannot occur together for if we were to have U ∈ E

such that U ⊆ A and U ′ ∈ E′ such that U ′ ⊆ B, then U ′ ∩ U = ∅.
To prove the reverse implication, suppose that the condition of the theorem

holds, and let U ′ be a hyperedge of H′. Suppose that there exists a hyperedge
U of H such that U ′ ∩U = ∅, that is, U ⊆ V −U ′. By applying the condition
of the theorem to the partition {U ′, V −U ′}, it follows that there is no U ′

1 ∈ E′

such that U ′
1 ⊆ U ′, which is absurd (because the role of U ′

1 can be played by
U ′). Thus, U ′ is a transversal of H.

We claim that U ′ is a minimal transversal. Suppose that the transversal
U ′ is not minimal; then, it strictly includes a minimal transversal G of H.
Consider the partition {V − G,G}. Suppose that there exists U ∈ E such
that U ⊆ V −G; this leads to a contradiction because U and G should have
a nonempty intersection since G is a transversal of H. The alternative is
the existence of a hyperedge U ′

1 of H′ such that U ′
1 ⊆ G. This would imply

U ′
1 ⊂ U ′, contradicting the fact that H′ is a simple hypergraph. 	
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Corollary 3.87. Let H = (V,E) be a hypergraph and let H′ = MINTR(H).
Then, H = MINTR(H′).

Proof. The corollary follows immediately by observing the symmetry of the
conditions of Theorem 3.86 relative to the hypergraphs H and H′. 	


Corollary 3.87 can be written succinctly as

MINTR(MINTR(H)) = H (3.4)

for any simple hypergraph H.

Exercises and Supplements

1. How many graphs exist that have a finite set of vertices V such that
|V | = n?

2. Let G = (V,E) be a finite graph. How many spanning subgraphs exist for
G?

3. In Definition 3.11 it is required that the length n of a cycle p = (v0, . . . , vn)
in a graph G be at least 3. Why is this necessary?

4. Let S be a finite set. Define the graph GS = (P(S), E) such that an edge
(K,L) exists ifK ⊂ L and |L| = |K|+1. Prove that there exist (|M |−|K|)!
paths that join the vertex K to M .

5. Let G = (V,E) be a finite graph. Define the triangular number of G as
t = max{|Γ (x) ∩ Γ (y)| | (x, y) ∈ E}.
a) Prove that for every two vertices x, y ∈ V we have d(x)+d(y) ≤ |V |+t.
b) Show that ∑

{d(x) + d(y) | (x, y) ∈ E} =
∑
x∈V

d2(x).

Conclude that ∑
x∈V

d2(x) ≤ (|V |+ t)|E|.

6. Let m(G) be the minimum degree of a vertex of the graph G. Prove that
G contains a path of length m(G) and a cycle of length at least m(G) + 1.
Hint: Consider a path of maximal length in G.

7. Let C be a collection of sets. The graph GC of C has C as the set of vertices.
The set of edges consists of those pairs C,D ∈ C such that C �= D and
C ∩D �= ∅.
a) Prove that for every graph G there exists a collection of sets C such

that G = GC.
b) Let C = (V,E) and let

c(G) = min{|S| | G = GC for some C ⊆ P(S)}.

Prove that if G is connected and |C| ≥ 3, then c(C) ≤ |E|.
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8. Let G = (V,E) be a graph such that (u, v) ∈ (V × V )−E implies d(u) +
d(v) ≥ |V |, where V contains at least three vertices. Prove that G is
connected.

Solution: Suppose that u and v belong to two distinct connected
components C and C ′ of the graph G, where |C| = p and |C ′| = q, so
p+ q ≤ |V |. If x ∈ C and y ∈ C ′, then there is no edge (x, y), d(x) ≤ p−1
and d(y) ≤ q−1. Thus, d(x)+d(y) ≤ p+q−2 ≤ |V |−2, which contradicts
the hypothesis. Thus, u, v must belong to the same connected component,
so G is connected.

Let G = (V,E) be a graph and let C be a set referred to as the set of colors.
A C-coloring of G is a function f : V −→ C such that (u, v) ∈ E implies
f(u) �= f(v). The chromatic number of G is the least number |C| such that
the graph has a C-coloring. The chromatic number of G is denoted by χ(G);
if χ(G) = n, then we say that G is n-chromatic.

9. Prove that the graph G has χ(G) = 1 if and only if it is totally disconnected.
Further, prove that χ(G) = 2 if and only if it has no odd cycles.

Let G = (V,E) be a graph. A Hamiltonian path that joins the vertex u to the
vertex v is a simple path in G that joins u to v such that every vertex of V
occurs in the path. A Hamiltonian cycle in G is a simple cycle that contains all
vertices of G. Next, we present several sufficient conditions for the existence
of a Hamiltonian path due to O. Ore and G. A. Dirac.

10. Let G = (V,E) be a graph such that (u, v) ∈ (V × V )−E implies d(u) +
d(v) ≥ |V |, where V contains at least three vertices. Prove that G contains
a Hamiltonian cycle.

Solution: The graph G is connected. Let p = (v1, . . . , vm) be the longest
simple path in G.

Suppose that m = |V |, which implies that p is a Hamiltonian path that
joins v1 to vm. If vm and v1 are joined by an edge, then (v1, . . . , vm, v1) is
a Hamiltonian cycle.

Suppose that no edge exists between vm and v1, so d(v1) + d(vm) ≥
|V |. The vertex v1 is joined to d(v1) vertices on the path (v2, . . . , vm)
and there are d(v1) nodes that precede these nodes on the path p. If
vm were not joined to any of these nodes, then the set of nodes on p
joined to vm would come from a set of m− 1− d(v1) nodes, so we would
have d(vm) ≤ m − 1 − d(v1), which would contradict the assumption
that d(v1) + d(vm) ≥ |V |. Thus, there exists a node vi on p such that
(v1, vi), (vi−1, vn) ∈ E. Therefore (v1, vi, vi+1, . . . , vn, vi−1, vi−2, . . . , v2, v1
is a Hamiltonian cycle.

Suppose that m < |V |. If there is an edge (w, v1), where w is not a
node of p, then (w, v1, . . . , vm) is longer than p. Thus, v1 is joined only
to nodes in p and so is vm. An argument similar to the one previously
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used shows that there exists a simple cycle q = (y1, . . . , ym, y1) of length
m. Since m < |V | and G is connected, there is a node t not on q that is
joined to some vertex yk in q. Then (t, yk, yk+1, . . . , ym, y1, y2, . . . , yk−1)
is a path of length m+ 1, which contradicts the maximality of the length
of p. Since this case cannot occur, it follows that G has a Hamiltonian
cycle.

11. Let G = (V,E) be a graph such that |V | ≥ 3 in which d(v) ≥ |V |/2.
a) Prove that G is connected.
b) Prove that G has a Hamiltonian cycle.

12. Let G = (V,E) be a graph such that |E| ≥ (|V |−1)(|V |−2)
2 + 2. Prove that

G has a Hamiltonian cycle.
13. Prove that a tree that has at least two vertices has at least two leaves.
14. Prove that if T is a tree and x is a leaf, then the graph obtained by

removing x and the edge that has x as an endpoint from T is again a tree.
Also, show that if z is a new vertex, then the graph obtained from T by
joining z with any node of T is also a tree.

15. Let f : S −→ S be a function. Define the directed graph Gf = (S,E),
where E = {(x, y) ∈ S × S | y = f(x)}. Prove that each connected
component of Gf consists of a cycle and a number of trees linked to the
cycle.

16. Let N = (G, cap, s, t) be a network. Prove that if (C1, C
′
1) and (C2, C

′
2) are

minimal cuts, then (C1 ∪ C2, C
′
1 ∩ C ′

2) is a minimal cut.
17. Let M ∈ {0, 1}m×n be a binary matrix. A line of M is either a row or a

column; two 1s are independent if they are neither in the same row nor
in the same column. A line cover of M is a set of lines such that every
1 is located in one of these lines. Prove that the maximum number of
independent 1s equals the minimum size of a line cover.

Solution: Let R = {u1, . . . ,um} be the set of rows of the matrix M
and let C = {v1, . . . ,vn} be the set of columns of M = (mij). Consider
the bipartite graph GM = (R ∪ C,E), where an edge exists in between
the row ui and the column vj if and only if mij = 1. Two independent
1s correspond to two edges that have no common endpoints; therefore
the maximum number of 1s equals the size of a maximal matching. The
statement follows immediately from König’s theorem for bipartite graphs
(Theorem 3.80).

18. A hypergraph H = (V,E) is said to be k-uniform if E ⊆ Pk(V ). For a
k-uniform hypergraph, where k ≥ 2, prove that if |V | ≤ 2k, then any two
hyperedges have a nonempty intersection.

19. Let H = (V,E) be a hypergraph, where |V | = n. Prove that if |E| ≤ |V |,
then there exists v ∈ V such that for any hyperedges U,U ′ ∈ E we have
U − {v} �= U ′ − {v}.

Solution: If U and U ′ are two distinct hyperedges, and U − {v} =
U ′ − {v}, then U ⊕ U ′ = {v}. Suppose that there is no vertex v with the
stated property. This amounts to saying that for every vertex v ∈ V there
exists a pair of hyperedges Ua(v) and Ub(v) such that Ua(v) ⊕ Ubv

= {v}.
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Let G = (E, E) be a graph having the set of hyperedges of H as its
vertices. An edge (U,U ′) exists in this graph if and only if U ⊕ U ′ = {v}.
From the supposition made above, it follows that |E| ≥ |V |.

We claim that G is acyclic. Suppose that (U1, . . . , Up, U1) is a cycle
of minimal length in G. Then, there is a sequence of vertices in Seq(V )
(v1, . . . , vp) such that vi ∈ Ui ⊕ Ui+1 for 1 ≤ i ≤ p− 1 and vp ∈ Up ⊕ U1.
This implies

{vp} = U1 ⊕ Up = (U1 ⊕ U2)⊕ (U2 ⊕ U3)⊕ · · · ⊕ (Up−1 ⊕ Up)

⊆
p−1⋃
i=1

(Ui ⊕ Ui+1) = {v1, . . . , vp−1},

so vp = v� for some �, 1 ≤ � ≤ p − 1. This contradicts the minimality
of the cycle, so G is acyclic. However, this also leads to a contradiction
because the acyclicity of G implies |E| ≤ |E| − 1 ≤ |V | − 1.

20. Many concepts from graph theory have natural extensions to hypergraphs.
For instance, the degree of a vertex x in a hypergraph H = (V,E) is
d(x) = |{U ∈ E | x ∈ U}|.
Prove that there exists a hypergraph H = (V,E), where V = {v1, . . . , vn}
and E = {U1, . . . , Um} such that d(xi) = di for 1 ≤ i ≤ n and |Uj | = rj
for 1 ≤ j ≤ m, where d1 ≥ d2 ≥ dn if and only if the following conditions
are satisfied:
a)
∑m

j=1 min{rj , k} ≥ d1 + · · ·+ dk for 1 ≤ k < n.
b)
∑m

j=1 rj = d1 + · · ·+ dn.
Hint: Consider a network N = (G, cap, s, t), where

G = ({s, x1, . . . , xn, U1, . . . , Um}, E)

and the edges and their capacities are given by
• For every Uj , there is an edge (s, Uj) with cap(s, Uj) = rj .
• For every xi, there is an edge (xi, t) with cap(xi, t) = di.
• For every Uj and xi, there is an arc (Uj , xi) with cap(Uj , xi) = 1.
Prove that a maximal flow in this network corresponds to a hypergraph
that satisfies the desired conditions.

21. Let G = (V,E) be a digraph. If U ⊆ V , let C(U) = {(x, y) ∈ E | x ∈
U, y �∈ U} and let f : P(V ) −→ R≥0 be the function given by f(U) =
|C(U)| for U ∈ P(V ). Prove that f satisfies the inequality

f(U1 ∪ U2) + f(U1 ∩ U2) ≤ f(U1) + f(U2)

for every U1, U2 ∈ P(V ).
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Partially Ordered Sets

4.1 Introduction

Partially ordered sets are mathematical structures that play a fundamental
role in both mathematics and computer science. After introducing the notion
of a partially ordered set (poset) and defining several classes of special ele-
ments associated with partial orders, we discuss closure and interior systems,
topics that have multiple applications in topology, algebra, and data mining.
Two partially ordered sets receive special attention: the poset of real numbers
and the poset of partitions of a finite set.

Finally, partially ordered sets serve as the starting point for the study of
several algebraic structures in Chapter 5.

4.2 Partial Orders

The fundamental notion of this chapter is introduced next.

Definition 4.1. A partial order on a set S is a relation ρ ⊆ S × S that is
reflexive, antisymmetric, and transitive.

The pair (S, ρ) is referred to as a partially ordered set or, for short, a
poset.

When |S| is finite, we refer to poset (S, ρ) as a finite poset.
A strict partial order, or more simply, a strict order on S, is a relation

ρ ⊆ S × S that is irreflexive and transitive.

Example 4.2. The identity relation on a set S, ιS , is a partial order; this is
often referred to as the discrete partial order on S. Also, the relation θS = S×S
is a partial order on S.

Example 4.3. The relation “≤” on the set of partitions of a set PART(S)
introduced in Definition 1.113 is a partial order on the set PART(S).

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 4, c© Springer-Verlag London Limited 2008
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Example 4.4. The relation δ introduced in Example 1.29 is a partial order on
N since, as we have shown in Example 1.45, δ is reflexive, antisymmetric, and
transitive.

For a poset (S, ρ), we prefer to use the infix notation; that is, write sρt
instead of (s, t) ∈ ρ. Moreover, various partial orders have their traditional
notations, which we favor. For example, the relation δ introduced in Exam-
ple 1.29 is usually denoted by | . Therefore, we write m | n to denote that
(m,n) ∈ δ. This is the well-known divisibility relation on N. Whenever prac-
tical, for generic partially ordered sets, we denote their partial order relation
by ≤. Generic strict partial orders will be denoted by <.

Example 4.5. The inclusion relation ⊆ is a partial order on the set of subsets
P(S) of a set S. The reader can easily verify that “⊆” is reflexive, antisym-
metric, and transitive.

Example 4.6. Let S be a set and let ≤pref be the relation on Seq(S) defined
by u ≤pref v if u is a prefix of v. Clearly, u ≤pref v if and only if there exists
t ∈ Seq(S) such that v = ut. It is immediate that “≤pref” is a reflexive
relation.

Suppose that u ≤pref v and v ≤pref u. There exist t, t′ ∈ Seq(S) such
that v = ut and u = vt′, which implies u = utt′. Thus, tt′ = λλλ, so t = t′ = λλλ,
which allows us to infer that u = v. This shows that the relation “≤pref” is
antisymmetric.

Finally, suppose that u ≤pref v and v ≤pref w. We have v = ut and
w = vs for some s, t ∈ Seq(S). This implies w = uts, which shows that
u ≤pref w. Thus, “≤pref” is indeed a partial order on Seq(S).

In a similar manner, it is possible to show that the relations

≤suff = {(u,v) ∈ (Seq(S))2 | v = tu for some t ∈ Seq(S)},
≤inf = {(u,v) ∈ (Seq(S))2 | v = tut′ for some t, t′ ∈ Seq(S)},

are partial orders on Seq(S) (exercise!).

If (S,≤) is a poset and T ⊆ S, then (T,≤T ) is also a poset, where ≤T =≤
∩(T × T ) is the trace of ≤ on T .

Every strict partial order is also asymmetric. Indeed, let < be a strict
partial order on S and assume that x < y. If y < x, then x < x due to the
transitivity of <, which contradicts the irreflexivity of <. This shows that <
is indeed asymmetric.

A strict partial order is not, in general, a partial order since strict par-
tial orders are irreflexive, while partial orders are reflexive. The link between
partial orders and strict partial orders is given next.

Theorem 4.7. If ≤ is a partial order on a set S and <=≤ −ιS, then the
relation < is a strict partial order on S.
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Conversely, if < is a strict partial order on S, then ≤=< ∪ιS is a partial
order on S.

Proof. Since ιS∩ <= ∅, the relation < is irreflexive.
To prove the transitivity of <, let x, y, z ∈ S be such that x < y, y < z.

Because of the transitivity of ≤, we have x ≤ z. On the other hand, we also
have x �= z. Indeed, if we assume that x = z, then we would have both
z < y and y < z, which is impossible by the asymmetry of <. Therefore,
(x, z) ∈≤ −ιS =<, which implies the transitivity of <.

Now, let < be a strict partial order and let ≤=< ∪ιS . The reflexivity of
≤ is immediate.

To show that ≤ is antisymmetric, assume that x ≤ y and y ≤ x. Because
of the definition of ≤, we may have x < y or (x, y) ∈ ιS (that is, x = y). In
the first case, we have a contradiction. Indeed, if y < x, this contradicts the
asymmetry of <; if (y, x) ∈ ιS , we also have (x, y) ∈ ιS , and this contradicts
the irreflexivity of <. Consequently, we must have x = y.

Let x ≤ y and y ≤ x. We need to consider the following four cases.
(i) If x < y, y < z, we have x < z because of the transitivity of <. This

implies x ≤ z.
(ii) If (x, y) ∈ ιS and y < z, we have x = y; hence, x < z and therefore x ≤ z.
(iii) If x < y and (y, z) ∈ ιS , we follow an argument similar to the one used in

the previous case.
(iv) If (x, y), (y, z) ∈ ιS , we have (x, z) ∈ ιS because of the transitivity of ιS ;

hence, x ≤ z.
We proved that ≤ is also transitive, and this concludes our argument. 	


Example 4.8. Consider the relation ≤⊆ R × R, which is a partial order. The
strict partial order attached to it by the previous proposition is the relation
“<”.

A relation ρ ⊆ S × S is acyclic if ρn ∩ ιS = ∅ for every n ≥ 1.
Acyclicity is a hereditary property; this means that if a relation σ ⊆ S×S

is acyclic and θ ⊆ σ, then θ is also acyclic.

Theorem 4.9. Every strict partial order is acyclic.

Proof. Let ρ be a strict partial order relation on S. Its transitivity implies the
existence of the descending sequence

· · · ⊆ ρn ⊆ · · · ⊆ ρ2 ⊆ ρ.

Since ρ is irreflexive, we have ρ ∩ ιS = ∅, and this implies ρn ∩ ιS = ∅. 	

Next we introduce a graphical representation of partial orders.

Definition 4.10. Let (S,≤) be a poset. The Hasse diagram of (S,≤) is the
digraph of the relation < −(<)2, where “<” is the strict partial order corre-
sponding to ≤.
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In view of the properties of acyclic relations discussed above, it is clear
that the relation < −(<)2 is acyclic; therefore, the Hasse diagram is always
an acyclic directed graph. We will denote this relation by “≺”.

Observe that x ≺ y if x �= y, x ≤ y, and there is no u ∈ S such that x ≤ u
and u ≤ y. In other words, if x ≺ y, then y covers x directly, without any
intermediate elements.

The use of Hasse diagrams in representing posets is justified by the fol-
lowing statement.
Theorem 4.11. If ≤ is a partial order on a finite set S, < is the strict partial
order corresponding to ≤, and θ =< −(<)2, then θ∗ =≤.

Proof. Let x, y ∈ S such that x ≤ y. If x = y, then we have (x, y) ∈ ιS ⊆ θ∗.
Assume now that x ≤ y and x �= y, which means that x < y. Consider

the collection Cxy of all sequences of elements of A that can be “interpolated”
between x and y:

Cxy = {(s(0), . . . , s(n− 1)) | x = s(0), s(n− 1) = y, and
s(i) < s(i+ 1) for 0 ≤ i ≤ n− 2, n ≥ 2}.

We have Cxy �= ∅ since the sequence (x, y) belongs to Cxy. Furthermore, no
sequence from Cxy may contain a repetition because, if we have s(p) = s(q)
for a sequence (s(0), . . . , s(n − 1)) with 1 ≤ p < q ≤ n, by the transitivity of
<, this implies s(p) < s(q). This is a contradiction because < ∩ιS = ∅. Since
S is finite, Cxy contains a finite number of sequences.

Consider a sequence of maximal length from Cxy,

(s(0), s(2), . . . , s(m− 1)),

where x = s(0) and y = s(m − 1). Observe that for no pair (s(i), s(i + 1))
can we have (s(i), s(i + 1)) ∈ (<)2. Indeed, if (s(j), s(j + 1)) ∈ (<)2, then
there is x ∈ S such that s(i) < x and x < s(i + 1), and this contradicts the
maximality of m. Therefore, (s(i), s(i + 1)) ∈< −(<)2 = θ, and this shows
that (x, y) ∈ θm−1 ⊆ θ∗.

Conversely, if (x, y) ∈ θ∗, there is k ∈ N such that (x, y) ∈ θk, which means
that there exists a sequence (z(0), . . . , z(k)) such that

x = z(0), (z(i), z(i+ 1)) ∈ θ for 0 ≤ i ≤ k − 1 and y = z(k).

This implies z(i) ≤ z(i+1); hence, (x, y) ∈ (≤)k ⊆≤ because of the transitivity
of ≤. 	


The relation θ introduced in Theorem 4.11 is called the transitive reduction
of the partial order ρ.

Example 4.12. The Hasse diagram of the poset (P(S),⊆), where S = {a, b, c},
is given in Figure 4.1.

Example 4.13. Consider the poset ({2, 3, 4, 5, 6, 7, 8}, δ), where δ is the divis-
ibility relation introduced in Example 1.29. Its Hasse diagram is shown in
Figure 4.2.
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Fig. 4.1. Hasse diagram of the poset (P(S),⊆).
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Fig. 4.2. Hasse diagram of the poset ({2, 3, 4, 5, 6, 7, 8}, δ).

4.3 Special Elements of Partially Ordered Sets

Let (S,≤) be a poset and let K ⊆ S.

Definition 4.14. The set of upper bounds of the set K is the set

Ks = {y ∈ S | x ≤ y for every x ∈ K}.

The set of lower bounds of the set K is the set

Ki = {y ∈ S | y ≤ x for every x ∈ K}.
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If Ks �= ∅, we say that the set K is bounded above. Similarly, if Ki �= ∅,
we say that K is bounded below. If K is both bounded above and bounded
below we will refer to K as a bounded set.

If Ks = ∅ (Ki = ∅), then K is said to be unbounded above (below).

Theorem 4.15. Let (S,≤) be a poset and let U and V be two subsets of S.
If U ⊆ V , then we have V i ⊆ U i and V s ⊆ Us.

Also, for every subset T of S, we have T ⊆ (T s)i and T ⊆ (T i)s.

Proof. The argument for both statements of the theorem amounts to a direct
application of Definition 4.14. 	


Note that for every subset T of a poset S, we have both

T i = ((T i)s)i (4.1)

and
T s = ((T s)i)s. (4.2)

Indeed, since T ⊆ (T i)s, by the first part of Theorem 4.15, we have ((T s)i)s ⊆
T s. By the second part of the same theorem applied to T s, we have the reverse
inclusion T s ⊆ ((T s)i)s, which yields T s = ((T s)i)s.

Theorem 4.16. For any subset K of a poset (S, ρ), the sets K ∩ Ks and
K ∩Ki contain at most one element.

Proof. Suppose that y1, y2 ∈ K ∩ Ks. Since y1 ∈ K and y2 ∈ Ks, we have
(y1, y2) ∈ ρ. Reversing the roles of y1 and y2 (that is, considering now that
y2 ∈ K and y1 ∈ Ks), we obtain (y2, y1) ∈ ρ. Therefore, we may conclude
that y1 = y2 because of the antisymmetry of the relation ρ, which shows that
K ∩Ks contains at most one element.

A similar argument can be used for the second part of the proposition; we
leave it to the reader. 	


Definition 4.17. Let (S,≤) be a poset. The least (greatest) element of the
subset K of S is the unique element of the set K ∩Ki (K ∩Ks, respectively)
if such an element exists.

If K is unbounded above, then it is clear that K has no greatest element.
Similarly, if K is unbounded below, then K has no least element.

Applying Definition 4.17 to the set S, the least (greatest) element of the
poset (S,≤) is an element a of S such that a ≤ x (x ≤ a, respectively) for all
x ∈ S.

It is clear that if a poset has a least element u, then u is the unique
minimal element of that poset. A similar statement holds for the greatest and
the maximal elements.
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Definition 4.18. Let (S,≤) be a poset that has 0 as its least element. An
atom of (S,≤) is an element x of S such that 0 ≺ x.

If (S,≤) is a poset that has 1 as its greatest element, then y is a co-atom
of (S,≤) if y ≤ 1.

Example 4.19. For the poset introduced in Example 4.12, the greatest element
is {a, b, c}, while the least element is ∅.

The atoms of this poset are {a}, {b}, {c}; its co-atoms are {a, b}, {b, c},
and {a, c}.

Definition 4.20. The subset K of the poset (S,≤) has a least upper bound
u if Ks ∩ (Ks)i = {u}.
K has the greatest lower bound v if Ki ∩ (Ki)s = {v}.

We note that a set can have at most one least upper bound and at most one
greatest lower bound. Indeed, we have seen above that for any set U the set
U ∩U i may contain an element or be empty. Applying this remark to the set
Ks, it follows that the set Ks∩(Ks)i may contain at most one element, which
shows that K may have at most one least upper bound. A similar argument
can be made for the greatest lower bound.

If the set K has a least upper bound, we denote it by supK. The greatest
lower bound of a set will be denoted by infK. These notations come from the
terms supremum and infimum used alternatively for the least upper bound
and the greatest lower bound, respectively.

Example 4.21. Consider the poset (N, δ), and let m and n be two distinct
natural numbers m �= n.

We claim that any set {m,n} has both an infimum and a supremum.
Indeed, let p be the least common multiple ofm and n. Since (n, p), (m, p) ∈ δ,
it is clear that p is an upper bound of the set {m,n}. On the other hand, if k is
an upper bound of {m,n}, then k is a multiple of both m and n. In this case,
k must also be a multiple of p because otherwise we could write k = pq + r
with 0 < r < p by dividing k by p. This would imply r = k − pq; hence, r
would be a multiple of both m and n because both k and p have this property.
However, this would contradict the fact that p is the least multiple that m
and n share! This shows that the least common multiple of m and n coincides
with the supremum of the set {m,n}.

The reader can easily prove that the infimum of {m,n} coincides with the
greatest common divisor of the numbers m and n.

Example 4.22. Consider a set M and the poset (P(M),⊆). Let K and H be
two subsets of M . The set {K,H} has an infimum and a supremum. Indeed,
let L = K ∩H. Clearly, L ⊆ K and L ⊆ H, so L is a lower bound of the set
{K,H}. Furthermore, if J ⊆ K and J ⊆ H, then J ⊆ L by the definition of
the intersection. This proves that the infimum of {K,H} is the intersection
K ∩H. A similar argument shows that K ∪H is the supremum of {K,H}.



136 4 Partially Ordered Sets

In the previous two examples, any two-element subset of the poset has
both a supremum and an infimum.

For a one-element subset {x} of a poset (S, ρ), we have sup{x} = inf{x} =
x.

Definition 4.23. A minimal element of a poset (S,≤) is an element x ∈ S
such that {x}i = {x}. A maximal element of (S,≤) is an element y ∈ S such
that {y}s = {y}.

In other words, x is a minimal element of the poset (S,≤) if there is no element
less than or equal to x other than itself; similarly, x is maximal if there is no
element greater than or equal to x other than itself.

The set of minimal elements of a poset (S,≤) is denoted by MIN(S,≤);
the set of maximal elements of this poset is denoted by MAX(S,≤).

Example 4.24. Not every subset of a poset has a least or a greatest element.
Indeed, let ({2, 3, 4, 5, 6, 7, 8, }, δ) be a poset whose Hasse diagram is shown in
Figure 4.2. It is easy to see that

MIN({2, 3, 4, 5, 6, 7, 8, }, δ) = {2, 3, 5, 7},
MAX({2, 3, 4, 5, 6, 7, 8, }, δ) = {5, 6, 7, 8}.

There is no least element and there is no largest element in this poset.

Theorem 4.25. Every finite nonempty subset K of a poset (S,≤) has a min-
imal element and a maximal element.

Proof. Suppose that K = {x0, . . . , xn−1} for n ≥ 1. Define the element u0 =
x0 and

uk =

{
xk if xk < uk−1,

uk−1 otherwise.

Then, un−1 is a minimal element. The proof of the existence of a maximal
element of K is similar. 	


Next, we discuss a simple property of partially ordered sets that will allow
us to obtain half of some of the arguments related to the properties of partial
orders for free.

Theorem 4.26. Let ρ be a partial order on a set S. The inverse ρ−1 is also
a partial order on the same set.

Proof. Since (x, x) ∈ ρ for every x ∈ S, it follows that (x, x) ∈ ρ−1 for every
x ∈ S, so ρ−1 is reflexive.

The antisymmetry of ρ−1 follows from (ρ−1)−1 = ρ and because of the
antisymmetry of ρ.

To prove the transitivity of ρ−1, assume that (x, y) ∈ ρ−1 and (y, z) ∈ ρ−1.
This means that (y, x), (z, y) ∈ ρ, and because of the transitivity of ρ, we
obtain (z, x) ∈ ρ, so (x, z) ∈ ρ−1, which proves that ρ−1 is transitive. 	
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Definition 4.27. The dual of the poset (S, ρ) is the poset (S, ρ−1).

Concepts valid for a poset have a counterpart for their dual poset. For
instance, x is an upper bound for the set K in the poset (S, ρ) if and only if
x is a lower bound for K in the dual poset. Similarly, t = supK in the poset
(S, ρ) if and only if t = infK in the dual poset. Similar pairs are minimal
element and maximal element, infimum and supremum, etc.

If all concepts occurring in a statement about posets are replaced by their
duals, we obtain the dual statement; the method of proving statements about
posets is known as dualization. Furthermore, if a statement holds for a poset
(S, ρ), its dual holds for the dual poset (S, ρ−1). This allows us to formulate
the following principle.

The Duality Principle for Posets: If a statement is true for all posets,
then its dual is also true for all posets.

The validity of this principle follows from the fact that any poset can be
regarded as the dual of some other poset. The duality principle allows us
to simplify proofs of certain statements that concern posets. For statements
involving both a concept and its dual we need to prove only half of the state-
ment; the other half follows by applying the duality principle. For instance,
once we prove the statement “any subset of a poset can have at most one least
upper bound,” the dual statement “any subset of a poset can have at most
one greatest lower bound” follows.

4.4 The Poset of Real Numbers

For the poset (R,≤), it is possible to give more specific descriptions of the
supremum and infimum of a subset when they exist.

Theorem 4.28. If T ⊆ R, then u = supT if and only if u is an upper bound
of T and, for every ε > 0, there is t ∈ T such that u− ε < t ≤ u.

The number v is inf T if and only if v is a lower bound of T and, for every
ε > 0, there is t ∈ T such that v ≤ t < v + ε.

Proof. We prove only the first part of the theorem; the argument for the
second part is similar and is left to the reader.

Suppose that u = supT ; that is, {u} = T s∪ (T s)i. Since u ∈ T s, it is clear
that u is an upper bound for T . Suppose that there is ε > 0 such that no
t ∈ T exists such that u− ε < t ≤ u. This means that u− ε is also an upper
bound for T , and in this case u cannot be a lower bound for the set of upper
bounds of T . Therefore, no such ε may exist.

Conversely, suppose that u is an upper bound of T and for every ε > 0,
there is t ∈ T such that u − ε < t ≤ u. Suppose that u does not belong to
(Ks)i. This means that there is another upper bound u′ of T such that u′ < u.
Choosing ε = u − u′, we would have no t ∈ T such that u − ε = u′ < t ≤ u
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because this would prevent u′ from being an upper bound of T . This implies
u ∈ (Ks)i, so u = supT . 	


A very important axiom for the set R is given next.
The Completeness Axiom for R: If T is a nonempty subset of R

that is bounded above, then T has a supremum.
A statement equivalent to the Completeness Axiom for R follows.

Theorem 4.29. If T is a nonempty subset of R that is bounded below, then
T has an infimum.

Proof. Note that the set T i is not empty. If s ∈ T i and t ∈ T , we have s ≤ t,
so the set T i is bounded above. By the Completeness axiom v = supT i exists
and {v} = (T i)s ∩ ((T i)s)i = (T i)s ∩ T i by Equality (4.1). Thus, v = inf T .
	


We leave to the reader to prove that Theorem 4.29 implies the Complete-
ness Axiom for R.

Another statement equivalent to the Completeness Axiom is the following.

Theorem 4.30 (Dedekind’s Theorem). Let U and V be nonempty subsets
of R such that U ∪ V = R and x ∈ U, y ∈ V imply x < y. Then, there exists
a ∈ R such that if x > a, then x ∈ V , and if x < a, then x ∈ U .

Proof. Observe that U �= ∅ and V ⊆ Us. Since V �= ∅, it means that U is
bounded above, so by the Completeness Axiom supU exists. Let a = supU .
Clearly, u ≤ a for every u ∈ U . Since V ⊆ Us, it also follows that a ≤ v for
every v ∈ V .

If x > a, then x ∈ V because otherwise we would have x ∈ U since
U ∪ V = R and this would imply x ≤ a. Similarly, if x < a, then x ∈ U . 	


Using the previously introduced notations, Dedekind’s theorem can be
stated as follows: if U and V are nonempty subsets of R such that U ∪V = R,
Us ⊆ V , V i ⊆ U , then there exists a such that {a}s ⊆ V and {a}i ⊆ U .

One can prove that Dedekind’s theorem implies the Completeness Axiom.
Indeed, let T be a nonempty subset of R that is bounded above. Therefore
V = T s �= ∅. Note that U = (T s)i �= ∅ and U ∪ V = R. Moreover, Us =
((T s)i)s = T s = V and V i = (T s)i = U . Therefore, by Dedekind’s theorem,
there is a ∈ R such that {a}s ⊆ V = T s and {a}i ⊆ U = (T s)i. Note that
a ∈ {a}s ∩ {a}i ⊆ T s ∩ (T s)i, which proves that a = supT .

By adding the symbols +∞ and −∞ to the set R, one obtains the set R̂.
The partial order ≤ defined on R can now be extended to R̂ by −∞ ≤ x and
x ≤ +∞ for every x ∈ R.

We also extend the addition and multiplication of reals to R̂ by
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x+∞ = +∞+ x = +∞ for −∞ < x ≤ +∞,
x−∞ = −∞+ x = −∞ for −∞ ≤ x < +∞,

x · ∞ = ∞ · x =

⎧⎪⎨
⎪⎩
−∞ if −∞ ≤ x < 0,
0 if x = 0
∞ if 0 < x ≤ +∞

,

x · (−∞) = −∞ · x =

⎧⎪⎨
⎪⎩
∞ if −∞ ≤ x < 0,
0 if x = 0,
−∞ if 0 < x ≤ +∞

,

x
+∞ = x

−∞ = 0 for x ∈ R.

The operations +∞−∞ and −∞+∞ are undefined.
Note that, in the poset (R̂,≤), the sets T i and T s are nonempty for every

T ∈ P(R̂) because −∞ ∈ T i and +∞ ∈ T s for any subset T of R̂.

Theorem 4.31. For every set T ⊆ R̂, both supT and inf T exist in the poset
(R̂,≤).

Proof. We present the argument for supT . If supT exists in (R,≤), then it is
clear that the same number is supT in (R̂,≤).

Assume now that supT does not exist in (R,≤). By the Completeness
Axiom for R, this means that the set T does not have an upper bound in
(R,≤). Therefore, the set of upper bounds of T in (T̂ ,≤) is T ŝ = {+∞}. It
follows immediately that in this case supT = +∞ in (R̂,≤). 	


4.5 Closure and Interior Systems

The notions of closure system and interior system introduced in this section
are significant in algebra and topology and have applications in the study of
frequent item sets in data mining.

Definition 4.32. Let S be a set. A closure system on S is a collection C of
subsets of S that satisfies the following conditions:
(i) S ∈ C and
(ii) for every collection D ⊆ C, we have

⋂
D ∈ C.

Example 4.33. Let C be the collection of all intervals [a, b] = {x ∈ R | a ≤
x ≤ b} with a, b ∈ R and a ≤ b together with the empty set and the set R.
Note that

⋃
C = R ∈ C, so the first condition of Definition 4.32 is satisfied.

Let D be a nonempty subcollection of C. If ∅ ∈ D, then
⋂

D = ∅ ∈ C. If
D = {R}, then

⋂
D = R ∈ C. Therefore, we need to consider only the case

when D = {[ai, bi] | i ∈ I}. Then,
⋂

D = ∅ unless a = sup{ai | i ∈ I} and
b = inf{bi | i ∈ I} both exist and a ≤ b, in which case

⋂
D = [a, b]. Thus, C

is a closure system.
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Example 4.34. Let A = (A, I) be an algebra and let S(A) be the collection of
subalgebras of A, S(A) = {(Ai, I) | i ∈ I}. The collection S = {Ai | i ∈ I}
is a closure system. It is clear that we have S ∈ S. Also, if {Ai | i ∈ J} is a
family of subalgebras, then

⋂
i∈J Ai is a subalgebra of A.

Many classes of relations define useful closure systems.

Theorem 4.35. Let S be a set and let REFL(S),SYMM(S) and TRAN(S)
be the sets of reflexive relations, the set of symmetric relations, and the
set of transitive relations on S, respectively. Then, REFL(S),SYMM(S) and
TRAN(S) are closure systems on S.

Proof. Note that S × S is a reflexive, symmetric, and transitive relation on
S. Therefore,

⋃
REFL(S) = S × S ∈ REFL(S),

⋃
SYMM(S) = S × S ∈

SYMM(S), and
⋃

TRAN(S) = S × S ∈ TRAN(S).
Now let C = {ρi | i ∈ I} be a collection of transitive relations and let

ρ =
⋂
{ρi | i ∈ I}. Suppose that (x, y), (y, z) ∈ ρ. Then (x, y), (y, z) ∈ ρi

for every i ∈ I, so (x, z) ∈ ρi for i ∈ I because each of the relations ρi is
transitive. Thus, (x, z) ∈ ρ, which shows that

⋂
C ∈ TRAN(S). This allows

us to conclude that TRAN(S) is indeed a closure system. We leave it to the
reader to prove that REFL(S) and SYMM(S) are also closure systems. 	


Theorem 4.36. The set of equivalences on S, EQS(S), is a closure system.

Proof. The relation θS = S × S, is clearly an equivalence relation as we have
seen in the proof of Theorem 4.35. Thus,

⋃
EQS(S) = θS ∈ EQS(S).

Now let C = {ρi | i ∈ I} be a collection of transitive relations and let
ρ =

⋂
{ρi | i ∈ I}. It is immediate that ρ is an equivalence on S, so EQS(S)

is a closure system. 	


Definition 4.37. A mapping K : P(S) −→ P(S) is a closure operator on a
set S if it satisfies the conditions
(i) U ⊆ K(U) (expansiveness),
(ii) U ⊆ V implies K(U) ⊆ K(V ) (monotonicity), and
(iii) K(K(U)) = K(U) (idempotency)
for U, V ∈ P(S).

Example 4.38. Let K : P(R) −→ P(R) be defined by

K(U) =

⎧⎪⎨
⎪⎩
∅ if U = ∅,
[a, b] if both a = inf U and b = supU exist,
R otherwise,

for U ∈ P(R). We leave to the reader the verification that K is a closure
operator.
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Closure operators induce closure systems, as shown by the next lemma.

Lemma 4.39. Let K : P(S) −→ P(S) be a closure operator. Define the family
of sets CK = {H ∈ P(S) | H = K(H)}. Then, CK is a closure system on S.

Proof. Since S ⊆ K(S) ⊆ S, we have S ∈ CK, so
⋃

CK = S ∈ CK.
Let D = {Di | i ∈ I} be a collection of subsets of S such that Di = K(Di)

for i ∈ I. Since
⋂

D ⊆ Di, we have K(
⋂

D) ⊆ K(Di) = Di for every i ∈ I.
Therefore, K(

⋂
D) ⊆

⋂
D, which implies K(

⋂
D) =

⋂
D. This proves our

claim. 	

Note that CK, as defined in Lemma 4.39, equals the range of K. Indeed,

if L ∈ Ran(K), then L = K(H) for some H ∈ P(S), so K(L) = K(K(H)) =
K(H) = L, which shows that L ∈ CK. The reverse inclusion is obvious.

We refer to the sets in CK as the K-closed subsets of S.
In the reverse direction from Lemma 4.39, we show that every closure

system generates a closure operator.

Lemma 4.40. Let C be a closure system on the set S. Define the mapping
KC : P(S) −→ P(S) by KC(H) =

⋂
{L ∈ C | H ⊆ L}. Then, KC is a closure

operator on the set S.

Proof. Note that the collection {L ∈ C | H ⊆ L} is not empty since it
contains at least S, so KC(H) is defined and is clearly the smallest element of
C that contains H. Also, by the definition of KC(H), it follows immediately
that H ⊆ KC(H) for every H ∈ P(S).

Suppose that H1,H2 ∈ P(S) are such that H1 ⊆ H2. Since

{L ∈ C | H2 ⊆ L} ⊆ {L ∈ C | H1 ⊆ L},

we have ⋂
{L ∈ C | H1 ⊆ L} ⊆

⋂
{L ∈ C | H2 ⊆ L},

so KC(H1) ⊆ KC(H2).
We have KC(H) ∈ C for every H ∈ P(S) because C is a closure system.

Therefore, KC(H) ∈ {L ∈ C | KC(H) ⊆ L}, so KC(KC(H)) ⊆ KC(H). Since
the reverse inclusion clearly holds, we obtain KC(KC(H)) = KC(H). 	


Definition 4.41. Let C be a closure system on a set S and let T be a subset
of S. The C-set generated by T is the set KC(T ).

Note that KC(T ) is the least set in C that includes T .

Theorem 4.42. Let S be a set. For every closure system C on S, we have
C = CKC

. For every closure operator K on S, we have K = KCK
.

Proof. Let C be a closure system on S and let H ⊆ M . Then, we have the
following equivalent statements:
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1. H ∈ CKC
.

2. KC(H) = H.
3. H ∈ C.

The equivalence between (2) and (3) follows from the fact that KC(H) is the
smallest element of C that contains H.

Conversely, let K be a closure operator on S. To prove the equality of K
and KCK

, consider the following list of equal sets, where H ⊆ S:
1. KCK

(H).
2.
⋂
{L ∈ CK | H ⊆ L}.

3.
⋂
{L ∈ P(S) | H ⊆ L = K(L)}.

4. K(H).
We need to justify only the equality of the last two members of the list.
Since H ⊆ K(H) = K(K(H)), we have K(H) ∈ {L ∈ P(S) | H ⊆ L =
K(L)}. Thus,

⋂
{L ∈ P(S) | H ⊆ L = K(L)} ⊆ K(H). To prove the reverse

inclusion, note that for every L ∈ {L ∈ P(S) | H ⊆ L = K(L)}, we have
H ⊆ L, so K(H) ⊆ K(L) = L. Therefore, K(H) ⊆

⋂
{L ∈ P(S) | H ⊆ L =

K(L)}. 	

Theorem 4.42 shows the existence of a natural bijection between the set

of closure operators on a set S and the set of closure systems on S.

Definition 4.43. Let C be a closure system on a set S and let T be a subset
of S. The C-closure of the set T is the set KC(T ).

As we observed before, KC(T ) is the smallest element of C that contains T .

Example 4.44. Let K be the closure operator given in Example 4.38. Since the
closure system CK equals the range of K, it follows that the members of CK,
the K-closed sets, are ∅, R, and all closed intervals [a, b] with a ≤ b. Thus,
CK is the closure system C introduced in Example 4.33. Therefore, K and C

correspond to each other under the bijection of Theorem 4.42.

For a relation ρ, on S define ρ+ as KTRAN(S)(ρ). The relation ρ+ is called
the transitive closure of ρ and is the least transitive relation containing ρ.

Theorem 4.45. Let ρ be a relation on a set S. We have

ρ+ =
⋃
{ρn | n ∈ N and n ≥ 1}.

Proof. Let τ be the relation
⋃
{ρn | n ∈ N and n ≥ 1}. We claim that τ is

transitive. Indeed, let (x, z), (z, y) ∈ τ . There exist p, q ∈ N, p, q ≥ 1 such
that (x, z) ∈ ρp and (z, y) ∈ ρq. Therefore, (x, y) ∈ ρpρq = ρp+q ⊆ ρ+, which
shows that ρ+ is transitive. The definition of ρ+ implies that if σ is a transitive
relation such that ρ ⊆ σ, then ρ+ ⊆ σ. Therefore, ρ+ ⊆ τ .

Conversely, since ρ ⊆ ρ+ we have ρn ⊆ (ρ+)n for every n ∈ N. The
transitivity of ρ+ implies that (ρ+)n ⊆ ρ+, which implies ρn ⊆ ρ+ for every
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n ≥ 1. Consequently, τ =
⋃
{ρn | n ∈ N and n ≥ 1} ⊆ ρ+. This proves the

equality of the theorem. 	

It is easy to see that the set of all reflexive and transitive relations on a

set S, REFTRAN(S), is also a closure system on the set of relations on S.
For a relation ρ on S, define ρ∗ as KREFTRAN(S)(ρ). The relation ρ∗ is

called the transitive-reflexive closure of ρ and is the least transitive and reflex-
ive relation containing ρ. We have the following analog of Theorem 4.45.

Theorem 4.46. Let ρ be a relation on a set S. We have

ρ∗ =
⋃
{ρn | n ∈ N}.

Proof. The argument is very similar to the proof of Theorem 4.45; we leave
it to the reader. 	


Definition 4.47. Let S be a set and let F be a set of operations on S. A
subset P of S is closed under F , or F -closed, if P is closed under f for every
f ∈ F ; that is, for every operation f ∈ F , if f is n-ary and p0, . . . , pn−1 ∈ P ,
then f(p0, . . . , pn−1) ∈ P .

Note that S itself is closed under F . Further, if C is a nonempty collection
of F -closed subsets of S, then

⋂
C is also F -closed.

Example 4.48. Let F be a set of operations on a set S. The collection of all
F -closed subsets of a set S is a closure system.

Let S be a set. The dual of the poset (P(S),⊆) is the poset (P(S),⊇).
Thus, the dual of the notion of closure operator on a set S, introduced in
Definition 4.37, is a mapping I : P(S) −→ P(S) that satisfies the conditions
1. U ⊇ I(U) (contraction),
2. U ⊇ V implies I(U) ⊇ I(V ) (monotonicity), and
3. I(I(U)) = I(U) (idempotency),

for U, V ∈ P(S). Such a mapping is known as an interior operator on the set
S.

The dual notion for the notion of closure system on a set introduced in
Definition 4.32 is introduced next.

Definition 4.49. An interior system on a set S is a collection I of subsets of
S such that
(i) ∅ ∈ I and,
(ii) for every subcollection D of I we have

⋃
D ∈ I.

Theorem 4.50. Let I : P(S) −→ P(S) be an interior operator. Define the
family of sets II = {U ∈ P(S) | U = I(U)}. Then, II is an interior system
on S.

Conversely, if I is an interior system on the set S, define the mapping
II : P(S) −→ P(S) by II(U) =

⋃
{V ∈ I | V ⊆ U}. Then, II is an interior

operator on the set S.
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Moreover, for every interior system I on S, we have I = III
. For every

interior operator I on S, we have I = III
.

Proof. This statement follows by duality from Lemmas 4.39 and 4.40 and from
Theorem 4.42. 	


We refer to the sets in II as the I-open subsets of S.

Theorem 4.51. Let K : P(S) −→ P(S) be a closure operator on the set S.
Then, the mapping L : P(S) −→ P(S) given by L(U) = S − K(S − U) for
U ∈ P(S) is an interior operator on S.

Proof. Since S − U ⊆ K(S − U), it follows that L(U) ⊆ S − (S − U) = U ,
which proves property (i) of Definition 4.49.

Suppose that U ⊆ V , where U, V ∈ P(S). Then, we have S − V ⊆ S − U ,
so K(S−V ) ⊆ K(S−U) by the monotonicity of closure operators. Therefore,

L(U) = S −K(S − U) ⊆ S −K(S − V ) = L(V ),

which proves the monotonicity of L.
Finally, observe that we have L(L(U)) ⊆ L(U) because of the contraction

property already proven for L. Thus, we need only show that L(U) ⊆ L(L(U))
to prove the idempotency of L. This inclusion follows immediately from

L(L(U)) = L(S −K(S − U)) ⊇ L(S − (S − U)) = L(U).

	

From Theorem 4.51, by duality, we can prove that if L is an interior op-

erator on a set S, then K : P(S) −→ P(S) defined as K(U) = S − L(S − U)
for U ∈ P(S) is a closure operator on the same set.

In Chapter 6, we extensively use closure and interior operators.

4.6 The Poset of Partitions of a Set

In Definition 1.113, we introduced the relation ≤ on the set of partitions
PART(S) of S. It is easy to verify that this is a partial order relation on
PART(S). Thus, the pair (PART(S),≤) is a poset. In this section, we study
a few properties of this poset.

Example 4.52. The Hasse diagram of (PART({1, 2, 3, 4}),≤) is given in Fig-
ure 4.3. To simplify this figure, we represent each nonempty subset of {1, 2, 3, 4}
as an increasing set of its elements and omit the outer braces; for instance,
instead of {1, 2, 3}, we write 123.

Theorem 4.53. Let π, σ ∈ PART(S) such that π ≤ σ. The partition σ covers
the partition π if and only if there exists a block C of σ that is the union of
two blocks B and B′ of π and every block of σ that is distinct of C is a block
of π.
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Fig. 4.3. The Hasse diagram of (PART({1, 2, 3, 4}),≤).

Proof. Suppose that σ is a partition that covers the partition π. Since π ≤ σ,
every block of σ is a union of blocks of π. Suppose that there exists a block E of
σ that is the union of more than two blocks of π; that is, E =

⋃
{Bi | i ∈ I},

where |I| ≥ 3, and let Bi1 , Bi2 , Bi3 be three blocks of π included in E. Consider
the partitions

σ1 = {C ∈ σ | C �= E} ∪ {Bi1 , Bi2 , Bi3},
σ2 = {C ∈ σ | C �= E} ∪ {Bi1 ∪Bi2 , Bi3}.

It is easy to see that π ≤ σ1 < σ2 < σ, which contradicts the fact that σ
covers π. Thus, each block of σ is the union of at most two blocks of π.

Suppose that σ contains two blocks C ′ and C ′′ that are unions of two
blocks of π, namely C ′ = Bi0 ∪Bi1 and C ′′ = Bi2 ∪Bi3 . Define the partitions

σ′ = {C ∈ σ | C �∈ {C ′, C ′′}} ∪ {C ′, Bi2 , Bi3},
σ′′ = {C ∈ σ | C �∈ {C ′, C ′′}} ∪ {Bi1 , Bi2 , C

′′}.

Since π < σ′, σ′′ < σ, this contradicts the fact that σ covers π. Thus, we
obtain the conclusion of the theorem. 	


The poset (PART(S),≤) has αS as its first element and ωS as its largest.
We shall prove that for two partitions π and σ the infimum and the supre-

mum of the set {π, σ} always exist. To facilitate the description of the parti-
tions inf{π, σ} and sup{π, σ}, we introduce the graph of a pair of partitions.

Definition 4.54. Let π, σ ∈ PART(S), where π = {Bi | i ∈ I} and σ =
{Cj | j ∈ J}. The graph of the pair (π, σ) is the graph
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Gπ,σ = ({Bi | i ∈ I} ∪ {Cj | j ∈ J}, E),

where E consists of those two-element sets {Bi, Cj} such that Bi ∩ Cj �= ∅.

Example 4.55. Let S = {ai | 1 ≤ i ≤ 12} and let π = {Bi | 1 ≤ i ≤ 5} and
σ = {Cj | 1 ≤ j ≤ 4}, where

B1 = {a1, a2}, C1 = {a2, a4},
B2 = {a3, a4, a5}, C2 = {a1, a3, a5, a6, a7},
B3 = {a6, a7}, C3 = {a8, a11},
B4 = {a8, a9, a10}, C4 = {a9, a10, a12},
B5 = {a11, a12}.

The graph Gπ,σ is shown in Figure 4.4.

a11, a12

a8, a9, a10

a6, a7

a3, a4, a5

a1, a2

a9, a10, a12

a8, a11

a1, a3, a5, a6, a7

a2, a4

B1

B2

B3

B4

B5

C1

C2

C3

C4

Fig. 4.4. The graph Gπ,σ.

Theorem 4.56. Let π, σ ∈ PART(S), where π = {Bi | i ∈ I} and σ = {Cj |
j ∈ J}. The partition inf{π, σ} exists and is given by

inf{π, σ} = {Bi ∩ Cj | i ∈ I, j ∈ J and Bi ∩ Cj �= ∅}.

Proof. It is clear that the collection of sets

τ = {Bi ∩ Cj | i ∈ I, j ∈ J and Bi ∩ Cj �= ∅}

is a partition of S and that τ ≤ π and τ ≤ σ.
Let τ ′ be a partition of S such that τ ′ ≤ π and τ ′ ≤ σ and let D be a

block of τ ′. There are Bi ∈ π and Cj ∈ σ such that D ⊆ Bi and D ⊆ Cj , so
D ⊆ Bi ∩ Cj . Therefore, τ ′ ≤ τ and this proves that τ ′ = inf{π, σ}. 	
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The partition inf{π, σ} will be denoted by π ∧ σ. Note that the blocks of
π ∧ σ correspond to the edges of the graph Gπ,σ.

Example 4.57. If π and σ are the partitions introduced in Example 4.55, then
the partition π ∧ σ consists of nine blocks that correspond to the edges of the
graph:

B1 ∩ C1 = {a2}, B1 ∩ C2 = {a1}, B2 ∩ C1 = {a4},
B2 ∩ C2 = {a3, a5}, B3 ∩ C2 = {a6, a7}, B4 ∩ C3 = {a8},
B4 ∩ C4 = {a9, a10}, B5 ∩ C3 = {a11}, B5 ∩ C4 = {a12}.

Theorem 4.58. Let π and σ ∈ PART(S), where π = {Bi | i ∈ I} and
σ = {Cj | j ∈ J}. The sup{π, σ} exists in the poset (PART(S),≤), and the
blocks of the partition sup{π, σ} are the unions of the blocks that belong to
connected components of the graph Gπ,σ.

Proof. The connected components of the graph Gπ,σ form a partition of the
set of vertices of the graph. Let τ be the partition of S whose blocks are the
unions of the blocks that belong to connected components of the graph Gπ,σ.

Let D be a block of τ and let {Bi1 , . . . , Bip
} and {Cj1 , . . . , Cjq

} be the
sets of blocks of π and σ, respectively, that are included in τ . We claim that⋃

{Bik
| 1 ≤ k ≤ p} =

⋃
{Cjh

| 1 ≤ h ≤ q}.

Indeed, let x ∈
⋃
{Bik

| 1 ≤ k ≤ p}. There exists a block Bi�
such that

x ∈ Bi�
. Also, there is a block C of σ such that x ∈ C. Since x ∈ Bi�

∩ C,
it follows that there exists an edge (Bi�

, C) in Gπ,σ, so C belongs to the
same connected component as Bi�

; that is, C = Cjg
for some g, 1 ≤ g ≤ q.

Therefore, ⋃
{Bik

| 1 ≤ k ≤ p} ⊆
⋃
{Cjh

| 1 ≤ h ≤ q}.

The reverse inclusion can be shown in a similar manner. This proves the
needed equality, which can now be written

D =
⋃
{Bik

| 1 ≤ k ≤ p} =
⋃
{Cjh

| 1 ≤ h ≤ q}.

It is clear that we have both π ≤ τ and σ ≤ τ .
Suppose now that τ ′ is a partition such that π ≤ τ ′ and π ≤ τ ′. Let B ∈ π

and C ∈ σ be two blocks that have a nonempty intersection. If x ∈ B∩C, then
both B and C are included in the block of τ ′ that contains x. In other words,
if in Gπ,σ an edge exists that joins B and C, then they are both included in
the same block of τ ′. This property can be extended to paths: if there is a
path in Gπ,σ that joins a block B of π to a block C of σ, then the union of
all π-blocks and of all the σ-blocks along this path is included in a block E
of τ ′. The argument, by induction on the length of the path, is immediate
and is omitted. Thus, every block of τ , which is a union of all π-blocks that
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belong to a connected component (and of all σ-blocks that belong to the same
connected component), is included in a block of τ ′. Therefore, τ ≤ τ ′, and
this proves that τ = sup{π, σ}. 	


Let π, σ ∈ PART(S) and let τ = sup{π, σ}. We have (x, y) ∈ ρτ if and
only if {x, y} is enclosed in the same connected component of the graph Gπ,σ;
that is, if and only if there exists an alternating sequence of blocks of π and
σ – Bi1 , Cj1 , Bi2 , Cj2 , . . . , Bir

, Cjs
– such that x ∈ Bi1 and y ∈ Cjs

. This
is equivalent to the existence of a sequence of elements z0, z1, . . . , zm of S
such that z0 = x, zm = y, and (zi, zi+1) ∈ ρπ or (zi, zi+1) ∈ ρσ for every i,
0 ≤ i ≤ m− 1.

The partition sup{π, σ} will be denoted by π ∨ σ.

Example 4.59. The graph of the partitions π, σ introduced in Example 4.55
has two connected components that correspond to the blocks,

D1 = {a1, a2, a3, a4, a5, a6, a7}
= B1 ∪B2 ∪B3

= C1 ∪ C2,

D2 = {a8, a9, a10, a11, a12}
= B4 ∪B5

= C3 ∪ C4,

of the partition π ∨ σ.

Theorem 4.60. Let S be a set and let ρ, ρ′ ∈ EQS(S). We have πρ ∧ πρ′ =
πρ∩ρ′ .

Proof. Indeed, note that ρ ∩ ρ′ is an equivalence on S, and the equivalence
classes of this equivalence (that is, the blocks of the partition πρ∩ρ′) are the
nonempty intersections of the blocks of ρ and ρ′. The definition of the infimum
of two partitions shows that the set of blocks of πρ ∧ πρ′ is exactly the same,
which gives the equality of the theorem. 	


4.7 Chains and Antichains

The main notions of this section are introduced next.

Definition 4.61. Let (S,≤) be a poset. A chain of (S,≤) is a subset T of S
such that for every x, y ∈ T such that x �= y we have either x < y or y < x.
If the set S is a chain, we say that (S,≤) is a totally ordered set and the
relation ≤ is a total order.

If s ∈ Seq(S) (or s ∈ Seq∞(S)) and for every i, j ∈ N we have s(i) < s(j)
or s(j) < s(i), we refer to the sequence s as a chain in S; if s(i) ≤ s(j) or
s(j) ≤ s(i) for every i, j ∈ N, then we say that s is a multichain in (S,≤).
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If S = {x1, . . . , xn}, the total order whose diagram is given in Figure 4.5
is denoted by TO(x1, . . . , xn).

�

�

�

...

x1

x2

xn

Fig. 4.5. Hasse diagram of a total order on S = {x1, x2, . . . , xn}.

Let (S,≤) be a poset. The elements x, y of S are incomparable if we have
neither x ≤ y nor y ≤ x. This is denoted by x ‖ y. It is easy to see that
“‖” is a symmetric and irreflexive relation. The set of pairs of incomparable
elements of a poset (S,≤) is

INC(S,≤) = {(x, y) ∈ S × S | x �≤ y and y �≤ x}.

Definition 4.62. An antichain of (S,≤) is a subset U of S such that, for
every two distinct elements x, y ∈ U , we have x ‖ y.

Example 4.63. The set of real numbers equipped with the usual partial order
(R,≤) is a chain since, for every x, y ∈ R, we have either x ≤ y or y ≤ x.

Example 4.64. In the poset (N, δ), the set of all prime numbers is an antichain
since if p and q are two distinct primes, we have neither (p, q) ∈ δ nor (q, p) ∈ δ.

Example 4.65. If S is a finite set such that |S| = n, the set of subsets of S
that contain k elements (for a fixed k, k ≤ |S|) is an antichain in the poset
(P(S),⊆) that contains

(
n
k

)
elements.

Example 4.66. If (S,≤) is a poset, then both MIN(S,≤) and MAX(S,≤) are
maximal antichains of (S,≤) (with respect to set inclusion).

Every finite chain of a poset has a least element and a greatest element.
Indeed, by Theorem 4.25, a finite chain has a minimal element and a maxi-
mal element. Since the notions of minimal and maximal elements in a chain
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coincide with the notions of least element and largest element, respectively, it
statement follows.

Not every poset is a chain, as shown in the next example.

Example 4.67. The poset (P(S),⊆) considered in Example 4.12 is not a chain;
elements of P(S) such as {a, b} and {b, c} are incomparable.

The poset from Example 4.13 is not a chain since it contains incomparable
elements (for instance, 4 ‖ 6). However, the subset {2, 4, 8} is a chain, as can
be easily seen. Thus, a poset (S,≤) that is not a chain itself may very well
contain subsets that are chains with respect to the trace of the partial order
of the set itself.

Denote by CHAINS(S) the set of chains of a poset (S,≤). We use the
poset (CHAINS(S),⊆), where the partial order relation is the set inclusion.

Theorem 4.68. If {Ui | i ∈ I} is a chain of the poset (CHAINS(S),⊆) (that
is, a chain of chains of (S,≤)), then

⋃
{Ui | i ∈ I} is itself a chain of (S,≤)

(that is, a member of (CHAINS(S),⊆)).

Proof. Let x, y ∈
⋃
{Ui | i ∈ I}. There are i, j ∈ I such that x ∈ Ui and

y ∈ Uj and we have either Ui ⊆ Uj or Uj ⊆ Ui. In the first case, we have
either xi ≤ xj or xj ≤ xi because both x and y belong to the chain Uj . The
same conclusion can be reached in the second case when both x and y belong
to the chain Ui. So, in any case, x and y are comparable, which proves that⋃
{Ui | i ∈ I} is a chain of (S,≤). 	


Definition 4.69. A well-ordered poset is a poset for which every nonempty
subset has a least element.

A well-ordered set is necessarily a chain. Indeed, consider the well-ordered
set (S,≤) and x, y ∈ S. Since the set {x, y} must have a least element, we
have either x ≤ y or y ≤ x.

Example 4.70. The set of natural numbers is well-ordered. This property of
natural numbers is known as the well-ordering principle.

(Well-Ordering Axiom) Given any set S, there is a binary relation
ρ such that (S, ρ) is a well-ordered set.

The set (R,≤) is not well-ordered, despite the fact that it is a chain, since
it contains subsets such as (0, 1) = {x | x ∈ R, 0 < x < 1} that do not have
a least element.

Definition 4.71. Let “<” be the strict partial order of the poset (S,≤).
An infinite descending sequence in a poset (S, ρ) is an infinite sequence
s ∈ Seq∞(S) such that s(n+ 1) < s(n) for all n ∈ N.

An infinite ascending sequence in a poset (S, ρ) is an infinite sequence
s ∈ Seq∞(S) such that s(n) < s(n+ 1) for all n ∈ N.
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A poset with no infinite descending sequences is called Artinian. A poset
with no infinite ascending sequences is called Noetherian.

Clearly, the range of every infinite ascending or descending sequence is a
chain.

Example 4.72. The poset (N, δ) is Artinian. Indeed, suppose that s is an in-
finite descending sequence of natural numbers. If s(0) �= 0, then the natural
number s(0) has an infinite set of divisors {s(0), s(1), . . .}. If s(0) = 0, in view
of the fact that any natural number is a divisor of 0, we obtain the impossibil-
ity of an infinite descending sequence by applying the same argument to s(1).
However, this poset is not Noetherian. For instance, the sequence z : N −→ N

defined by z(n) = 2n for n ∈ N is an infinite ascending sequence.

A generalization of well-ordered posets is considered in the next definition.
Definition 4.73. A well-founded poset is a partially ordered set where every
nonempty subset has a minimal element.

Since the least element of a subset is also a minimal element, it is clear
that a well-ordered set is also well-founded. However, the inverse is not true;
for instance, not every finite set is well-ordered.

Theorem 4.74. A poset (S, ρ) is well-founded if and only if it is Artinian.

Proof. Let (S, ρ) be a well-founded poset, and suppose that s is an infinite
descending sequence in this poset. The set T = {s(n) | n ∈ N} has no
minimal element since, for every s(k) ∈ T , we have (s(k + 1), s(k)) ∈ ρ1,
which contradicts the well-foundedness of (S, ρ).

Conversely, assume that (S, ρ) is Artinian; that is, there is no infinite
descending sequence in (S, ρ). Suppose that K is a nonempty subset of S
without minimal elements. Let x0 be an arbitrary element of K. Such an
element exists since K is not empty. Since x0 is not minimal, there is x1 ∈ K
such that (x1, x0) ∈ ρ. Since x1 is not minimal, there is x2 ∈ K such that
(x2, x1) ∈ ρ, etc., and this construction can continue indefinitely. In this way,
we can build an infinite descending sequence s : N −→ S, where s(n) = xn

for n ∈ N. 	

Theorem 4.74 implies immediately that any finite poset is well-founded.

Example 4.75. We will show that the poset (N× N,�) is well-founded.
If (m,n0) � (m,n1) � . . . is a descending chain of pairs having the same

first component, then n0 > n1 > . . . is a descending chain of natural numbers
and such a chain is finite. Therefore, (m,n0) � (m,n1) � . . . must be a finite
chain.

Consider now an arbitrary descending chain,

(p0, q0) � (p1, q1) � . . . ,
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in (N×N,�). We have p0 ≥ p1 ≥ . . ., and in this sequence we may have only
finite “constant” fragments pk = pk+1 = · · · = pk+l. Therefore, the chain of
the first components of the pairs of the sequence (p0, q0) � (p1, q1) � . . . is
ultimately decreasing, and this shows that the chain is finite. Thus, this poset
is Artinian and therefore, by Theorem 4.74, it is well-founded.

Definition 4.76. Let (S,≤) be a poset that has a least element denoted by 0.
The height of an element x ∈ S (denoted by height(x)) is the least upper

bound of the lengths of the chains of the form 0 < x1 < · · · < xk = x.

If x is an atom of a poset that has the least element 0, then height(x) = 1.

Definition 4.77. A poset (S,≤) satisfies the Jordan-Dedekind condition if
all maximal chains between the same elements have the same finite length.

Example 4.78. The poset (M5,≤) whose Hasse diagram is shown in Fig-
ure 4.6(a) satisfies the Jordan-Dedekind condition; the poset (N5,≤) shown
in Figure 4.6(b) fails this condition because it contains two maximal chains
0 < x < y < 1 and 0 < z < 1 of different lengths between 0 and 1.
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Fig. 4.6. Hasse diagrams of posets (M5,≤) and (N5,≤).

Theorem 4.79. Let (S,≤) be a poset that has finite chains and has the least
element 0. (S,≤) satisfies the Jordan-Dedekind condition if and only if the
following conditions are satisfied:
(i) x < y implies height(x) < height(x) and
(ii) y covers x implies height(y) = height(x) + 1
for every x, y ∈ S.
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Proof. If the height function satisfies the conditions of the theorem, then any
chain between the elements x and y has length height(y) − height(x), so the
Jordan-Dedekind condition is satisfied. Conversely, if the Jordan-Dedekind
condition holds, then height(x) is the length of any maximal chain between 0
and x and the conditions of the theorem follow immediately. 	


Theorem 4.79 suggests the following definition.

Definition 4.80. A graded poset is a triple (S,≤, h), where (S,≤) is a poset
and h : S −→ N is a function that satisfies the conditions
(i) x < y implies h(x) < h(x) and
(ii) y covers x implies h(y) = h(x) + 1,
for every x, y ∈ S. The function h is referred to as the grading function.

The set Lk = {x ∈ S | h(x) = k} is called the k-th level of the poset
(S,≤, h).

Example 4.81. Define the function h : M5 −→ N by h(0) = 0, h(a) = h(b) =
h(c) = 1, and h(1) = 2. The triple (M5,≤, h) is a graded poset. Its levels are

L0 = {0},
L1 = {a, b, c},
L2 = {1}.

Definition 4.82. Let (S,≤) be a finite poset. The height of (S,≤), denoted
by height(S,≤), is the maximal number of elements of a chain. The width of
(S,≤), width(S,≤), is the maximal number of elements of an antichain. The
length of (S,≤) is the number length(S,≤) = height(S,≤)− 1.

Example 4.83. Let S = {s1, . . . , sn} be a finite set such that |S| = n.
The poset (P(S),⊆) has height n + 1 since a maximal chain has the form
(∅, {si1}, {si1 , si2}, . . . , S), where (si1 , si2 , . . . , sin

) is a permutation of S. Its
width is

(
n


n/2�
)
.

It is clear that if a finite poset (S,≤) contains an antichain U such that
|U | = m, then S is the union of at least m chains since no two elements of an
antichain may belong to the same chain.

Theorem 4.84 (Dilworth’s Theorem). If (S,≤) is a finite nonempty poset
such that width(S,≤) = m, then there is a partition of S into m chains.

Proof. The argument is by strong induction on n = |S|. If n = 1, then the
statement holds trivially.

Suppose that the statement holds for sets with fewer than n elements, and
let (S,≤) be a poset with |S| = n.

Let C be a maximal chain in (S,≤). Two cases may occur:
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(i) If no antichain of (S − C,≤) has m elements, then, by the induction
hypothesis, there exists a partition of S−C into m− 1 chains, so there is
a partition of S into m chains.

(ii) If S − C has an antichain U = {u1, . . . , um}, define the sets UPU and
DOWNU as

UPU = {x ∈ S|x ≥ ui for some ui ∈ U},
DOWNU = {x ∈ S|x ≤ ui for some ui ∈ U}.

Note that S = UPU ∪ DOWNU since otherwise S would contain an antichain
with more than m elements. Since (S,≤) is a finite poset, the chain C has
a largest element t1 and a smallest element t0. We have the strict inclusions
UPU ⊂ S and DOWNU ⊂ S because t1 �∈ DOWNU and t0 �∈ UPU . Thus, both
DOWNU and UPU have fewer than n elements.

By the induction hypothesis, we can decompose both UPU and DOWNU

as partitions of chains, UPU =
⋃m

i=1 C
i
≥ and DOWNU =

⋃m
i=1 C

i
≤, where

ui ∈ Ci
≥ ∩ Ci

≤. Note that ui is the least element of Ci
≥ and the greatest

element of Ci
≤. Therefore, Ci

≥ ∪Ci
≤ is a chain, which gives the desired result.

	

Next, we state a related statement using antichains.

Theorem 4.85. If (S,≤) is a finite nonempty poset such that height(S,≤) =
m, then there is a partition of S into m antichains.

Proof. We construct a sequence of finite posets (Si,≤i) for 0 ≤ i ≤ k−1. The
first poset is (S0,≤0) = (S,≤).

Suppose that we defined the nonempty poset (Si,≤i). Consider the an-
tichain Ui+1 = MAX(Si,≤i) and the poset (Si+1,≤i+1), where Si+1 =
Si − Ui+1 and ≤i+1= (≤i)Si+1 . The process halts when Sk = Sk−1 − Uk = ∅.
It is clear that the U1, . . . , Uk are k pairwise disjoint antichains in (S,≤) and
that S =

⋃k
i=1 Ui.

Since no two members of an antichain may belong to the same chain and
S contains a chain having m elements, it follows that any partition of S into
antichains requires at least m antichains. Therefore, we have m ≤ k, which
means that we need to show only that k ≤ m.

To prove that k ≤ m, we construct a chain x1 < x2 < · · · < xk in the
poset (S,≤) beginning with xk. Choose xk to be an arbitrary element of Uk.
If xj ∈ Uj for i ≤ j ≤ k, then choose xi−1 ∈ Ui−1 such that xi < xi−1. This
choice is possible because otherwise xi ∈ Ui−1 = MAX(Si−1,≤i−1), which is
contradictory because xi ∈ Ui. This proves that {x1, . . . , xk} is a chain, so
height(S,≤) = m ≥ k. 	
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4.8 Poset Product

Let I be a set, and (S, ρ) be a poset. The partial order ρ generates a partial
order ρ on the set of functions I −→ S using the following definition. If
f, g : I −→ S, we have (f, g) ∈ ρ if (f(i), g(i)) ∈ ρ for every i ∈ I.

The relation ρ on I −→ S is a partial order. We verify only the antisym-
metry and leave for the reader the proofs of the reflexivity and transitivity.
Assume that (f, g), (g, f) ∈ ρ for f, g : I −→M . We have (f(i), g(i)) ∈ ρ and
(g(i), f(i)) ∈ ρ for every i ∈ I. Therefore, taking into account the antisymme-
try of ρ, we obtain f(i) = g(i) for all i ∈ I; hence, f = g, which proves the
antisymmetry of ρ.

For a set of functions F ⊆ I −→ S, define the subset F (i) of S as S(i) =
{f(i) | f ∈ F} for i ∈ I.

Theorem 4.86. The subset F of the poset (I −→ S, ρ) has a supremum if
and only if supF (i) exists for every i ∈ I in the poset (S, ρ).

Proof. Suppose that supF (i) exists for every i ∈ I in the poset (S, ρ). Define
the mapping g : I −→ S by g(i) = supF (i) for every i ∈ I. We claim that g
is supF .

If f ∈ F , then (f(i), g(i)) ∈ ρ for every i ∈ I because of the definition of
g. This shows that (f, g) ∈ ρ; hence, g is an upper bound of F . Let h be an
upper bound of F . For every f ∈ F , we have (f(i), h(i)) ∈ ρ for i ∈ I. The
definition of g implies (g(i), h(i)) ∈ ρ for i ∈ I; hence, g = supF .

Conversely, assume that k = supF exists in the poset (I −→ S, ρ). We
prove that k(i) is supF (i) for every i ∈ I in the poset (S, ρ).

The definition of k implies that, for every f ∈ F , we have (f, k) ∈ ρ; that
is, (f(i), k(i)) ∈ ρ for every i ∈ I. Therefore, k(i) is an upper bound of the set
F (i) for every i ∈ I.

Let li be an upper bound for F (i) for i ∈ I. Define the function l : I −→ S
as l(i) = li for i ∈ I. Clearly, l is an upper bound of the set F in the poset
(I −→ S, ρ), and therefore (k, l) ∈ ρ. This, in turn, means that (k(i), l(i)) =
(k(i), li) ∈ ρ, which shows that supF (i) exists and is equal to k(i). 	


Definition 4.87. The product of the posets {(Si,≤i) | i ∈ I} is the poset
(D,≤), where D =

∏
i∈I Si and “≤” is the partial order introduced above on

D. When I = {1, . . . , n}, the product will be denoted by

(S1,≤1)× · · · × (Sn,≤n)

or by
∏

i∈I(Si,≤i).

Theorem 4.88. Let {(Si,≤i) | i ∈ I} be a family of partially ordered sets.
If H ⊆

∏
i∈I Si, then in the product poset, supH (infH) exists if and only

if sup pi(H) (inf pi(H), respectively) exists for every i ∈ I. Moreover, if y =
supH (y = infH), then pi(y) = sup pi(H) (pi(y) = inf pi(H)) for every i ∈ I.
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Proof. Assume that yi = sup pi(H) exists for every i ∈ I. We need to prove
that the element y of

∏
i∈I Si defined by pi(y) = yi is supH.

Consider an arbitrary element z ∈ H. Since pi(z) ∈ pi(H), we have
pi(z) ≤i yi, that is, pi(z) ≤i pi(y) for every i ∈ I. This means that z ≤ y,
which shows that y is an upper bound of H.

Suppose now that v is an arbitrary upper bound of H. To show that y is
supH, we need to prove that y is the least upper bound of H; that is, y ≤ v
or, equivalently, pi(y) ≤i pi(v) for every i ∈ I.

If v is an upper bound of H, then pi(v) is an upper bound of pi(H). Since
pi(y) = yi = sup pi(H), we obtain immediately pi(y) ≤i pi(v) for every i ∈ I.

Conversely, suppose that supH exists. Let y = supH and let yi = pi(y)
for every i ∈ I. We have xi ∈ pi(H) if there is x ∈ H such that pi(x) = xi.
Since x ≤ y, it follows that xi ≤i pi(y), which shows that pi(y) is an upper
bound for pi(H).

Let wi be an arbitrary upper bound of pi(H) for every i ∈ I. There
is w ∈

∏
i∈I Si such that pi(w) = wi, and we have y ≤ w because w is

an upper bound for H. Consequently, pi(y) ≤i pi(w), and this means that
yi = sup pi(H) for every i ∈ I.

The statement for inf follows by dualization. 	

Another kind of partial order that can be introduced on S1 × · × Sn is

defined next.

Theorem 4.89. For f, g ∈ S1×· · ·×Sn, define f � g if f = g or if there is k,
1 ≤ k ≤ n, such that f(k) �= g(k), f(i) = g(i) for 1 ≤ i < k and f(k) <k g(k).

The relation � is a partial order on S1 × · · · × Sn.

Proof. The relation � is obviously reflexive. Suppose now that f � g and
g � f and that f �= g. There are k, h ∈ N such that f(i) = g(i) for 1 ≤ i < k,
f(k) <k g(k), and f(i) = g(i) for 1 ≤ i < h, f(h) <h g(h). If k < h, this leads
to a contradiction since we cannot have f(k) <k g(k) and f(k) = g(k). The
case h < k also results in a contradiction. For k = h, the previous supposition
implies f(k) <k g(k) and g(k) <k f(k), which is contradictory because “<k”
is a strict partial order.

Assume that f � g and g � l and that f �= g, g �= l. There are k, h ∈ N

such that f(i) = g(i) for 1 ≤ i < k, f(k) <k g(k), and g(i) = l(i) for 1 ≤ i < h,
g(h) <h l(h). Define p as being the least of the numbers k, h. For 1 ≤ i < p,
we have f(i) = g(i) = l(i). In addition, we have f(p) ≤p l(p). Three cases
may occur:

1. f(p) = g(p) and g(p) <p l(p) (when k > h),
2. f(p) <p g(p) and g(p) = l(p) (when k < h), and
3. f(p) <p g(p)) and g(p) <p l(p)) (when k = h).

If f = l, then we have f � l. Therefore, we can assume that f �= l. In the
first two cases mentioned above, this would imply immediately f � l because
of the fact that f(p) <p l(p). The same conclusion can be reached in the third
case because of the transitivity of the strict partial order <p. 	
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We refer to the partial order “�” as the lexicographic partial order on
S1 × · · · × Sn.

Let {(Si,≤i) | 1 ≤ i ≤ n} be a family of totally ordered posets. The
product poset

∏n
i=1(Si,≤i) is not necessarily a total order; however, the lex-

icographic product (S1 × · · · × Sn,�) is a total order (see Exercise 25).

Example 4.90. Consider the totally ordered set ({0, 1},≤), whose Hasse dia-
gram is given in Figure 4.7(a). The Hasse diagram of the poset (S × S,≤) is
shown in Figure 4.7(b).

� �

� �

� �

0

1

(0, 0)

(1, 1)

(0, 1) (1, 0)

(a) (b)

Fig. 4.7. Hasse diagrams of ({0, 1},≤) and ({0, 1}2,≤).

On the other hand, the Hasse diagram of the poset ({0, 1}2,�) given in
Figure 4.8 shows that “�” is a total order on {0, 1}2.

�

�

�

�

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Fig. 4.8. Hasse diagram of ({0, 1}2,�).

If S1 = · · ·Sn = S, then we obtain the poset (Seqn(S),�).
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4.9 Functions and Posets

Let (S,≤) and (T,≤) be two posets.

Definition 4.91. A morphism between (S,≤) and (T,≤) or a monotonic
mapping between (S,≤) and (T,≤) is a mapping f : S −→ T such that
u, v ∈ S and u ≤ v imply f(u) ≤ f(v).

A mapping g : S −→ T is antimonotonic if u, v ∈ S and u ≤ v imply
g(u) ≥ g(v).

The mapping f is strictly monotonic if u < v implies f(u) < f(v), where
“<” is the strict partial order associated with the partial order “≤”.

Note that g : S −→ T is antimonotonic if and only if g is a monotonic
mapping between the poset (S,≤) and the dual (T,≥) of the poset (T,≤).

Example 4.92. Consider a setM , the poset (P(M),⊆), and the functions f, g :
(P(M))2 −→ P, defined by f(K,H) = K ∪ H and g(K,H) = K ∩ H, for
K,H ∈ P(M). If the Cartesian product is equipped with the product partial
order, then both f and g are monotonic. Indeed, if (K1,H1) ⊆ (K2,H2), we
have K1 ⊆ K2 and H1 ⊆ H2, which implies that

f(K1,H1) = K1 ∪H1 ⊆ K2 ∪H2 = f(K2,H2).

The argument for g is similar, and it is left to the reader.

Example 4.93. Let {(Si, ρi) | i ∈ I} be a collection of posets and let(∏
i∈I

Si, ρ

)

be the product of these posets. The projections pi :
∏

i∈I Si −→ Si are mono-
tonic mappings, as the reader will easily verify.

Example 4.94. Let (M,ρ) be an arbitrary poset. Any function f : S −→M is
monotonic when considered between the posets (S, ιS) and (M,ρ).

Theorem 4.95. Let (P,≤), (R,≤), (S,≤) be three posets and let f : P −→ R,
g : R −→ S be two monotonic mappings. The mapping gf : P −→ S is also
monotonic.

Proof. Let x, y ∈ P be such that x ≤ y. In view of the monotonicity of f ,
we have f(x) ≤ f(y), and this implies (g(f(x)) ≤ g(f(y)) because of the
monotonicity of g. Therefore, gf is monotonic. 	


Let (P,≤) and (R,≤) be two posets. For a monotonic function f : P −→
R, the quotient set, P/ker(f) can also be organized as a poset. Indeed, if
[x], [y] ∈ P/ker(f), then we define [x] ≤ [y] if f(x) ≤ f(y). This partial
order o P/ker(f) is well-defined because if x′ ∈ [x] and y′ ∈ [y], we have
(f(x′), f(y′)) = (f(x), f(y)).
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Theorem 4.96. The mapping g : P −→ P/ker(f) defined by g(x) = [x] for
x ∈ P is a monotonic mapping between the posets (P,≤) and (P/ker(f),≤).

Proof. The argument is straightforward, and it is left to the reader as an
exercise. 	


Let f : S −→ T be a monotonic bijection between the posets (S,≤) and
(T,≤). As we have seen in Chapter 1, the inverse f−1 is also a bijection.
Nevertheless, the inverse is not necessarily monotonic, as follows from the
next example.

Example 4.97. Let (M5,≤) and (N5,≤) be the posets whose Hasse diagrams
are given in Figure 4.6, and consider the mapping f : M5 −→ N5 de-
fined by f(0) = 0, f(a) = y, f(b) = x, f(c) = z, and f(1) = 1. The in-
verse bijection f−1 is not monotonic because we have x ≤ y in (N5,≤) and
(f−1(x), f−1(y)) = (b, a) and b �≤ a in (M5,≤).

Let (R,≤) and (S,≤) be two posets. The previous considerations justify
the following definition.

Definition 4.98. A poset isomorphism between the posets (R,≤) and (S,≤)
is a monotonic bijective mapping f : R −→ S for which the inverse mapping
f−1 is also monotonic.

If a poset isomorphism exists between the posets (P,≤) and (S,≤), then
we refer to these posets as isomorphic.

Example 4.99. Let {p1, p2, . . . , pn} be the first n primes, p1 = 2, p2 = 3,
p3 = 5, etc. Let m = p1 · · · pn be their product and let Dm be the set of all
divisors of m. Consider an arbitrary set A = {a1, . . . , an} having n elements.

The posets (P(A),⊆) and (Dm, δ) are isomorphic. Indeed, define the map-
ping f : P(A) −→ Dm by f(∅) = 1 and f({ai1 , . . . , aik

}) = pi1 · · · pik
.

The mapping f is bijective. Indeed, for any divisor h of m, we have h =
pi1 · · · pik

and therefore h = f({ai1 , . . . , aik
}), which shows that f is surjective.

If f({ai1 , . . . , aik
}) = f({aj1 , . . . , ajl

}), then pi1 · · · pik
= pj1 · · · pjl

. This
gives k = l and i1 = j1, . . . , ik = jk; hence, {ai1 , . . . , aik

} = {aj1 , . . . , ajl
},

which proves that f is injective.
The mapping f is monotonic because if {ai1 , . . . , aik

} ⊆ {aj1 , . . . , ajl
},

{i1, . . . , ik} ⊆ {j1, . . . , jl},

and this means that the number pi1 · · · pik
divides pj1 · · · pjl

.
The inverse mapping g : Dm −→ P(A) is also monotonic; we leave the

argument to the reader.

Monotonic functions map chains to chains, as we show next.

Theorem 4.100. Let (P,≤) and (R,≤) be two posets and f : P −→ R be a
monotonic function. If L ⊆ P is a chain in (P,≤), then f(L) is a chain in
(R,≤).
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Proof. Let u, v ∈ f(L) be two elements of f(L). There exist x, y ∈ L such that
f(x) = u and f(y) = v. Since L is a chain, we have either x ≤ y or y ≤ x. In
the former case, the monotonicity of f implies u ≤ v; in the latter situation,
we have v ≤ u. 	


4.10 Posets and the Axiom of Choice

A statement equivalent to the Axiom of Choice, known as Zorn’s lemma, can
be stated in the framework of posets.

Zorn’s Lemma: If every chain of a poset (S,≤) has an upper bound,
then S has a maximal element.

Theorem 4.101. The following three statements are equivalent for a poset
(S,≤):
(i) If every chain of (S,≤) has an upper bound, then S has a maximal element

(Zorn’s Lemma).
(ii) If every chain of (S,≤) has a least upper bound, then S has a maximal

element.
(iii) S contains a chain that is maximal with respect to set inclusion (Hausdorff

maximality principle).

Proof. (i) implies (ii) is immediate.
(ii) implies (iii): Let (CHAINS(S),⊆) be the poset of chains of S or-

dered by set inclusion. By Theorem 4.68, every chain {Ui | i ∈ I} of the
poset (CHAINS(S),⊆) has a least upper bound

⋃
{Ui | i ∈ I} in the poset

(CHAINS(S),⊆). Therefore, by (ii), (CHAINS(S),⊆) has a maximal element
that is a chain of (S,≤) that is maximal with respect to set inclusion.

(iii) implies (i): Suppose that S contains a chain W that is maximal with
respect to set inclusion and that every chain of (S,≤) has an upper bound.
Let w be an upper bound of W .

If w ∈ W , then w is a maximal element of S. Indeed, if this were not the
case, then S would contain an element t such that w < t and W ∪ {t} would
be a chain that would strictly include W .

If w �∈ W , then W ∪ {w} would be a chain strictly including W , which,
again, would contradict the maximality of W . Thus, w is a maximal element
of (S,≤). 	


Denote by PORD(S) the collection of partial order relations on the set S.

Definition 4.102. Let ρ, ρ′ ∈ PORD(S). The partial order ρ′ is an extension
of ρ if (x, y) ∈ ρ implies (x, y) ∈ ρ′. Equivalently, we shall say that ρ′ extends
ρ.

An important consequence of Zorn’s lemma is the next statement, which
shows that any partial order defined on a set can be extended to a total order
on the same set.
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Theorem 4.103 (Szpilrajn’s Theorem). Let (S,≤) be a poset. There is a
total order ≤′ on S that is an extension of ≤.

Proof. Let PORD(S,≤) be the set of partial order relations that can be de-
fined on the set S and contain the relation “≤”; clearly, the relation “≤”
itself is a member of PORD(S,≤). We will apply Zorn’s lemma to the poset
(PORD(S,≤),⊆).

Let R = {ρi | i ∈ I} be a chain of (PORD(S,≤),⊆); that is, a chain of
partial orders ρi relative to set inclusion such that x ≤ y implies (x, y) ∈ ρi

for every i ∈ I and all x, y ∈ S. We claim that the relation ρ =
⋃

R is a
partial order on S.

Indeed, since ιS ⊆ ≤ ⊆ ρi for i ∈ I we have ιS ⊆ ρ, so ρ is a reflexive
relation. To prove that ρ is antisymmetric let x, y ∈ S be two elements such
that (x, y) ∈ ρ and (y, x) ∈ ρ. By the definition of ρ, there exist i, j ∈ I such
that (x, y) ∈ ρi and (y, x) ∈ ρj . Since R is a chain, we have either ρi ⊆ ρj or
ρj ⊆ ρi. In the first case, both (x, y) and (y, x) belong to ρj , so x = y because
of the antisymmetry of ρj ; in the second case, the same conclusion follows
because (x, y) and (y, x) belong to ρi. Thus, ρ is indeed antisymmetric.

We leave it to the reader to prove the transitivity of ρ. Thus, ρ is a partial
order that includes “≤”, and the arbitrary chain R has an upper bound. By
Zorn’s lemma the poset (PORD(S,≤),⊆) has a maximal element ≤′. We now
prove that ≤′ is a total order.

Suppose that (u, v) and (v, u) are two distinct ordered pairs of elements
of S such that u �≤′ v and v �≤′ u. We show that this supposition leads to a
contradiction.

Let ≤1 be the relation on S given by

≤1 = {(x, y) ∈ S × S | x ≤′ y} ∪ {(u, v)}
∪{(z, v) ∈ S × {v} | z ≤′ v} ∪ {(u, t) ∈ {u} × S | u ≤′ t}.

Since ιS ⊆ ≤′ ⊆ ≤1, it follows that ≤1 is reflexive.
To prove the antisymmetry of ≤1, suppose that p ≤1 q and q ≤1 p. Since

v �≤′ u, it follows that (p, q) �= (u, v). Thus, the following cases may occur:
(i) If p ≤′ q and q ≤′ p, then p = q by the antisymmetry of ≤′.
(ii) If p = u, we have u ≤1 q and q ≤1 u. By the definition of ≤1, this implies

u ≤′ q and q ≤′ u, respectively, so q = u = p.
(iii) If q = v, we have p ≤1 v and v ≤1 p, which imply p ≤′ v and v ≤′ p,

respectively. Thus, p = v = q.
We leave the proof of transitivity for “≤1” to the reader.

Note that ≤′ is strictly included in ≤1 because u �≤′ v. This contradicts
the maximality of the partial order ≤′, so ≤′ must be a total order. 	


Example 4.104. Consider the poset (N5,≤) introduced in Example 4.78. The
posets (N5,≤i), where 1 ≤ i ≤ 3 whose Hasse diagrams are shown in Fig-
ure 4.9(a)–(c) are such that ≤ ⊂ ≤i and ≤i is a total order for 1 ≤ i ≤ 3.
Also, it is easy to see that we have actually ≤ = ≤1 ∩ ≤3.
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Fig. 4.9. Hasse diagrams of three total orders on the set {0, x, y, z, 1}.

Corollary 4.105. Let (S,≤) be a poset and let x and y be two incomparable
elements in (S,≤). There exists a total order ≤′ on S that extends ≤ such
that x ≤′ y and a total order ≤′′ that extends ≤ such that y ≤′′ x.

Proof. This statement follows immediately from Szpilrajn’s theorem. 	


4.11 Locally Finite Posets and Möbius Functions

Definition 4.106. Let (S,≤) be a poset and let x, y ∈ S be such that x ≤ y.
The closed interval of (S,≤) defined by x, y is the set

[x, y] = {t ∈ S | x ≤ t ≤ y}.

In addition, we define the open interval (x, y) as

(x, y) = {t ∈ S | x < t < y}

and the semiclosed (or semiopen) intervals [x, y) and (x, y] by

[x, y) = {t ∈ S | x ≤ t < y},
(x, y] = {t ∈ S | x < t ≤ y},

respectively.

Note that if x = y, then [x, x] = {x}, while (x, x) = ∅.

Definition 4.107. A poset (S,≤) is locally finite if every closed interval of
(S,≤) is finite.

Example 4.108. The poset (N,≤) is locally finite. Indeed, if [p, q] is a closed
interval of this poset, then [p, q] is a finite set that consists of q−p+1 natural
numbers.
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Example 4.109. The poset (N, δ) introduced in Example 1.29 is locally finite.
Indeed, if p divides q, then [p, q] is a finite set that contain all multiples of
p that divide q. For example, the closed interval [2, 12] contains the numbers
2, 4, 6 and 12.

Let (S,≤) be a locally finite poset and let A(S,≤) be the set of all functions
of the form f : S × S −→ R such that x �≤ y implies f(x, y) = 0 for x, y ∈ S.
We refer to A(S,≤) as the incidence algebra of the poset (S,≤).

Note that if f ∈ A(S,≤) and x > y or x ‖ y, then f(x, y) = 0.

Definition 4.110. Let (S,≤) be a locally finite poset and let f, g ∈ A(S,≤)
be two functions. Their convolution product is the function h : S × S −→ R

defined by

h(x, y) =

{∑
z∈[x,y] f(x, z)g(z, y) if x ≤ y,

0 otherwise,

for x, y ∈ S. The function h will be denoted by f ∗ g.

Lemma 4.111. The operation ∗ is well-defined on the set A(S,≤); further,
“∗” is associative on A(S,≤) and has the Kronecker function k defined by

k(x, y) =

{
1 if x = y

0 otherwise,

for x, y ∈ S as its unit element.

Proof. Suppose that h = f∗g, where f, g ∈ A(S,≤). If x �≤ y, then h(x, y) = 0,
so h ∈ A(S,≤).

Let e, f, g be three functions of A(S,≤). We claim that (e∗f)∗g = e∗(f∗g).
Suppose that x ≤ z. Then, we have

((e ∗ f) ∗ g)(x, z) =
∑

y∈[x,z]

(e ∗ f)(x, y)g(y, z)

=
∑

y∈[x,z]

⎛
⎝ ∑

u∈[x,y]

e(x, u)f(u, y)

⎞
⎠ g(y, z)

=
∑

y∈[x,z]

∑
u∈[x,y]

e(x, u)f(u, y)g(y, z)

=
∑

y∈[x,z]

∑
u∈[x,z]

e(x, u)f(u, y)g(y, z)

(because if u > y we have f(u, y) = 0)

=
∑

u∈[x,z]

∑
y∈[x,z]

e(x, u)f(u, y)g(y, z).
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On the other hand, we can write

(e ∗ (f ∗ g))(x, z) =
∑

u∈[x,z]

e(x, u)(f ∗ g)(u, z)

=
∑

u∈[x,z]

e(x, u)
∑

y∈[u,z]

f(u, y)g(y, z)

=
∑

u∈[x,z]

e(x, u)
∑

y∈[x,z]

f(u, y)g(y, z),

(because if u > y we have f(u, y) = 0)

for x, z ∈ S, which shows that ∗ is associative.
If f ∈ A(S,≤) and x ≤ y, then we can write

(f ∗ k)(x, y) =
∑

z∈[x,y]

f(x, z)k(z, y)

= f(x, y)

for x, y ∈ S. Thus, f ∗ k = f . A similar argument shows that k ∗ f = f . This
allows us to conclude that k is indeed the unit with respect to the ∗ operation.
	


Let I(S,≤) = {[x, y] | x, y ∈ S and x ≤ y} ∪ {∅} be the set of intervals
of the poset (S,≤) to which we add the empty set. A useful point of view
(see [128]) is to regard the incidence algebra of (S,≤) as consisting of formal
sums of the form

∑
{f(x, y) ·[x, y] | [x, y] ∈ I(S,≤)−{∅}}. Define the product

of two intervals as

[x, y][u, v] =

{
[x, v] if y = u,

∅ otherwise.

Further, we assume that the product of formal sums is distributive with re-
spect to addition of these sums. Let f, g ∈ A(S,≤) be two functions and let
f̂ and ĝ be their corresponding formal sums,

f̂ =
∑
{f(x, y) · [x, y] | [x, y] ∈ I(S,≤)},

ĝ =
∑
{g(u, v) · [u, v] | [u, v] ∈ I(S,≤)}.

Then, it is immediate that

f̂ ĝ(x, z) =
∑

x≤y≤z

f(x, y)g(y, z)[x, z],

so the usual product of the formal sums f̂ ĝ corresponds to the convolution
product of f and g.



4.11 Locally Finite Posets and Möbius Functions 165

Theorem 4.112. Let (S,≤) be a locally finite poset. A function f ∈ A(S,≤)
has an inverse relative to the operation ∗ if and only if f(x, x) �= 0 for every
x ∈ S.

Proof. Suppose that there exists an inverse f ′ of f (that is, f ∗f ′ = f ′ ∗f = k)
which yields (f ∗ f ′)(x, x) = k(x, x) = 1 for every x. Since (f ∗ f ′)(x, x) =∑

z∈[x,x] f(x, z)f
′(z, x) = f(x, x)f ′(x, x), it follows that f(x, x) �= 0.

To prove the converse implication, we first show the existence of a left
inverse of f ; that is, a function f ′ : S×S → R such that f ′ ∗f = k. For x ≤ y,
we must have

∑
z∈[x,y] f

′(x, z)f(z, y) = k(x, y). This implies f ′(x, x)f(x, x) =
1 and

∑
z∈[x,y] f

′(x, z)f(z, y) = 0 if x �= y. Thus, we must have

f ′(x, x) =
1

f(x, x)
, (4.3)

f ′(x, y) = − 1
f(y, y)

∑
z∈[x,y)

f ′(x, z)f(z, y), (4.4)

when x ≤ y and
f ′(x, y) = 0,

when x �≤ y. Equalities (4.3) and (4.4) give an inductive definition of f ′

because the poset (S,≤) is locally finite.
To verify that f ′ is a left inverse of f , suppose that x < y. Then,

(f ′ ∗ f)(x, y) =
∑

z∈[x,y]

f ′(x, z)f(z, y)

=
∑

z∈[x,y)

f ′(x, z)f(z, y) + f ′(x, y)f(y, y) = 0.

If x = y, then (f ′ ∗f)(y, y) = 1 and x �≤ y implies (f ′ ∗f)(x, y) = 0. Therefore,
f ′ ∗ f = k.

The function f ′ is also a right inverse of f . Let h = f ∗ f ′. We have shown
above that every function of A(S,≤) has a left inverse, so let h′ be the left
inverse of h. Thus, we have f∗f ′ = h = k∗h = (h′∗h)∗h = h′∗(f∗f ′)∗(f∗f ′) =
h′ ∗ f ∗ k ∗ f ′ = h′ ∗ f ∗ f ′ = h′ ∗ h = k, which proves that f ′ is also a right
inverse of f . Thus, f ′ is the inverse of f . 	


If the inverse of f ∈ A(S,≤) exists, we will denote it by the common
notation f−1.

Corollary 4.113. Let (S,≤) be a locally finite poset and let IA(S,≤) be the
set of invertible functions of A(S,≤). Then (IA(S,≤), {k, ∗,−1}) is a group.

Proof. This is a mere restatement of Theorem 4.112. 	

Let (S,≤) be a locally finite poset and let ζ : S×S −→ R be the Riemann

function defined by
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ζ(x, y) =

{
1 if x ≤ y,
0 otherwise,

for x, y ∈ S. Clearly, ζ ∈ A(S,≤), so the function ζ−1 exists by Corol-
lary 4.113. This inverse, known as the Möbius function, is denoted by μ and
its values can be computed from Equalities (4.3) and (4.4) as

μ(x, x) =
1

ζ(x, x)
= 1,

μ(x, y) = −
∑

z∈[x,y)

μ(x, z)ζ(z, y)

= −
∑

z∈[x,y)

μ(x, z),

for x < y; for x �≤ y, we have μ(x, y) = 0.
The special role played by μ is discussed next.

Theorem 4.114 (Möbius Inversion Theorem). Let (S,≤) be a locally
finite poset that has the least element 0. If f, g : S −→ R are two real-valued
functions such that

g(x) =
∑

0≤z≤x

f(z),

then
f(x) =

∑
0≤z≤x

g(z)μ(z, x)

for x ∈ S.

Proof. Starting from the functions f, g : S −→ R, define the functions F,G ∈
A(S,≤) by

F (0, x) = f(x), G(0, x) = g(x)
F (u, x) = G(u, x) = 0, if u > 0.

The equality g(x) =
∑

0≤z≤x f(z) can be written as

G(0, x) =
∑

0≤z≤x

F (0, z)ζ(z, x),

where ζ is Riemann’s function. We also have G(u, x) =
∑

u≤z≤x F (u, z)ζ(z, x)
for u > 0 because in this case G(u, x) = 0 and F (u, z) = 0. Thus, G = F ∗ ζ.
Since μ is the inverse of ζ in IA(S,≤), it follows that F = G∗μ. Consequently,

f(x) = F (0, x)

=
∑

0≤z≤x

G(0, z)μ(z, x)

=
∑

0≤z≤x

g(z)μ(z, x),
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which is the desired equality. 	

Now let (S,≤) be a poset that has the greatest element 1. By applying

the Möbius inversion theorem to its dual (S,≤−1) = (S,≥) we obtain the
following dual form of the theorem.

Theorem 4.115 (Möbius Dual Inversion Theorem). Let (S,≤) be a lo-
cally finite poset that has the greatest element 1. If f, g : S −→ R are two
real-valued functions such that

g(x) =
∑

x≤z≤1

f(z),

then
f(x) =

∑
x≤z≤1

g(z)μ(z, x)

for x ∈ S.

Proof. This statement follows immediately from Theorem 4.114. 	


Example 4.116. Let M be a finite set and let (P(M),⊆) be the poset of all its
subsets. The Möbius function of this poset is given by

μ(A,B) =

{
(−1)|B|−|A| if A ⊆ B,
0 otherwise,

for A,B ∈ P(M).
Let A,B ∈ P(M) be such that A ⊆ B. We shall prove that μ(A,B) =

(−1)|B|−|A| by induction on n = |B| − |A|.
In the basis case n = 0, so A = B, which implies μ(A,B) = 1, thus

verifying the equality above. Suppose that the equality holds for sets that
differ by fewer than n elements and that |B|−|A| = n. Then, by the definition
of the Möbius function, we have

μ(A,B) = −
∑

C∈[A,B)

μ(A,C),

= −
∑

C∈[A,B)

(−1)|C|−|A|.

Note that there are 2n− 1 sets C in [A,B). Namely, there are
(
n
k

)
sets C such

that |C| − |A| = k. Therefore,

∑
C∈[A,B)

(−1)|C|−|A| =
∑

k = 0n−1(−1)k

(
n

k

)
.

Choosing x = −1 in the identity
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(x+ 1)n =
n∑

k=0

(
n

k

)
xk

implies 0 =
∑n

k=0

(
n
k

)
(−1)k, which yields the equality

n−1∑
k=0

(
n

k

)
(−1)k = (−1)n+1.

Thus, μ(A,B) = (−1)n+2 = (−1)n = (−1)|B|−|A|.

Exercises and Supplements

1. Define the relation ≤ on the set N
n by (p1, . . . , pn) ≤ (q1, . . . , qn) if pi ≤ qi

for 1 ≤ i ≤ n. Prove that (Nn,≤) is a partially ordered set.
2. Let S and T be two sets and let � be the relation on S � T defined by
f � g if Dom(f) ⊆ Dom(g) and f(s) = g(s) for every s ∈ Dom(f). Prove
that � is a partial order on S � T .

3. Prove that a binary relation ρ on a set S is a strict partial order on S if
and only if it is irreflexive, transitive, and antisymmetric.

4. Let (S,≤) be a poset. An order ideal is a subset I of S such that x ∈ I
and y ≤ x implies y ∈ I. If I(S,≤) is the collection of order ideals of
(S,≤), prove that K ⊆ I(S,≤) implies

⋂
K ∈ I(S,≤). Further, argue that

S ∈ I(S,≤).
5. Let (S,≤) be a poset. An order filter is a subset F of S such that x ∈ F

and y ≥ x implies y ∈ F . If F(S,≤) is the collection of order filters of
(S,≤), prove that K ⊆ F(S,≤) implies

⋂
K ∈ F(S,≤). Further, show that

S ∈ I(S,≤).
6. Let (S,≤) be a finite poset. Prove that S contains at least one maximal

and at least one minimal element.
7. Let (S,≤) be a finite poset, where S = {x1, . . . , xn}. Construct the se-

quence of posets ((S1,≤1), (S2,≤2), . . .) as follows. Let (S1,≤1) = (S,≤).
For 1 ≤ i ≤ n, choose xpi

to be the first element of Si in the sequence
s = (x1, . . . , xn) that is minimal in (Si,≤). Define Si+1 = Si − {xpi

} and
≤i+1=≤i ∩ (Si+1 × Si+1). Prove that the sequence (xp1 , . . . , xpn

) is a
total order on S that extends the partial order ≤.

8. Let S be an infinite set and let (C,⊆) be the partially ordered set of its
cofinite sets. Prove that for every U, V ∈ C both sup{U, V } and inf{U, V }
exist.

9. Does the poset of partial functions (S � T,�) introduced in Exercise 2
have a least element?

10. Let (S,≤) be a poset and let U and V be two subsets of S such that
U ⊆ V . Prove that if both supU and supV exist, then supU ≤ supV .
Prove that if both inf U and inf V exist, then inf V ≤ inf U .
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11. Prove that the Completeness Axiom of R implies that for any positive real
numbers x, y there exists n ∈ N such that nx > y (Archimedes’s property
of R).

12. Suppose that S and T are subsets of R that are bounded above. Prove
that S ∪ T is bounded above and supS ∪ T = max{supS, supT}.

13. Let π and σ be two partitions of a finite set S. Prove that |π| + |σ| ≤
|π ∧ σ|+ |π ∨ σ|.

14. Prove that if π is a partition of a set S and |π| = k, then there are
(
k
2

)
partitions that cover π.

15. Let (S,≤) be a poset. Prove that if a chain in S has at most p elements
and an antichain has at most q elements, then |S| ≤ pq.

16. Let (S,≤) be a poset. Prove that (S,≤) is a chain if and only if for every
subset T of S both supT and inf T exist and {supT, inf T} ⊆ T .

Let (S,≤) be a poset. A realizer of (S,≤) is a family of total orders on S,
R = {≤i | i ∈ I} such that

≤=
⋂
{≤i | i ∈ I}.

If (S,≤) is a finite poset, the dimension of (S,≤) is the smallest size d of
a realizer of (S,≤). The dimension of a finite poset (S,≤) is denoted by
dim(S,≤).

17. Let S = {x1, . . . , xn} be a finite set. Prove that the discrete partial order
ιS on S has dimension 2.

Solution: Consider the total order ≤1= TO(x1, . . . , xn) and its dual
≤2= TO(xn, . . . , x2, x1). Note that (x, x′) ∈≤1 ∩ ≤2 if and only if x = x′;
that is, if and only if (x, x′) ∈ ιS .

18. Let (Sn,≤) be the poset whose Hasse diagram is given in Figure 4.10,
where Sn = {x1, . . . , xn, y1, . . . , xn}. This poset was introduced in [43]
and is known as the standard example. Prove that dim(Sn,≤) = n.
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y1

x2
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x3

y3

xn−1

yn−1

xn

yn

Fig. 4.10. The Hasse diagram of the standard example.
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19. Consider the poset (Tp,m,q,≤), whose Hasse diagram is given in Fig-
ure 4.11. The set Tp,m,q consists of three sets of pairwise incompa-
rable elements {z1, . . . , zp}, {u1, . . . , um}, and {w1, . . . , wq} such that
zi < uj < wk for every 1 ≤ i ≤ p, 1 ≤ j ≤ m, and 1 ≤ k ≤ q.
Prove that if at least one of the numbers p,m, q is greater than 1, then

�

�

�

�

�

�

�

�

� � �

�
�
�
�

· · ·

· · ·

· · ·

u1 u2 um

z1 z2 z3 zp

w1 w2 w3 wq

Fig. 4.11. Hasse diagram of the poset Tm,p,q.

dim(Tp,m,q,≤) = 2.
20. Prove that the set of partial order relations on a set S is a closure system

on the set S × S.
21. Prove that the transitive closure of an acyclic relation is a strict partial

order.
22. Let K be a closure operator on a set S. Prove the following statements:

a) if U ∈ CK and X ⊆ U ⊆ K(X), then K(X) = U ;
b) K(X) ∩K(Y ) ⊇ K(X ∩ Y );
c) K(X) ∩K(Y ) ∈ CK,

for X,Y ∈ P(S).
23. Let S and T be two sets and let f : S −→ T be a function. Suppose that

K and L are two closure operators on S and T , respectively, such that
if V ∈ CL, then f−1(V ) ∈ CK. Prove that, for every W ∈ CL we have
S − f−1(T −W ) ∈ CK.

24. Let K be a closure operator on a set S. For U ∈ P(S), define the K-border
of the set U as ∂K(U) = K(U) ∩K(S −U). Let S and T be two sets and
let K,L be two closure operators on S and T , respectively.
a) Prove that if f−1(K(V )) = L(f−1(V )) for every V ∈ P(T ), then
f−1(∂L(V )) = ∂K(f−1(V )).

b) Now let f : S −→ T be a bijection such that both f−1(K(V )) =
L(f−1(V )) for every V ∈ P(T ) and f(K(U)) = L(f(U)) for every
U ∈ P(S). Prove that ∂K(f−1(V )) = f−1(∂L(V )) and ∂L(f(U)) =
f(∂K(U)) for U ∈ P(S) and V ∈ P(T ).
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25. Prove that if {(Si,≤i) | 1 ≤ i ≤ n} is a family of totally ordered posets,
then the lexicographic product (S1 × · · · × Sn,�) is a total order.

26. Let (S1,≤1) and (S2,≤2) be two posets and let f : S1 −→ S2 be a
monotonic mapping. Prove that if S2 has a least element 0, then f−1(0)
is an order filter of S1, and if S2 has a greatest element 1, then f−1(1) is
an order ideal of S1.

27. Let (S,≤) be a poset. Define the mapping f≤ : S −→ P(S) by f≤(x) =
{y ∈ S | x < y}.
a) Prove that f≤ is an antimonotonic mapping between the posets (S,≤)

and (P(S),⊆).
b) If C is a chain in (S,≤), prove that f≤(C) is a chain in (P(S),⊆).
c) Let (S,≤) and (S,≤′) be two posets defined on the set S. Prove that
f≤∩≤′(x) = f≤(x) ∩ f≤′(x) for every x ∈ S.

28. In the proof of Szpilrajn’s theorem, we introduced the set of partial or-
ders that extend the partial order “≤”. The inclusion between relations
defines a partial order on PORD(S,≤). We saw that the maximal ele-
ments of PORD(S,≤) are total orders on S and that the least element of
PORD(S,≤) is the relation ≤ itself.
Let (S,≤) be a poset. Prove that there exists a collection of total orders
{≤i | i ∈ I} on S such that ≤=

⋂
i∈I ≤i.

Solution: If ≤ is itself a total order, then the desired collection of total
orders consists of ≤ itself. Suppose therefore that ≤ is not total, and let
INC(S,≤) be the set of all pairs of incomparable elements of (S,≤).

For each pair (x, y) ∈ INC(S,≤), consider the total orders ≤′
xy and ≤′′

xy

that extend ≤ such that x ≤′
xy y and y ≤′

xy x. Clearly,

≤ ⊆
⋂
{≤′

xy ∩ ≤′′
xy | (x, y) ∈ INC(S,≤)}.

Suppose that
⋂
{≤′

xy ∩ ≤′′
xy | (x, y) ∈ INC(S,≤)} contains a pair of el-

ements (r, s)INC(S,≤). Then, we have both r ≤′
rs s and r ≤′′

rs s. Since
s ≤′′

rs r, this would imply r = s by the antisymmetry of ≤′′
rs. This, how-

ever, contradicts the incomparability of (r, s) in (S,≤). Thus, for any pair
(u, v) ∈

⋂
{≤′

xy ∩ ≤′′
xy | (x, y) ∈ INC(S,≤)}, we have u ≤ v or v ≤ u,

which shows that

≤ =
⋂
{≤′

xy ∩ ≤′′
xy | (x, y) ∈ INC(S,≤)}.

29. Let S be a finite set. Prove that the poset (Seq(S),≤inf ), where ≤inf is
the partial order introduced in Example 4.6, is locally finite.

30. Let ζ : S × S −→ R be the Riemann function of a locally finite poset
(S,≤), and let ζk be the product ζ ∗ ζ ∗ · · · ∗ ζ, which contains k zeta
factors, where k ∈ N. Prove that:
a) ζ2(x, y) = |[x, y]| if x ≤ y.
b) ζk(x, y) gives the number of multichains of length k that can be in-

terpolated between x and y.
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31. Prove that the Möbius function of the poset (N, δ), is given by

μ(n) =

⎧⎪⎨
⎪⎩

1 if n is a product of an even number of distinct primes,
−1 if n is a product of an odd number of distinct primes,
0 otherwise,

for n ∈ N.
32. If μ is the Möbius function of the poset (N, δ) prove that

∑
{μ(m) | (m,n) ∈ δ} =

{
1 if n = 1,
0 otherwise.

Solution: For n = 1, the equality is immediate. Suppose that n > 1.
Only numbers m that are products of distinct prime numbers contribute
to the sum

∑
{μ(m) | (m,n) ∈ δ}. If n = pa1

1 · · · pr
r, then this sum equals∑r

i=0

(
r
i

)
(−1)i = 0.

Bibliographical Comments

There is a vast body of literature dealing with posets and their applications
and a substantial number of references that focus on combinatorial study of
posets. Among these we mention [135, 136, 128, 138].
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Lattices and Boolean Algebras

5.1 Introduction

Lattices can be defined either as special partially ordered sets or as algebras.
In this chapter, we present both definitions and show their equivalence. We
study several special classes of lattices: modular and distributive lattices and
complete lattices. The last part of the chapter is dedicated to Boolean algebras
and Boolean functions and to their applications in data mining.

5.2 Lattices as Partially Ordered Sets and Algebras

We begin with a simple algebraic structure.

Definition 5.1. A semilattice is a semigroup S = (S, {∗}) such that s ∗ s = s
and s ∗ t = t ∗ s for all s, t ∈ S.

In other words, S = (S, {∗}) is a semilattice if “∗” is a commutative and
idempotent operation.

Example 5.2. Let ∗ be the binary operation on the set N1 of positive natural
numbers defined by n ∗ p = gcd(n, p). In Example 2.12, we saw that ∗ is an
associative operation. Since gcd(n, p) = gcd(p, n) and gcd(n, n) = n for every
n ∈ N, it follows that (N1, {∗}) is indeed a semilattice.

It is easy to see that (N1, {lcm}) is also a semilattice.

Theorem 5.3. Let S = (S, {∗}) be a semilattice. The relation x ≤ y defined
by x = x ∗ y for x, y ∈ S is a partial order on S. Further, inf{u, v} in the
partially ordered set (S,≤) exists for all u, v ∈ S and u ∗ v = inf{u, y}.

Proof. The idempotency of ∗, x = x ∗ x implies x ≤ x for every x ∈ S; that
is, the reflexivity of ≤.

Suppose that x ≤ y and y ≤ x; that is, x = x ∗ y and y = y ∗ x. The
commutativity of ∗ implies that x = y, so ∗ is antisymmetric.

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 5, c© Springer-Verlag London Limited 2008
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Now let x, y, z be three elements of S such that x ≤ y and y ≤ z, that is,
x = x ∗ y and y = y ∗ z. We can write

x ∗ z = (x ∗ y) ∗ z
= x ∗ (y ∗ z)

(due to the associativity of ∗)
= x ∗ y,

which proves that x ≤ z. Thus, ≤ is transitive, so it is a partial order on S.
Let u and v be two arbitrary elements of S. Note that u ∗ v ≤ u and

v ∗ v ≤ u because

(u ∗ v) ∗ u = u ∗ (u ∗ v) = (u ∗ u) ∗ v = u ∗ v

and
(u ∗ v) ∗ v = u ∗ (v ∗ v) = u ∗ v.

Thus, u ∗ v is a lower bound of the set {u, v}. Suppose now that w is an
arbitrary lower bound of {u, v}, that is, w = w ∗ u and w = w ∗ v. We have
w ∗ (u ∗ v) = (w ∗ u) ∗ v = w ∗ v = w, which proves that w ≤ u ∗ v. This allows
us to conclude that u ∗ v is indeed the largest lower bound of {u, v}; that is,
u ∗ v = inf{u, v}. 	


We also need the following converse result.

Theorem 5.4. Let (S,≤) be a partially ordered set such that inf{u, v} exists
for all u, v ∈ S. If ∗ is the operation defined by u ∗ v = inf{u, v} for u, v ∈ S,
then (S, {∗}) is a semilattice.

Proof. It is immediate that ∗ is an idempotent and commutative operation.
We prove here only its associativity.

Let t, u, v be three elements of S and let p, q be defined by

p = inf{t, inf{u, v}},
q = inf{inf{t, u}, v}.

By the definition of infimum, we have p ≤ t and p ≤ inf{u, v}, so p ≤ u and
p ≤ v. Since p ≤ t and p ≤ u, we have p ≤ inf{t, u}. This inequality together
with p ≤ v implies p ≤ inf{inf{t, u}, v}, so p ≤ q.

By the same definition of infimum, we have q ≤ inf{t, u} and q ≥ v.
The first inequality implies q ≤ t and q ≤ u. Thus, q ≤ inf{u, v}; together
with q ≤ t, these inequalities allow us to write q ≤ inf{t, inf{u, v}} = p. We
conclude that p = q, which shows that ∗ is indeed an associative operation.
	


The next statement is closely related to the previous theorem.

Theorem 5.5. Let (S,≤) be a partially ordered set such that sup{u, v} exists
for all u, v ∈ S. If � is the operation defined by u � v = sup{u, v} for u, v ∈ S,
then (S, {�}) is a semilattice.
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Proof. This statement follows from Theorem 5.4 by duality. 	


Example 5.6. The partially ordered sets (P,≤) and (Q,≤), whose Hasse di-
agrams are given in Figure 5.1, are semilattices because sup{u, v} exists for
any pair of elements in each of these sets. The operation � is described by the
the following table.

(P, �) a b c
a a c c
b c b c
c c c c

(Q, �) x y z
x x y z
y y y z
z z z z

�
�
���

�
��� �

�

�

�

�

a

c

b
x

y

z

(a) (b)

Fig. 5.1. Hasse diagrams of the posets (P,≤) and (Q,≤).

Example 5.7. Let S be a set and let (Seq(S),≤pref ) be the poset introduced
in Example 4.6. We will prove that this is a semilattice by verifying that
inf{u,v} exists for any sequences u,v ∈ Seq(S).

Note that any two sequences have at least the null sequence λλλ as a common
prefix. If t and s are common prefixes of u and v, then either t is a prefix of
s or vice-versa. Thus, the finite set of common prefixes of u and v is totally
ordered by “≤pref” and therefore it has a largest element z. The sequence
z is the longest common prefix of the sequences u and v. It is clear that
z = inf{u,v} in the poset (Seq(S),≤pref ).

We will denote the result of the semilattice operation introduced here,
which associates with u and v their longest common prefix, by lcp(u,v).

The associativity of this operation can be written as

lcp(u, lcp(v,w)) = lcp(lcp(u,v),w) (5.1)

for all sequences u,v,w ∈ Seq(S).

A useful property of the semilattice (Seq(S), lcp) introduced in Exam-
ple 5.7 is given next.
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Theorem 5.8. Let S be a set and let u, v,w be three sequences in Seq(S).
Then, at most two of the sequences lcp(u, v), lcp(v,w), lcp(w,u) are distinct.
The common value of two of these sequences is a prefix of the third sequence.

Proof. Let t = lcp(u,v), r = lcp(v,w), and s = lcp(w,u). Note that any two
of the sequences t, r, s are prefixes of the same sequence. Therefore, they form
a chain in the poset (Seq(S),≤pref ).

Suppose, for example, that t ≤pref r ≤pref s. Observe that r is a prefix of
v because it is a prefix of s. Thus, r is a prefix of both u and v. Since t is the
longest common prefix of u and v, it follows that r is a prefix of t, so r = t.

The remaining five cases that correspond to the remaining permutation of
the sequences t, r, and s can be treated in a similar manner. 	


Theorems 5.4 and 5.5 show that, in principle, a partial order relation on a
set S may induce two semilattice structures on S. Traditionally, the semilattice
(S, ∗) has been referred to as the meet semilattice, while (S, �) is called the
join semilattice, and the operations “∗” and “�” are denoted by “∧” and “∨”,
respectively. This is a notation that we will use from now on.

Definition 5.9. Let S1 = (S1, {∧}) and S2 = (S2, {∧}) be two semilattices.
A morphism h from S1 to S2 is a function h : S1 −→ S2 such that h(x∧ y) =
h(x) ∧ h(y) for x, y ∈ S1.

The semilattices S1 and S2 are isomorphic if there exist two bijective mor-
phisms h : S1 −→ S2 and h′ : S2 −→ S1 that are inverse to each other.

A semilattice morphism is a monotonic function between the partially
ordered sets (S1,≤) and (S2,≤). Indeed, suppose that x, y ∈ S1 such that
x ≤ y, which is equivalent to x = x ∧ y. Since h is a morphism, we have
h(x) = h(x) ∧ h(y), so h(x) ≤ h(y). The converse is not true; a monotonic
function between the posets (S1,≤) and (S2,≤) is not necessarily a semilattice
morphism, as the next example shows.

Example 5.10. Let (P, {�}) and (Q, {�}) be the semilattices defined in Exam-
ple 5.6. The function f : P −→ Q given by f(a) = x, f(b) = y, and f(c) = z is
clearly monotonic, and it is even a bijection. However, it fails to be a semilat-
tice morphism because f(a � b) = f(c) = z, while f(a) � f(b) = x � y = y �= z.

However, we have the following theorem.

Theorem 5.11. Let S1 = (S1, {∧}) and S2 = (S2, {∧}) be two semilattices.
S1 and S2 are isomorphic if and only if there exists a bijection h : S1 −→ S2

such that both h and h−1 are monotonic.

Proof. Suppose that h : S1 −→ S2 is a bijection such that both h and h−1 are
monotonic functions, and let x and y be two elements of S1. Since x∧y ≤ x and
x∧y ≤ y, we have h(x∧y) ≤ h(x) and h(x∧y) ≤ h(y), so h(x∧y) ≤ h(x)∧h(y).
We further prove that h(x ∧ y) is the infimum of h(x) and h(y).
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Let u ∈ S2 such that u ≤ h(x) ∧ h(y), so u ≤ h(x) and u ≤ h(y). Equiv-
alently, we have h−1(u) ≤ x and h−1(u) ≤ y, which implies h−1(u) ≤ x ∧ y.
Therefore, u ≤ h(x ∧ y), which allows us to conclude that h(x) ∧ h(y) =
inf{h(x), h(y)} = h(x ∧ y), so h is indeed a morphism. Similarly, one can
prove that h−1 is also a morphism, so S1 and S2 are isomorphic.

Conversely, if S1 and S2 are isomorphic and h : S1 −→ S2 and h′ : S2 −→
S1 are morphisms that are inverse to each other, then they are clearly inverse
monotonic mapping. 	


A structure that combines the properties of join and meet semilattices is
introduced next.

Definition 5.12. A lattice is an algebra of type (2, 2), that is, an algebra
L = (L, {∧,∨}) such that ∧ and ∨ are both idempotent, commutative, and
associative operations and the equalities (known as absorption laws)

x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x

are satisfied for every x, y ∈ L.

Observe that if (L, {∧,∨}) is a lattice, then both (L, {∧}) and (L, {∨})
are semilattices. Thus, by Theorem 5.3, both operations induce partial order
relations on L. Let us denote these operations temporarily by “≤” and “≤′”,
respectively. In other words, we have x ≤ y if x = x∧y and u ≤′ v if u = u∨v.

The absorption laws that link together the operations ∧ and ∨ imply that
the two partial orders are dual to each other. Indeed, suppose that x ≤ y,
that is, x = x ∧ y. Then, since y ∨ x = y ∨ (y ∧ x) = y, we have y ≤′ x. We
usually use the partial order ≤ on the lattice (L, {∧,∨}).

If (L, {∧,∨}) is a lattice, then for every finite, nonempty subset K of L,
infK and supK exist, as it can be shown by induction on n = |K|, where
n ≥ 1 (see Exercise 2). Moreover, if K = {x1, . . . , xn}, then

infK = x1 ∧ x2 ∧ · · · ∧ xn,

supK = x1 ∨ x2 ∨ · · · ∨ xn.

Example 5.13. Let S be a set. The algebra (P(S), {∩,∪}) is a lattice. Also, if
Pf (S) is the set of all finite subsets of S, then (Pf (S), {∩,∪}) is also a lattice.

Example 5.14. The posets M5 and N5 from Example 4.78 are both lattices.
Indeed, the operations ∧ and ∨ for the first poset is given by the following
table.

(M5,∧) 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1

(M5,∨) 0 a b c 1
0 0 a b c 1
a a a 1 1 1
b b 1 b 1 1
c c 1 1 c 1
1 1 1 b 1 1
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The similar operations for N5 are given next.

(N5,∧) 0 x y z 1
0 0 0 0 0 0
x 0 x x 0 x
y 0 x y 0 y
z 0 0 0 z z
1 0 x y 1 1

(N5,∨) 0 x y z 1
0 0 x y z 1
x x x y 1 1
y y y y 1 1
z z 1 1 z 1
1 1 1 1 1 1

Example 5.15. The poset of partitions of a finite set (PART(S),≤) introduced
in Example 4.3 is a lattice. Indeed, we saw in Section 4.8 that for every two
partitions π, σ, both inf{π, σ} and sup{π, σ} exist.

Example 5.16. Consider the set N × N and the partial order � on this set
defined by (p, q) � (m,n) if p ≤ m and q ≤ n. Then inf{(u, v), (x, y)} =
(min{u, x},min{v, y}) and sup{(u, v), (x, y)} = (max{u, x},max{v, y}).

Theorem 5.17. Let (L, {∧,∨}) be a lattice. If x ≤ y and u ≤ v, then x∧u ≤
y ∧ v and x∨ u ≤ y ∨ v (compatibility of the lattice operations with the partial
order).

Proof. Note that x ≤ y is equivalent to x = x∧ y and to y = x∨ y. Similarly,
u ≤ v is equivalent to u = u ∧ v and to v = u ∨ v. Therefore, we can write

(x ∧ u) ∧ (y ∧ v) = (x ∧ y) ∧ (u ∧ v) = x ∧ u,

so x ∧ u ≤ y ∧ v. The proof of the second inequality is similar. 	

Let (L, {∧,∨}) be a lattice. If the poset (L,≤) has the largest element 1,

then we have 1 ∧ x = x ∧ 1 = x and 1 ∨ x = x ∨ 1 = x. If the poset has
the least element 0, then 0 ∧ x = x ∧ 0 = 0 and 0 ∨ x = x ∨ 0 = x. In other
words, if a lattice has a largest element 1, then 1 is a unit with respect to the
∧ operation; similarly, if the least element exists, then it plays the role of a
unit with respect to ∨.

Let K and H be two finite subsets of L, where (L, {∧,∨}) is a lattice. If
K ⊆ H, then it is easy to see that supK ≤ supH and that infK ≥ infH.
Since ∅ ⊆ H for every set H, by choosing H = {x} for some x ∈ L, it is clear
that if a lattice has the least element 0 and the greatest element 1, then we
can define sup ∅ = 0 and inf ∅ = 1.

Definition 5.18. A lattice (L, {∧,∨}) is bounded if the poset (L,≤) has the
least element and the greatest element 1.

If a lattice (L, {∧,∨}) is bounded, then every finite subset of L (including the
empty set) is bounded.

If L = (L, {∧,∨}) is a finite lattice, then L is bounded. Indeed, since both
supL and inf L exist, it follows that supL is the greatest element and inf L is
the least element of L, respectively.
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Definition 5.19. Let L1 = (L1,∧,∨) and L2 = (L2,∧,∨) be two lattices. A
morphism h from L1 to L2 is a function h : L1 −→ L2 such that h(x ∧ y) =
h(x) ∧ h(y) and h(x ∨ y) = h(x) ∨ h(y) for every x, y ∈ L1.

A lattice isomorphism is a bijective lattice morphism.

A counterpart of Theorem 5.11 characterizes isomorphic lattices.

Theorem 5.20. Let L1 = (L1, {∧,∨}) and L2 = (L2, {∧,∨}) be two lattices.
L1 and L2 are isomorphic if and only if there exists a bijection h : L1 −→ L2

such that both h and h−1 are monotonic.

Proof. The proof is similar to the proof of Theorem 5.11; we leave the argu-
ment to the reader as an exercise. 	


Definition 5.21. Let L = (L, {∧,∨}) be a lattice. A sublattice of L is a
subset K of L that is closed with respect to the lattice operations. In other
words, for every x, y ∈ K, we have both x ∧ y ∈ K and x ∨ y ∈ K.

Note that if K is a sublattice of L, then the pair K = (K, {∧,∨}) is itself
a lattice. We use the term “sublattice” to designate both the set K and the
lattice K when there is no risk of confusion. For example, if K and K ′ are
two sublattices of a lattice L and f : K −→ K ′ is a morphism between the
lattices K = (K, {∧,∨}) and K′ = (K ′, {∧,∨}), we designate f as a morphism
between K and K ′.

Example 5.22. Let L = (L, {∧,∨}) be a lattice and let a and b be a pair of
elements of L. The interval [a, b] is the set

{x ∈ L | a ≤ x ≤ b}.

Clearly, an interval [a, b] is nonempty if and only if a ≤ b. Each such set is a
sublattice. Indeed, if [a, b] = ∅, then ∅ is clearly a sublattice.

Suppose that x, y ∈ [a, b]; that is, a ≤ x ≤ b and a ≤ y ≤ b. Due to
the compatibility of the lattice operations with the partial order, we obtain
immediately a ≤ x ∧ y ≤ b and a ≤ x ∨ y ≤ b, so [a, b] is a sublattice in all
cases.

Example 5.23. Let [a, b] be a nonempty interval of a lattice L = (L, {∧,∨}).
The function h : L −→ [a, b] defined by h(x) = (x ∨ a) ∧ b is a surjective
morphism between L and the lattice ([a, b], {∧,∨}) because

h(x ∧ y) = ((x ∧ y) ∨ a) ∧ b
= ((x ∨ a) ∧ (y ∨ a)) ∧ b
= ((x ∨ a) ∧ b) ∧ ((y ∨ a)) ∧ b))
= h(x) ∧ h(y)
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and

h(x ∨ y) = ((x ∨ y) ∨ a) ∧ b
= ((x ∨ a) ∨ (y ∨ a)) ∧ b
= ((x ∨ a) ∧ b) ∨ ((y ∨ a)) ∧ b))
= h(x) ∨ h(y)

for x, y ∈ B.
The elements a and b are invariant under h. Indeed, we have h(a) = a

because h(a) = (a ∨ a) ∧ b = a ∧ b = a and h(b) = (b ∨ a) ∧ b = b by
absorption. Moreover, this property is shared by every member of the interval
[a, b] because we can write

h(h(x)) = h((x ∨ a) ∧ b) = h(x ∨ a) ∧ h(b)
= (h(x) ∨ h(a)) ∧ h(b) = (h(x) ∨ a) ∧ b
= (((x ∨ a) ∧ b) ∨ a) ∧ b
= (x ∨ a) ∧ (b ∨ a) ∧ b
= (x ∨ a) ∧ b = h(x)

for x ∈ B. We refer to h as the projection of L on the interval [a, b].

5.3 Special Classes of Lattices

Let (L, {∧,∨}) be a lattice and let u, v, w be three members of L such that
u ≤ w. Since u ≤ u ∨ v and u ≤ w, it follows that

u ≤ (u ∨ v) ∧ w. (5.2)

Starting from the inequalities v ∧w ≤ v ≤ u ∨ v and v ∧w ≤ w, we have also

v ∧ w ≤ (u ∨ v) ∧ w. (5.3)

Combining Inequalities (5.2) and (5.3) yields the inequality

u ∨ (v ∧ w) ≤ (u ∨ v) ∧ w, (5.4)

which is satisfied whenever u ≤ w. This inequality is known as the submodular
inequality.

An important class of lattices is obtained when we replace the submodular
inequality (satisfied by every lattice) with an equality, as follows.

Definition 5.24. A lattice (L, {∧,∨}) is modular if, for every u, v, w ∈ L,
u ≤ w implies

u ∨ (v ∧ w) = (u ∨ v) ∧ w. (5.5)
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Observe that if u = w, Equality (5.5) holds in every lattice. Therefore, it
is sufficient to require that u < w implies u ∨ (v ∧ w) = (u ∨ v) ∧ w for all
u, v, w ∈ L to ensure modularity.

Example 5.25. The latticeM5 introduced in Example 5.14 is modular. Indeed,
suppose that x < z. If u = 0 and w = 1, it is easy to see that Equality (5.5)
is verified. Suppose, for example, that u = a and w = 1. Then, u ∨ (v ∧ w) =
a∨(v∧1) = a∨v and (u∨v)∧w = (a∨v)∧1 = a∨v for every v ∈ {0, 1, a, b, c}.
The remaining cases can be analyzed similarly.

On the other hand, the lattice N5 introduced in the same example is not
modular because we have x < y, x ∨ (z ∧ y) = x ∨ 0 = x, and (x ∨ z) ∧ y =
1 ∧ y = y �= x.

The special role played by N5 is described next.

Theorem 5.26. A lattice L = (L, {∧,∨}) is modular if and only if it does
not contain a sublattice isomorphic to N5.

Proof. Suppose L contains a sublattice K = {t0, t1, t2, t3, t4} isomorphic to
N5, and let f : K −→ N5 be an isomorphism. Suppose that f(t0) = 0,
f(t1) = x, f(t2) = y, f(t3) = z, and f(t4) = 1. Also, let g : N5 −→ K be the
inverse isomorphism.

Since x < y, g(x) = t1, and g(y) = t2, we have t1 < t2. On the other
hand, t1 ∨ (t3 ∧ t2) = g(x) ∨ (g(z) ∧ g(y)) = g(x ∨ (z ∧ y)) = g(x) = t1 and
(t1 ∨ t3) ∧ t2 = (g(x) ∨ g(z)) ∧ g(y) = g((x ∨ z) ∧ y) = g(y) = t2 �= t1, which
shows that L is not modular.

Conversely, suppose that L = (L, {∧,∨}) is not modular. Then, there exist
three members of L – u, v, w – such that u < w and u∨ (v ∧w) < (u∨ v)∧w
because L still satisfies the submodular inequality. Observe that the elements
t0, . . . , t4 given by:

t0 = v ∧ w,
t1 = u ∨ (v ∧ w),
t2 = (u ∨ v) ∧ w,
t3 = v,

t4 = (u ∨ v) ∧ w

form a sublattice isomorphic to N5. 	

An important property of modular lattices relates intervals of the form

[a ∧ b, a] and [b, a ∨ b] for any a, b ∈ L.

Theorem 5.27. Let L = (L, {∧,∨}) be a modular lattice and let a and b be
two elements. The mappings φ : [a ∧ b, a] −→ [b, a ∨ b] and ψ : [b, a ∨ b] −→
[a ∧ b, a] defined by φ(x) = x ∨ b and ψ(y) = y ∧ a for x ∈ [a ∧ b, b] and
y ∈ [a, a∨ b] are inverse monotonic mappings between the sublattices [a∧ b, b]
and [a, a ∨ b].
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Proof. Note that, for a ∧ b ≤ x ≤ a, we have

(x ∨ b) ∧ a = x ∨ (b ∧ a)
(since L is modular)

= x(because a ∧ b ≤ x).

Thus, ψ(φ(x)) = x for every x ∈ [a ∧ b, a]. Similarly, one can prove that
φ(ψ(y)) = y for every y ∈ [b, a ∨ b], which shows that φ and ψ are inverse to
each other. The monotonicity is immediate. 	


Corollary 5.28. Let L = (L, {∧,∨}) be a modular lattice and let a and b be
two elements such that a and b cover a ∧ b. Then a ∨ b covers both a and b.

Proof. Since a covers a ∧ b, the interval [a ∧ b, a] consists of two elements.
Therefore, by Theorem 5.27, the interval [b, a∨b] also consists of two elements,
so a∨ b covers b. A similar argument shows that a∨ b covers a (starting from
the fact that b covers a ∧ b). 	


The property of modular lattices described in Corollary 5.28 allows us to
introduce a generalization of the class of modular lattices.

Definition 5.29. A lattice L = (L, {∧,∨}) is semimodular, if for every a, b ∈
L such that both cover a ∧ b, the same elements are covered by a ∨ b.

Clearly, every modular lattice is semimodular. The converse is not true,
as the next example shows.

Example 5.30. Let (PART(S), {∧,∨}) the lattice of partitions of the set S =
{1, 2, 3, 4}, whose Hasse diagram is shown in Figure 4.3. By Theorem 4.53,
a partition σ covers the partition π if and only if there exists a block C of
σ that is the union of two blocks B and B′ of π, and every block of σ that
is distinct of C is a block of π. Thus, it is easy to verify that this lattice is
indeed semimodular.

To show that (PART({1, 2, 3, 4}), {∧,∨}) is not modular, consider the par-
titions

π1 = {12, 3, 4},
π2 = {123, 4},
π3 = {14, 2, 3}.

It is easy to see that the sublattice αS , π1, π2, π3, ωS is isomorphic to N5 and
therefore the lattice is not modular.

A more general statement follows.

Theorem 5.31. The partition lattice (PART(S), {∧,∨}) of a nonempty set
is semimodular.
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Proof. Let π, σ ∈ PART(S) be two partitions such that both cover π ∧ σ. By
Theorem 4.53, both π and σ are obtained from π ∧ σ by fusing two blocks of
this partition. If π ∧ σ = {B1, . . . , Bn}, then there exist three blocks of π ∧ σ,
Bp, Bq, Br, such that π is obtained by fusing Bp and Bq, and σ is obtained
by fusing Bq and Br. To simplify the argument we can assume without loss
of generality that p = 1, q = 2, and r = 3.

The graph Gπ,σ of the partitions π and σ is given in Figure 5.2. The blocks
of the partition π ∨ σ correspond to the connected components of the graph
Gπ,σ, so π ∨ σ = {B1 ∪ B2 ∪ B3, . . . , Bn}, which covers both π and σ. Thus,
(PART(S), {∧,∨}) is semimodular.

Bn

Bi

B3

B1

Bn

Bi

...

...

...

...

B1 ∪ B2

B2 ∪ B3

π σ

Fig. 5.2. The graph Gπ,σ of π and σ.

	


Example 5.32. Let L = ({0, a, b, c, d, e, 1}, {∧,∨}) be the lattice whose Hasse
diagram is shown in Figure 5.3. This is a semimodular lattice that is not
modular. Indeed, we have a ≤ c but (a∨ e)∧ c = c, while a∨ (e∧ c) = a �= c.
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Fig. 5.3. Hasse diagram of lattice L = ({0, a, b, c, d, e, 1}, {∧,∨}).

Let L = (L, {∧,∨}) be a lattice and let x, y, z be three elements of L. We
have the inequalities

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z), (5.6)
x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z). (5.7)

Indeed, note that x ≥ x ∧ y and x ≥ x ∧ z, so x ≥ (x ∧ y) ∨ (x ∧ z). Also,
(y∨z) ≥ (x∧y) and (y∨z) ≥ (x∧z), which implies (y∨z) ≥ (x∧y)∨ (x∧z).
Therefore, we conclude that x∧ (y ∨ z) ≥ (x∧ y)∨ (x∧ z). The argument for
the second inequality is similar. We refer to Inequalities (5.6) and (5.7) as the
subdistributive inequalities.

The existence of subdistributive inequalities satisfied by every lattice serves
as an introduction to a very important class of lattices, which we define next.

Definition 5.33. A lattice (L, {∧,∨}) is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

for x, y, z ∈ L.

In fact, it is sufficient that only one of the equalities of Theorem 5.33 be
satisfied to ensure distributivity. Suppose, for example, that x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z) for x, y, z ∈ L. We have
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x ∨ (y ∧ z) = (x ∨ (x ∧ z)) ∨ (y ∧ z)
(by absorption)

= x ∨ ((x ∧ z) ∨ (y ∧ z))
(by the associativity of ∨)

= x ∨ ((z ∧ x) ∨ (z ∧ y))
(by the commutativity of ∧)

= x ∨ (z ∧ (x ∨ y))
(by the first distributivity equality)

= x ∨ ((x ∨ y) ∧ z)
(by the commutativity of ∧)

= (x ∧ (x ∨ y)) ∨ ((x ∨ y) ∧ z)
(by absorption)

= ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z)
(by the commutativity of ∧)

= (x ∨ y) ∧ (x ∨ z),
(by the first distributivity equality),

which is the second distributivity law. In a similar manner, one could show
that the second distributivity law implies the first law.

Theorem 5.34. Every distributive lattice is modular.

Proof. Let L = (L, {∧,∨}) be a distributive lattice. Suppose that u ≤ w.
Applying the distributivity, we can write

u ∨ (v ∧ w) = (u ∨ v) ∧ (u ∨ w)
= (u ∨ v) ∧ w,

(because u ≤ w),

which shows that L is modular. 	

We saw that the lattice N5 is not modular and therefore is not distribu-

tive. The lattice M5 is modular (as we have shown in Example 5.25) but not
distributive. Indeed, note that

a ∨ (b ∧ c) = a ∨ 0 = a

and
(a ∨ b) ∧ (a ∨ c) = 1 ∧ 1 �= 0.

It is easy to see that every sublattice of a distributive lattice is also distribu-
tive. Thus, a distributive lattice may not contain sublattices isomorphic to
M5 or N5. This allows the formulation of a statement for distributive lattices
that is similar to Theorem 5.26.
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Theorem 5.35. A lattice L = (L, {∧,∨}) is distributive if and only if it does
not contain a sublattice isomorphic to M5 or N5.

Proof. The necessity of this condition is clear, so we need to prove only that
it is sufficient.

Let L be a lattice that is not distributive. Then, L may or may not be
modular. If L is not modular, then by Theorem 5.26 it contains a sublattice
isomorphic to N5. Therefore, we need to consider only the case where L is
modular but not distributive. We show in this case that L contains a sublattice
that is isomorphic to M5.

The nondistributivity of L implies the existence of x, y, z ∈ L such that

x ∧ (y ∨ z) > (x ∧ y) ∨ (x ∧ z), (5.8)
x ∨ (y ∧ z) < (x ∨ y) ∧ (x ∨ z). (5.9)

Let u and v be defined by

u = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)
v = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

We first prove that v < u.
Note that

x ∧ u
= x ∧ ((x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)) (by the definition of u)
= (x ∧ (x ∨ y)) ∧ (y ∨ z) ∧ (z ∨ x) (by the associativity of ∧)
= x ∧ (y ∨ z) ∧ (z ∨ x) (by absorption)
= x ∧ (z ∨ x) ∧ (y ∨ z) (by associativity and commutativity of ∧)
= x ∧ (x ∨ z) ∧ (y ∨ z) (by commutativity of ∨)
= x ∧ (y ∨ z) (by absorption).

Also,

x ∨ v
= x ∨ ((x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)) (by the definition of v)
= x ∨ ((x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)) (by associativity and commutativity)
= ((x ∧ y) ∨ (x ∧ z)) ∨ (x ∧ (y ∧ z)

(by modularity since (x ∧ y) ∨ (x ∧ z) ≤ x)
= (x ∧ y) ∨ (x ∧ z)(because x ∧ y ∧ z ≤ (x ∧ y) ∨ (x ∧ z)).

Thus, by Inequality (5.8), we have x∨ v < x∨ u, which clearly implies v < u.
Consider now the projections x1, y1, z1 of x, y, z on the interval [v, u] given

by
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x1 = (x ∧ u) ∨ v, y1 = (y ∧ u) ∨ v, z1 = (z ∧ u) ∨ v.
It is clear that v ≤ x1, y1, z1 ≤ u. We shall prove that {u, x1, y1, z1, v} is a
sublattice isomorphic to M5 by showing that

x1 ∧ y1 = y1 ∧ z1 = z1 ∧ x1 = v and x1 ∨ y1 = y1 ∨ z1 = z1 ∨ x1 = u.

We have

x1 ∧ y1
= ((x ∧ u) ∨ v) ∧ ((y ∧ u) ∨ v) (by the definition of x1 and y1)
= ((x ∧ u) ∧ ((y ∧ u) ∨ v)) ∨ v (by modularity since v ≤ (y ∧ u) ∨ v)
= ((x ∧ u) ∧ ((y ∨ v) ∧ u)) ∨ v (by modularity since v ≤ u)
= ((x ∧ u) ∧ u ∧ (y ∨ v)) ∨ v (by associativity and commutativity of ∧)
= ((x ∧ u) ∧ (y ∨ v)) ∨ v (by absorption)
= (x ∧ (y ∨ z) ∧ (y ∨ (x ∧ z))) ∨ v (because x ∧ u = x ∧ (y ∨ z) and
y ∨ v = y ∨ (x ∧ z))

= (x ∧ (y ∨ ((y ∨ z) ∧ (x ∧ z)))) ∨ v (by modularity since y ≤ y ∨ z)
= (x ∧ (y ∨ (x ∧ z))) ∨ v(since x ∧ z ≤ y ∨ z)
= (x ∧ z) ∨ (y ∧ z) ∨ v (by modularity since x ≤ x ∧ z)
= v (due to the definition of v).

Similar arguments can be used to prove the remaining equalities. 	


Definition 5.36. Let L = (L, {∧,∨}) be a bounded lattice that has 0 as its
least element and 1 as its largest element.

The elements x and y are complementary if x ∧ y = 0 and x ∨ y = 1.

If x and y are complementary we say that one element is the complement
of the other. Lattices in which every element has a complement are referred
to as complemented lattices.

Example 5.37. The lattice N5 is a complemented lattice. Indeed, x and z are
complementary elements and so are y and z. The lattice M5 is also comple-
mented.

Example 5.38. Let S be a set and let (P(S),∩,∪) be the bounded lattice of
its subsets having ∅ as its first element and S as its last element. Unlike the
lattices mentioned in Example 5.37, a set X ∈ P(S) has a unique complement
S −X.

Example 5.39. Let (N ∪ {∞},≤) be the infinite chain of natural numbers ex-
tended by ∞. If m,n ∈ N ∪ {∞}, then m ∧ n = min{m,n} and m ∨ n =
max{m,n}. Clearly, this is a bounded lattice and no two of elements except
0 and ∞ are complementary.
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Theorem 5.40. Let L = (L, {∧,∨}) be a bounded, distributive lattice. For
every element x, there exists at most one complement.

Proof. Let x ∈ L and suppose that both r and s are complements of x; that
is, x ∧ r = 0, x ∨ r = 1, and x ∧ s = 0, x ∨ s = 1. We can write

r = r ∧ 1
= r ∧ (x ∨ s)
= (r ∧ x) ∨ (r ∧ s)
= 0 ∨ (r ∧ s)
= r ∧ s,

which implies r ≤ s. Similarly, starting with s, we obtain

s = s ∧ 1
= s ∧ (r ∨ x)
= (s ∧ r) ∨ (s ∧ x)
= (s ∧ r) ∨ 0
= s ∧ r,

which implies s ≤ r. Consequently, s = r. 	


5.4 Complete Lattices

We saw that lattices can be viewed either as algebras or as partially ordered
sets. In this section, we focus on a class of lattices that is important for a
variety of applications using the second point of view.

Definition 5.41. A complete lattice is a poset (L,≤) such that for every
subset U of L both supU and inf U exist.

Note that if U and V are two subsets of a complete lattice and U ⊆ V ,
then supU ≤ supV and inf V ≤ inf U . Therefore, for every subset T of L, we
have

sup ∅ ≤ supT ≤ supL and inf L ≤ inf T ≤ inf ∅.
If T is a singleton (that is, T = {t}), then these inequalities amount to

sup ∅ ≤ t ≤ supL and inf L ≤ t ≤ inf ∅

for every t ∈ L. This means that a complete lattice has a least element 0 =
sup ∅ = inf L and a greatest element 1 = inf ∅ = supL.

For a subset U of the complete lattice, we denote supU by
∨
U and inf U

by
∧
U .
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Obviously, every complete lattice is also a lattice since x∨ y and x∧ y are
sup{x, y} and inf{x, y}, respectively.

The associative properties of the usual lattices can be extended to complete
lattices as follows. Let (L,≤) be a complete lattice and let C = {Ci | Ci ⊆
L for i ∈ I} be a collection of subsets of L. Then,∨

i∈I

∨
Ci =

∨⋃
C,

∧
i∈I

∧
Ci =

∧⋃
C.

Theorem 5.42. Let (L,≤) be a poset such that supU exists for every subset
U of L. Then (L,≤) is a complete lattice.

Proof. It is sufficient to prove that inf U exists for each subset U of the lattice.
By hypothesis, the set U i of lower bounds of U has a supremum x = supUi.
Every element of U is an upper bound of U i, which means that x ≤ u, which
implies that x is a lower bound for U . Thus, x ∈ U i∩ (U i)s, which means that
x = inf U . 	


Theorem 5.43. If (L,≤) is a poset such that inf U exists for every set U ,
then (L,≤) is a complete lattice.

Proof. This statement follows by duality from Theorem 5.42. 	


Example 5.44. Let S be a set. The poset of its subsets (P(S),⊆) is a complete
lattice because, for any collection C of subsets of S, supC =

⋃
C and inf C =⋂

C.

Example 5.45. Let C be a closure system on a set S and let K be the
corresponding closure operator. Then, (C,⊆) is a complete lattice because
inf D =

⋂
D and supD = K (

⋃
D) for any subcollection D of C.

It is clear that inf D exists and equals
⋂

D for any subcollection D of C.
We show that K (

⋃
D) equals sup D. It is clear that D ⊆ K (

⋃
D). Suppose

now that E is a subset of C that is an upper bound for D, that is, D ⊆ E for
every D ∈ D. We have

⋃
D ⊆ E, so K (

⋃
D) ⊆ K(E) = E because E ∈ C.

Therefore, K (
⋃

D) is the least upper bound of D.

The notion of a lattice morphism is extended to complete lattices.

Definition 5.46. Let (L1,≤) and (L2,≤) be two complete lattices. A function
f : L1 −→ L2 is a complete lattice morphism if f (

∨
U) =

∨
f(U) and

f (
∧
U) =

∧
f(U) for every subset U of L1.

If f is a bijection such that both f and f−1 are complete lattice morphisms,
then we say that f is a complete lattice isomorphism.
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Theorem 5.47. Every complete lattice is isomorphic to the lattice of closed
sets of a closure system.

Proof. Let (L,≤) be a complete lattice and let Ix = {t ∈ L | t ≤ x} for
x ∈ L. We claim that I = {Ix | x ∈ L} is a closure system on L.

Indeed, note that I1 (where 1 is the largest element of L) coincides with
L, so L ∈ I.

Now let {Ix | x ∈ M} be an arbitrary family of sets in I, where M is a
subset of L. Note that

⋂
{Ix | x ∈ M} = Iy, where y = infM . Thus, I is a

closure system.
It is easy to verify that f : L −→ I given by f(x) = Ix is a complete lattice

isomorphism. 	


Definition 5.48. Let (S,≤) and (T,≤) be two posets. A Galois connection
between S and T is a pair of mappings (φ, ψ), where φ : S −→ T and ψ :
T −→ S that satisfy the following conditions.
(i) If s1 ≤ s2, then φ(s2) ≤ φ(s1) for every s1, s2 ∈ S.
(ii) If t1 ≤ t2, then φ(t2) ≤ φ(t1) for every t1, t2 ∈ T .
(iii) s ≤ ψ(φ(s)) and t ≤ φ(ψ(t)) for s ∈ S and t ∈ T .

Example 5.49. Let X and Y be two sets and let ρ be a relation, ρ ⊆ X × Y .
Define φρ : P(X) −→ P(Y ) and ψρ : P(Y ) −→ P(X) by

φρ(U) = {y ∈ Y | (x, y) ∈ ρ for all x ∈ U},
ψρ(V ) = {x ∈ X | (x, y) ∈ ρ for all y ∈ V }

for U ∈ P(X) and V ∈ P(Y ).
The pair (φρ, ψρ) is a Galois connection between the posets (P(X),⊆)

and (P(Y ),⊆). It is immediate to verify that the first two conditions of Def-
inition 5.48 are satisfied. We discuss here only the third condition of the
definition.

To prove that U ⊆ ψρ(φρ(U)), let u ∈ U . We need to show that (u, y) ∈ ρ
for every y ∈ ψρ(U). By the definition of ψρ, if y ∈ ψρ(U), we have indeed
(u, y) ∈ ρ. The proof of the second inclusion of the third part of the definition
is similar.

The pair (φρ, ψρ) will be referred to as the polarity generated by the relation
ρ.

Theorem 5.50. Let (S,≤) and (T,≤) be two posets. A pair of mappings
(φ, ψ), where φ : S −→ T and ψ : T −→ S, is a Galois connection between
(S,≤) and (T,≤) if and only if s ≤ ψ(t) is equivalent to t ≤ φ(s).

Proof. Suppose that (φ, ψ) is a pair of mappings such that s ≤ ψ(t) is
equivalent to t ≤ φ(s). Choosing t = φ(s), it is clear that t ≤ φ(s), so
s ≤ ψ(t) = ψ(φ(s)). Similarly, we can show that t ≤ φ(ψ(t)), so the pair
(φ, ψ) satisfies the third condition of Definition 5.48.
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Let s1, s2 ∈ S such that s1 ≤ s2. Since s2 ≤ ψ(φ(s2)), we have s1 ≤
ψ(φ(s2)), which implies φ(s2) ≤ φ(s1). A similar argument can be used to
prove that t1 ≤ t2 implies ψ(t2) ≤ ψ(t1), so (φ, ψ) satisfies the remaining
conditions of the definition, and therefore is a Galois connection.

Conversely, let (φ, ψ) be a Galois connection. If s ≤ ψ(t), then φ(ψ(t)) ≤
φ(s). Since t ≤ φ(ψ(t)), we have t ≤ φ(s). The reverse implication can be
shown in a similar manner. 	


The notion of a closure operator, which was discussed in Section 4.5, can
be generalized to partially ordered sets.

Definition 5.51. Let (L,≤) be a poset. A mapping κ : L −→ L is a closure
operator on L if it satisfies the following conditions:
(i) u ≤ κ(u) (expansiveness),
(ii) u ≤ v implies κ(u) ≤ κ(v) (monotonicity), and
(iii) κ(κ(u)) = κ(u) (idempotency)
for u, v ∈ L.

Example 5.52. Let (S,≤) and (T,≤) be two posets, and suppose that (φ, ψ)
is a Galois connection between these posets. Then, ψφ is a closure on S and
φψ is a closure on T .

By the third part of Definition 5.48, we have s ≤ ψ(φ(s)), so ψφ is expan-
sive. Suppose that s1 ≤ s2. This implies φ(s2) ≤ φ(s1), which in turn implies
ψ(φ(s1)) ≤ ψ(φ(s2)). Thus, ψφ is monotonic.

In exactly the same manner, we can prove that t ≤ φ(ψ(t)) and that φψ
is monotonic.

Since s ≤ ψ(φ(s)), we have φ(ψ(φ(s))) ≤ φ(s). On the other hand, choosing
t = φ(s), we have φ(s) ≤ φ(ψ(φ(s))), so φ(s) = φ(ψ(φ(s))) for every s ∈
S. A similar argument shows that ψ(t) = ψ(φ(ψ(t))). Therefore we obtain
ψ(φ(s)) = ψ(φ(ψ(φ(s)))) for every s ∈ S and φ(ψ(t)) = φ(ψ(φ(ψ(t)))), which
proves that φψ and ψφ are idempotent.

Lemma 5.53. Let (L,≤) be a complete lattice and let κ : L −→ L be a closure
operator. Define the family of κ-closed elements Qκ = {x ∈ L | x = κ(x)}.
Then, 1 ∈ Qκ, and for each subset D of Qκ,

∧
D ∈ Qκ.

Proof. Since 1 ≤ κ(1) ≤ 1, we have 1 ∈ Qκ.
Let D = {ui | i ∈ I} be a collection of elements of L such that ui = κ(ui)

for i ∈ I. Since
∧
D ≤ ui, we have κ(

∧
D) ≤ κ(ui) = ui for every i ∈ I.

Therefore, κ(
∧
D) ≤

∧
D, which implies κ(

∧
D) =

∧
D. Thus,

∧
D ∈ Qκ.

	


Theorem 5.54. Let (L,≤) be a complete lattice and let κ be a closure operator
on L. Then, (Qκ,≤) is a complete lattice.

Proof. This statement follows from Lemma 5.53 and from Theorem 5.43. 	
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If (φ, ψ) is a Galois connection between the posets (S,≤) and (T,≤), then
each of the mappings φ, ψ is an adjunct of the other. The next theorem char-
acterizes those mappings between posets that have an adjunct mapping.

Theorem 5.55. Let (S,≤) and (T,≤) be two posets and let φ : S −→ T be
a mapping. There exists a mapping ψ : T −→ S such that (φ, ψ) is a Galois
connection between (S,≤) and (T,≤) if and only if for every t ∈ T there exists
z ∈ S such that

φ−1({v ∈ T | v ≤ t}) = {u ∈ S | u ≤ z}.

Proof. Suppose that the condition of the theorem is satisfied by φ. Given
t ∈ T , the element z ∈ S is unique because the equality {u ∈ S | u ≤ z} =
{u ∈ S | u ≤ z′} implies z = z′. Define the mapping ψ : T −→ S by ψ(t) = z,
where z is the element of S whose existence is stipulated by the theorem. Note
that s ≤ ψ(t) is equivalent to t ≤ φ(s), which means that (φ, ψ) is a Galois
connection according to Theorem 5.50.

The proof of the necessity of the condition of the theorem is immediate.
	


5.5 Boolean Algebras and Boolean Functions

If L = (L, {∧,∨}) is a bounded distributive lattice that is complemented,
then, by Theorem 5.40, there is a mapping h : L −→ L such that h(x) is the
complement of x ∈ L. This leads to the following definition.

Definition 5.56. A Boolean lattice is a bounded distributive lattice that is
complemented.

An equivalent notion that explicitly introduces two zero-ary operations
and one unary operation is the notion of Boolean algebra.

Definition 5.57. A Boolean algebra is an algebra B = (B, {∧,∨, ¯ , 0, 1})
having the type (2, 2, 1, 0, 0) that satisfies the following conditions:
(i) (B, {∧,∨}) is a distributive lattice having 0 as its least element and 1 as

its greatest element, and
(ii)¯ : B −→ B is a unary operation such that x̄ is the complement of x for

x ∈ B.

Every Boolean algebra has at least two elements, the ones designated by
its zero-ary operations.

Example 5.58. The two-element Boolean algebra is the Boolean algebra B2 =
({0, 1}, {∧,∨, ¯, 0, 1}) defined by:



5.5 Boolean Algebras and Boolean Functions 193

0 ∧ 0 = 0, 1 ∧ 1 = 1,
0 ∧ 1 = 1 ∧ 0 = 0,
0 ∨ 0 = 0, 1 ∨ 1 = 1,
0 ∨ 1 = 1 ∨ 0 = 1,
0̄ = 1, 1̄ = 0.

Example 5.38 can now be recast as introducing a Boolean algebra.

Example 5.59. The set P(S) of subsets of a set S defines a Boolean algebra
(P(S), {∩,∪, ¯, ∅, S}), where X = S −X.

Example 5.60. Let B4 = ({0, a, ā, 1}, {∧,∨, ¯ , 0, 1}) be the four-element
Boolean algebra whose Hasse diagram is given in Figure 5.4. We leave it to
the reader to verify that the poset defined by this diagram is indeed a Boolean
algebra.

�
�
��
�

�
���

�
��
�
�
��

�

��

�

0

1

a ā

Fig. 5.4. Hasse diagram of the four-element Boolean algebra.

The existence of the zero-ary operations means that every subalgebra of a
Boolean algebra must contain at least 0 and 1.

In a Boolean algebra B = (B, {∧,∨, ¯, 0, 1}), we have x = x because of the
symmetry of the definition of the complement and because the complement
of an element is unique (since B is a distributive lattice). This property is
known as the involutive property of the complement.

Theorem 5.61 (DeMorgan Laws). Let B = (B, {∧,∨, ¯ , 0, 1}) be a
Boolean algebra. We have

x ∧ y = x̄ ∨ ȳ, x ∨ y = x̄ ∧ ȳ

for x, y ∈ B.

Proof. By applying the distributivity, commutativity, and associativity of ∧
and ∨ operations, we can write



194 5 Lattices and Boolean Algebras

(x̄ ∨ ȳ) ∧ (x ∧ y) = (x̄ ∧ (x ∧ y)) ∨ (ȳ ∧ (x ∧ y))
= ((x̄ ∧ x) ∧ y) ∨ ((ȳ ∧ y) ∧ x)
= (0 ∧ y) ∨ (0 ∧ x) = 0

and

(x̄ ∨ ȳ) ∨ (x ∧ y) = (x̄ ∨ ȳ ∨ x) ∧ (x̄ ∨ ȳ ∨ y)
= (1 ∨ ȳ) ∧ (1 ∨ x̄) = 1 ∨ 1 = 1

for x, y ∈ B. This shows that x̄ ∨ ȳ is the complement of x ∧ y; that is,
x ∧ y = x̄ ∨ ȳ.

The second part of the theorem has a similar argument. 	


Definition 5.62. Let Bi = (Bi, {∧,∨, ¯, 0, 1}), i = 1, 2, be two Boolean alge-
bras. A morphism from B1 to B2 is a function h : B1 −→ B2 such that

h(x ∧ y) = h(x) ∧ h(y),
h(x ∨ y) = h(x) ∨ h(y),

h(x̄) = h(x),

for x, y ∈ B1.
An isomorphism of Boolean algebras is a morphism that is also a bijection.

Example 5.63. Let B = (B, {∧,∨, ¯, 0, 1}) be a Boolean algebra and let c, d ∈
B such that c ≤ d. We can define a Boolean algebra on the interval [c, d] as

B[c,d] = ([c, d], {∧,∨, ˜, c, d}),

where ∧,∨ are the restrictions of the operations of B to the set [c, d] and
x̃ = (x̄ ∨ c) ∧ d for x ∈ B.

The projection h : B −→ [c, d] defined by h(x) = (x∨ c)∧ d for x ∈ B is a
morphism between B and B[c,d]. We already saw in Example 5.23 that h is a
lattice morphism. Thus, we need to prove only that h(x) = h(x̄) = (x̄∨ c)∧ d
for x ∈ B. The verification of this equality is left to the reader.

Boolean Rings

Let B = (B, {∧,∨, ¯ , 0, 1}) be a Boolean algebra and let “⊕” be a binary
operation on B defined by

a⊕ b = (a ∧ b̄) ∨ (ā ∧ b)

for a, b ∈ B.
It is easy to verify that
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a⊕ b = b⊕ a,
(a⊕ b)⊕ c = a⊕ (b⊕ c),

a⊕ a = 0,
a⊕ 1 = ā,

a ∧ (b⊕ c) = (a ∧ b)⊕ (a ∧ c),
a ∧ 1 = a,

for every a, b, c ∈ B. Thus, the Boolean algebra B has a related natural struc-
ture of a commutative unitary ring (B, {0, 1,⊕, h,∧}), where the role of the
addition or the ring is played by the operation ⊕, the additive inverse is given
by h(a) = a for a ∈ B, and each element is idempotent.

Example 5.64. For the Boolean algebra (P(S), {∧,∨, ¯ , ∅, S}) introduced in
Example 5.59, the additive operation of the ring is the symmetric difference
of sets

U ⊕ V = (U − V ) ∪ (V − U)

for U, V ∈ P(S). Thus, we obtain a commutative unitary ring structure
(P, {∅, S,⊕, h,∩}), where h(U) = U for U ∈ P(S).

A commutative unitary ring in which each element is its own additive
inverse and each element is idempotent defines a Boolean algebra, as we show
next.

Theorem 5.65. Let I = (B, {0, 1,+, h, ·, 1} be a commutative unitary ring
such that h(b) = b and b ∧ b = b for every b ∈ B. Define the operations ∨,∧,̄
by

a ∨ b = a+ b+ a · b,
a ∧ b = a · b,

ā = 1 + a,

for a ∈ B. Then, B = (B, {∧,∨, ¯, 0, 1}) is a Boolean algebra.

Proof. The operation ∨ is commutative because I is a commutative ring. Ob-
serve that

a ∨ (b ∨ c) = a ∨ (b+ c+ bc)
= a+ b+ c+ bc+ ab+ ac+ abc,

(a ∨ b) ∨ c = a+ b+ ab+ c+ ac+ bc+ abc,

which proves that ∨ is also associative. Further, we have a∨a = a+a+aa = a,
which proves that ∨ is idempotent.

The operation “∧” is known to be commutative, associative, and idem-
potent since it coincides with the multiplication of the ring I. To prove the
distributivity, note that
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a ∧ (b ∨ c) = a(b+ c+ bc) = ab+ ac+ abc

and
(a ∧ b) ∨ (a ∧ c) = ab+ ac+ (ab)(ac) = ab+ ac+ abc

due to the commutativity and idempotency of multiplication in I. Thus, we
have shown that B = (B, {∧,∨, 0, 1}) is a distributive lattice having 0 as its
least element and 1 as its largest element.

We need to show only that h(a) = 1 + a is the complement of a. This
is indeed the case because a ∨ (1 + a) = a + 1 + a + a(1 + a) = 1 and
a ∧ h(a) = a(1 + a) = a+ a = 0 for every a ∈ B. 	


Boolean Functions

Definition 5.66. Let B = (B, {∧,∨, ¯, 0, 1}) be a Boolean algebra. For n ∈ N,
the set BF(B, n) of Boolean functions of n arguments over B contains the
following functions:
(i) For every b ∈ B, the constant function fb : Bn −→ B defined by

fb(x0, . . . , xn−1) = b

for every x0, . . . , xn−1 ∈ B belongs to BF(B, n).
(ii) Every projection function pn

i : Bn −→ B given by pn
i (x0, . . . , xn−1) = xi

for every x0, . . . , xn−1 ∈ B belongs to BF(B, n).
(iii) If f, g ∈ BF(B, n), then the functions f ∧ g, f ∨ g, and f̄ given by

(f ∧ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1) ∧ g(x0, . . . , xn−1),
(f ∨ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1) ∨ g(x0, . . . , xn−1),

and
f̄(x0, . . . , xn−1) = f(x0, . . . , xn−1)

for every x0, . . . , xn−1 ∈ B belong to BF(B, n).

Definition 5.67. For n ∈ N, the set SBF(B, n) of simple Boolean functions
of n arguments consists of the following functions:
(i) Every projection function pn

i : Bn −→ B given by pn
i (x0, . . . , xn−1) = xi

for every x0, . . . , xn−1 ∈ B.
(ii) If f, g ∈ SBF(B, n), then the functions f ∧ g, f ∨ g and f̄ given by

(f ∧ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1) ∧ g(x0, . . . , xn−1),
(f ∨ g)(x0, . . . , xn−1) = f(x0, . . . , xn−1) ∨ g(x0, . . . , xn−1),

and
f̄(x0, . . . , xn−1) = f(x0, . . . , xn−1)

for every x0, . . . , xn−1 ∈ B belong to SBF(B, n).
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If x ∈ B and a ∈ {0, 1}, define the function xa as

xa =

{
x if a = 1
x̄ if a = 0.

Observe that x = a if and only if xa = 1, and x = ā if and only if xa = 0.
For A = (a1, . . . , an) ∈ {0, 1, ∗}n, define the simple Boolean function tA :

Bn −→ B as
tA(x1, . . . , xn) = x

ai1
i1
∧ xai2

i2
∧ xaip

ip

for (x1, . . . , xn) ∈ Bn, where {ai1 , . . . , aip
} = {ai | ai �= ∗, 1 ≤ i ≤ n}. This

function is an n-ary term for the Boolean algebra B. The set of n-ary terms
of a Boolean algebra is denoted by T(B, n).

Those components of A that equal ∗ denote the places of variables that
do not appear in the term tA.

Example 5.68. Let A = (1, ∗, 0, 0, ∗) ∈ {0, 1}n. The 5-term tA is

t(x1, x2, x3, x4, x5) = x1 ∧ x̄3 ∧ x̄4

for every (x1, x2, x3, x4, x5) ∈ B5.

It is easy to see that if A,B ∈ {0, 1}n, then

tB(A) =

{
1 if A = B,
0 if A �= B.

To simplify the notation, whenever there is no risk of confusion, we omit the
symbol “∧” and denote an application of this operation by a simple juxtapo-
sition of symbols. For example, instead of writing a ∧ b, we use the notation
ab. For the same reason, we will assume thar ∧ has higher priority than ∨.
These assumptions allow us to write a ∨ bc instead of a ∨ (b ∧ c).

Theorem 5.69. Let B = (B, {∧,∨, ¯ , 0, 1}) be a Boolean algebra. For every
(x1, . . . , xn) ∈ Bn, where n ≥ 1, we have
(i) tA(x1, . . . , xn)tB(x1, . . . , xn) = 0 for A,B ∈ {0, 1}n and A �= B,
(ii)
∨
{tA(x1, . . . , xn) | A ∈ {0, 1}n} = 1, and

(iii) tA(x1, . . . , xn) =
∨
{tB(x1, . . . , xn) | B ∈ {0, 1}n − {A}}

for every (x1, . . . , xn) ∈ Bn.

Proof. Let A = (a0, . . . , an−1) and B = (b0, . . . , bn−1). If A �= B, then there
exists i such that 0 ≤ i ≤ n − 1 and ai �= bi. Therefore, by applying the
commutativity and associativity properties of ∧, the expression

(tAtB)(x1, . . . , xn) = xa1
1 ∧ · · · ∧ xan

n ∧ xb1
1 ∧ · · · ∧ xbn

n

can be written as
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(tAtB)(x1, . . . , xn) = · · · ∧ xai
i ∧ xbi

i ∧ · · · = · · · ∧ x1
i ∧ x0

i ∧ · · · = 0.

The proof of the second part can be done by induction on n. In the base case,
n = 1, the desired equality amounts to x0

1 ∨ x1
1 = 1, which obviously holds.

Suppose now that the equality holds for n. We have∨
{(tA(x1, . . . , xn+1) | A ∈ {0, 1}n+1}

=
∨
{(x1, . . . , xn)(a1,...,an) ∧ x0

n+1 | (a1, . . . , an) ∈ {0, 1}n}∨
{(x1, . . . , xn)(a1,...,an) ∧ x1

n+1 | (a1, . . . , an) ∈ {0, 1}n}

=
∨
{(x1, . . . , xn)(a1,...,an) | (a1, . . . , an) ∈ {0, 1}n} ∧ (x0

n+1 ∨ x1
n+1)

=
∨
{(x1, . . . , xn)(a1,...,an) | (a1, . . . , an) ∈ {0, 1}n}

= 1 (by the inductive hypothesis).

Part (iii) of the theorem follows by observing that

tA(x1, . . . , xn) =

{
1 if (x1, . . . , xn) �= A,
0 if (x1, . . . , xn) = A.

The right-hand member of the equality takes exactly the same values, as can
be seen easily. 	


The set BF(B, n) is itself a Boolean algebra relative to the operations ∨,
∧, and¯from Definition 5.66. The least element is the constant function f0 :
Bn −→ B given by f0(x1, . . . , xn) = 0, and the largest element is the constant
function f1 : Bn −→ B given by f1(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ Bn.

A partial order on BF(B, n) can be introduced by defining f ≤ g if
f(x1, . . . , xn) ≤ g(x1, . . . , xn) for x1, . . . , xn ∈ B. It is clear that f ≤ g if
and only if f ∨ g = g or f ∧ g = f .

Theorem 5.70. Let B = (B, {∧,∨, ¯ , 0, 1}) be a Boolean algebra, A,B ∈
{0, 1, ∗}n, and let tA and tB be the terms in T(B, n) that correspond to A and
B, respectively. We have tA ≤ tB if and only if ak = ∗ implies bk = ∗ and
ak �= ∗ implies ak = bk or bk = ∗ for 1 ≤ k ≤ n.

Proof. Suppose that tA ≤ tB; that is,

x
ai1
i1
∧ xai2

i2
∧ xaip

ip
≤ xbj1

j1
∧ xbj2

j2
∧ xbjq

jq
,

for (x1, . . . , xn) ∈ Bn. Here {i1, . . . , ip} = {i | 1 ≤ i ≤ n and ai �= ∗} and
{j1, . . . , jq} = {j | 1 ≤ j ≤ n and bj �= ∗}.

Suppose that ak = ∗ but bk ∈ {0, 1}. Choose xi�
= ai�

for 1 ≤ � ≤ p and
xk = b̄k. The remaining components of (x1, . . . , xk) can be chosen arbitrarily.
Clearly, tA(x1, . . . , xn) = 1 and tB(x1, . . . , xn) = 0 because xbk

k = 0. This
contradicts the inequality tA ≤ tB, so we must have bk = ∗.



5.5 Boolean Algebras and Boolean Functions 199

Suppose now that ak ∈ {0, 1} and bk �= ∗. This means that xk occurs
in both tA and tB, so there exists ir = js = k for some r, s, 1 ≤ r ≤ p
and 1 ≤ s ≤ q. Choose as before xi�

= ai�
for 1 ≤ � ≤ p, which implies

tA(x1, . . . , xn) = 1, which in turn implies tB(x1, . . . , xn) = 1. This is possible
only if bk = ak, which concludes the argument. 	


Corollary 5.71. The minimal elements of the poset (T(B, n),≤) are terms
that depend on all their arguments, that is, terms of the form

tB(x1, . . . , xn) = xb1
1 x

b2
2 · · ·xbn

n

for (x1, . . . , xn) ∈ Bn.

Proof. If tB is a minimal element of (T(B, n),≤), then tA ≤ tB implies tA =
tB. Suppose that there is k such that bk = ∗. Then, by defining

ai =

{
bi if i �= k,

0 or 1 otherwise,

we would have tA < tB, which would contradict the minimality of tB. 	

The minimal terms of the poset (T(B, n),≤), described by Corollary 5.71

are known as n-ary minterms.

Definition 5.72. Let B = (B, {∧,∨, ¯ , 0, 1}) be a Boolean algebra and let
f : Bn −→ B be a Boolean function. A disjunctive normal form of f is
an expression of the form

∨k
i=1 t

Ai(x1, . . . , xn)bAi , where Ai ∈ {0, 1, ∗}n,
{bA1 , . . . , bAk

} ⊆ B, and

f(x1, . . . , xn) =
k∨

i=1

tAi(x1, . . . , xn)bAi

for (x1, . . . , xn) ∈ Bn.

We can prove the existence of a special disjunctive normal form for every
Boolean function, which involves only minterms.

Theorem 5.73. Let B = (B, {∧,∨, ¯, 0, 1}) be a Boolean algebra. A function
f : Bn −→ B is a Boolean function if and only if there exists a family {bA |
A ∈ {0, 1}n} of elements of B

f(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)bA (5.10)

for every (x1, . . . , xn) ∈ Bn.
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Proof. The sufficiency of this condition is obvious. The necessity will be shown
by induction on the definition of Boolean functions.

For the base case, we need to consider constant functions and projections.
Let A = (a0, . . . , an−1) ∈ {0, 1}n. For a constant function fa(x1, . . . , xn) = a
for (x1, . . . , xn), we can define bA = a for every A ∈ {0, 1}n because

f(x1, . . . , xn) = a =
∨

A∈{0,1}n

tA(x1, . . . , xn)a

by the second part of Theorem 5.69.
For a projection pn

i : Bn −→ B given by pn
i (x1, . . . , xn) = xi for

(x1, . . . , xn) ∈ Bn, let bA be

bA =

{
1 if ai = 1,
0 otherwise,

for A ∈ {0, 1}n. We have∨
A∈{0,1}n

tA(x1, . . . , xn)bA

=
∨

A∈{0,1}n

t(a1,...,ai−1,1,ai+1,...,an)(x1, . . . , xn)

= xi

∨
A∈{0,1}n−1

(x0, . . . , xi−1, xi+1, . . . , xn−1)(a0,...,ai−1,ai+1,...,an−1)

= xi = pn
i (x1, . . . , xn).

For the inductive step, suppose that the statement holds for the functions
f, g ∈ BF(B, n); that is,

f(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)bA,

g(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)cA,

for (x1, . . . , xn) ∈ Bn. Then, f ∨ g is

(f ∨ g)(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)(bA ∨ cA)

by the associativity, commutativity, and idempotency of “∨”.
For f ∧ g, we can write
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(f ∧ g)(x1, . . . , xn) =

⎛
⎝ ∨

A∈{0,1}n

tA(x1, . . . , xn)bA

⎞
⎠

∧

⎛
⎝ ∨

A∈{0,1}n

tA(x1, . . . , xn)cA

⎞
⎠

=
∨

A∈{0,1}n

tA(x1, . . . , xn)(bA ∧ cA)

by applying the distributivity properties of the operations ∨ and ∧.
For f , we have

f(x1, . . . , xn) =
∧

A∈{0,1}n

(
tA(x1, . . . , xn) ∨ bA

)

=
∧

A∈{0,1}n

(∨
{tB(x1, . . . , xn) | B ∈ {0, 1}n − {A}} ∨ bA

)

=
∧

A∈{0,1}n

(∨
{tB(x1, . . . , xn) | B ∈ {0, 1}n − {A}} ∨ bA

)
.

For C,D ∈ {0, 1}n and (x1, . . . , xn) ∈ Bn, define φC,D(x1, . . . , xn) as

φC,D(x1, . . . , xn) =

{
tD(x1, . . . , xn) if D �= C,
bC if D = C.

Then, we can write

f(x1, . . . , xn) =
∧

A∈{0,1}n

∨
D∈{0,1}n

φA,D(x1, . . . , xn)

=
∨

D∈{0,1}n

∧
A∈{0,1}n

φA,D(x1, . . . , xn)

(by the distributivity property)

=
∨

D∈{0,1}n

(tD(x1, . . . , xn) ∧ bD),

which concludes the argument. 	

Equality (5.10) is known as the standard disjunctive normal form of the

Boolean function f .
Note that by replacing (x1, . . . , xn) by C = (c1, . . . , cn) ∈ {0, 1}n in Equal-

ity (5.10), we obtain f(c1, . . . , cn) = bC, which shows that the elements of the
form bA, known as the standard disjunctive coefficients, are uniquely deter-
mined by the function f . Now, we can rewrite Equality (5.10) as

f(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)f(A)
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for every (x1, . . . , xn) ∈ Bn.
Consider the standard disjunctive normal form of the Boolean function

f : Bn −→ B given by

f(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)f(A).

By applying the ¯ operation in both members, we can write

f(x1, . . . , xn) =
∧

A∈{0,1}n

(tA(x1, . . . , xn) ∨ f(A))

=
∧

(a1,...,an)∈{0,1}n

(
n∨

i=1

xāi
i ∨ f(a1, . . . , an)

)

=
∧

(ā1,...,ān)∈{0,1}n

(
n∨

i=1

xai
i ∨ f(ā1, . . . , ān)

)

=
∧

(a1,...,an)∈{0,1}n

(
n∨

i=1

xai
i ∨ f(ā1, . . . , ān)

)
.

The last equality is known as the conjunctive normal form of the function f .
The existence of the standard disjunctive normal form shows that a

Boolean function f : Bn −→ B is completely determined by its values on
n-tuples A ∈ {0, 1}n. Thus, to fully specify a Boolean function, we can use a
table that has 2n rows, one for each n-tuple A.

Example 5.74. Consider the Boolean function f : B3 −→ B given by

x1 x2 x3 f(x1, x2, x3)
0 0 0 a
0 0 1 a
0 1 0 a
0 1 1 b
1 0 0 a
1 0 1 b
1 1 0 b
1 1 1 b

Its standard disjunctive normal form is

f(x1, x2, x3) = t(0,0,0)(x1, x2, x3)a ∨ t(0,0,1)(x1, x2, x3)a ∨ t(0,1,0)(x1, x2, x3)a
∨t(0,1,1)(x1, x2, x3)b ∨ t(1,0,0)(x1, x2, x3)a ∨ t(1,0,1)(x1, x2, x3)b
∨t(1,1,0)(x1, x2, x3)b ∨ t(1,1,1)(x1, x2, x3)b.

Theorem 5.75. Let B = (B, {∧,∨, ¯ , 0, 1}) be a Boolean algebra and let
f, g ∈ BF(B, n). We have f ≤ g if and only if f(A) ≤ g(A) for every A ∈
{0, 1}n.
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Proof. The necessity of the condition is obvious. Suppose that f(A) ≤ g(A)
for every A ∈ {0, 1}n. Then, by the monotonicity of the binary operations of
the Boolean algebra, we have

f(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)f(A)

≤
∨

A∈{0,1}n

tA(x1, . . . , xn)g(A) = g(x1, . . . , xn)

for x1, . . . , xn ∈ Bn, which gives the desired inequality. 	

The next theorem (see [114]) is a characterization of simple Boolean func-

tions.

Theorem 5.76. Let B = (B, {∧,∨, ¯, 0, 1}) be a Boolean algebra. The follow-
ing statements that concern a function f : Bn −→ B are equivalent:
(i) f is a simple Boolean function.
(ii) f is a Boolean function, and f(A) ∈ {0, 1} for every A ∈ {0, 1}n.
(iii) f(x1, . . . , xn) = 0 for every (x1, . . . , xn) ∈ Bn or

f(x1, . . . , xn) =
∨
{(x1, . . . , xn)A | f(A) = 1}.

Proof. (i) implies (ii): Clearly every simple Boolean function is a Boolean func-
tion. The proof that f(A) ∈ {0, 1} for every A ∈ {0, 1}n is by induction on
the definition of simple Boolean functions and is left to the reader.

(ii) implies (iii): This implication follows from the existence of the standard
disjunctive normal form of Boolean functions.

(iii) implies (i): The constant function f0(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈
Bn can be written as f0(x1, . . . , xn) = x1 ∧ x̄1, so f0 is a simple Boolean
function. It is clear that if f(x1, . . . , xn) =

∨
{(x1, . . . , xn)A | f(A) = 1},

then f is a simple Boolean function. 	

For a Boolean algebra B = (B, {∧,∨, ¯ , 0, 1}) with |B| = k there exist

kkn

functions of the form f : Bn −→ B. The number of Boolean functions
can be considerably smaller. Indeed, since a Boolean function f is completely
determined by the collection {f(A) | A ∈ {0, 1}n}, it follows that the number
of Boolean functions in BF(B, n) is 22n

. For example, if B is the four-element
Boolean algebra from Example 5.60, there are 445

= 22048 functions of five ar-
guments defined on the Boolean algebra. However, only 232 of these functions
are Boolean functions.

Binary Boolean Functions

Definition 5.77. Let B2 = ({0, 1}, {∧,∨, ¯, 0, 1}) be the two-element Boolean
algebra. A binary Boolean function is a function f : {0, 1}n −→ {0, 1}.

We saw that in general Boolean algebra there are many functions that
are not Boolean. However, in two-element Boolean algebras, any function is
a Boolean function, as we show next.
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Theorem 5.78. Every function f : {0, 1}n −→ {0, 1} is a binary Boolean
function in the two-element Boolean algebra B2.

Proof. Consider the binary Boolean function g : {0, 1}n −→ {0, 1} defined by
g(x1, . . . , xn) =

∨
A∈{0,1}n(x1, . . . , xn)Af(A). It is clear that g(A) = f(A) for

every A ∈ {0, 1}n, so g = f . Thus, f =
∨

A∈{0,1}n(x1, . . . , xn)Af(A), which
implies that f is indeed a Boolean function. 	


Definition 5.79. An implicant of a binary Boolean function f : {0, 1}n −→
{0, 1} is a term tA ∈ T(B2, n) such that tA ≤ f .

The rank of an implicant tA of f : {0, 1}n −→ {0, 1} is the number r(tA) =
|{i | 1 ≤ i ≤ n, ai = ∗}|. Observe that implicants with higher ranks contain
fewer literals than implicants with lower rank.

The set of implicants of rank k of f , 0 ≤ k ≤ n, is the set Lk
f that consists

of all implicants of rank k for f .
The set of implicants of f will be denoted by IMPLf . For f : {0, 1}n −→

{0, 1}, we have IMPLf =
⋃n−1

k=0 L
k
f .

Starting from the standard disjunctive normal form for a function f :
Bn −→ B,

f(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)f(A),

it follows that if f(A) = 1, then the minterm tA is an implicant of f in
L0

f . Furthermore, each such term is a minimal implicant of f (relative to the
partial order introduced on T(B2, n)).

In the next definition, we introduce a partial operation on the set T(B2, n).

Definition 5.80. Let A,B ∈ {0, 1, ∗}n be two n-tuples. Suppose that there
exists k, 1 ≤ k ≤ n such that
1. ai = bi if 1 ≤ i ≤ n and i �= k;
2. ak, bk ∈ {0, 1} and ak = b̄k.

The consensus of the terms tA and tB is the term tC, where C = (c1, . . . , cn)
and

ci =

{
ai = bi if i �= k,

∗ otherwise,

for 1 ≤ i ≤ n.
The consensus of tA and tC is denoted by tA � tB.

Observe that if the consensus tC of the terms tA and tA exists, then
r(tC) = r(tA)+1 = r(tB)+1. Furthermore, it is immediate that tC = tA∨ tB
in the Boolean algebra of Boolean functions.



5.5 Boolean Algebras and Boolean Functions 205

Example 5.81. Let tA and tB be the terms

tA = x1 ∧ x̄3 ∧ x̄4 ∧ x6,

tB = x1 ∧ x3 ∧ x̄4 ∧ x6,

from T(B2, 6). Their consensus is the term

tA(x1, . . . , x6) ∨ tB(x1, . . . , x6)
= (x1 ∧ x̄3 ∧ x̄4 ∧ x6) ∨ (x1 ∧ x3 ∧ x̄4 ∧ x6)
= x1 ∧ x̄4 ∧ x6.

Theorem 5.82. Let f : {0, 1}n −→ {0, 1} be a Boolean function. If tA and
tB are implicants of f and their consensus tC = tA ∨ tB exists, then tC is also
an implicant of f .

Proof. The existence of the consensus tC of tA and tB means that there exists
k, 1 ≤ k ≤ n such that ai = bi if 1 ≤ i ≤ n and a �= k, ak, bk ∈ {0, 1}, and
ak = b̄k.

Since both tA and tB are implicants of f , it follows that tA(x1, . . . , xn) ≤
f(x1, . . . , xn) and tB(x1, . . . , xn) ≤ f(x1, . . . , xn) for every (x1, . . . , xn) ∈
{0, 1}n. Thus,

tC(x1, . . . , xn) = tA(x1, . . . , xn) ∨ tB(x1, . . . , xn) ≤ f(x1, . . . , xn),

which means that tC is an implicant of f . 	


Definition 5.83. A prime implicant of a function f : {0, 1}n −→ {0, 1} is a
maximal element of the poset (IMPLf ,≤).

Theorem 5.84. For every binary Boolean function f : {0, 1}n −→ {0, 1}, we
have

Lk+1
f (ϕ) = {tA ∨ tB | tA ∨ tB ∈ Lk

f and tA ∨ tB exists}
for 0 ≤ k ≤ n− 1.

Proof. We observed already that if r(tA) = r(tB) = k and tA∨ tB exists, then
r(tA ∨ tB) = k + 1. Thus, we have

Lk+1
f (ϕ) ⊇ {tA ∨ tB | tA ∨ tB ∈ Lk

f and tA ∨ tB exists}

for 0 ≤ k ≤ n− 1, and we need to prove only the reverse inclusion.
Let tC ∈ Lk+1

f , where C = (c1, . . . , cn). There exists �, 1 ≤ � ≤ n such

that c� = ∗, so tC does not depend on x�. If tC(x1, . . . , xn) = x
ci1
i1
· · ·xcin−k−1

in−k−1
,

then � �∈ {i1, . . . , in−k−1} and both

tA(x1, . . . , xn) = x
ci1
i1
· · ·x0

� · · ·x
cin−k−1
in−k−1

and

tA(x1, . . . , xn) = x
ci1
i1
· · ·x1

� · · ·x
cin−k−1
in−k−1
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belong to Lk
f . Clearly, tC is the consensus of tA and tB, which yields the

reverse inclusion. 	

Theorem 5.84 suggests that we can generate the posets of all implicants

of a binary Boolean function f : {0, 1}n −→ {0, 1} by producing inductively
the sets L0

f , . . . , L
n−1
f . The algorithm that implements this idea is the Quine-

McCluskey algorithm, discussed next.

Algorithm 5.85 (Quine-McCluskey Algorithm)
Input: A binary Boolean function given in tabular form.
Output: The set IMPLf of all implicants of f .
Method: Let L0

f be the set of minterms for f .
For each k, 0 ≤ k ≤ n− 2, include in Lk+1

f every
term that can be obtained as a consensus of two terms
from Lk

f .
Return the collection

⋃n−1
k=0 L

k
f .

The correctness of the algorithm is an immediate consequence of Theo-
rem 5.84.

Example 5.86. Consider the Boolean function f : {0, 1}3 −→ {0, 1} given by

x1 x2 x3 f(x1, x2, x3)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Its standard disjunctive normal form is

f(x1, x2, x3) = t(0,1,1)(x1, x2, x3) ∨ t(1,0,1)(x1, x2, x3)
∨t(1,1,0)(x1, x2, x3) ∨ t(1,1,1)(x1, x2, x3),

so the set L0
f consists of the minterms

t(0,1,1)(x1, x2, x3) = x0
1x

1
2x

1
3,

t(1,0,1)(x1, x2, x3) = x1
1x

0
2x

1
3,

t(1,1,0)(x1, x2, x3) = x1
1x

1
2x

0
3,

t(1,1,1)(x1, x2, x3) = x1
1x

1
2x

1
3,

for (x1, x2, x3) ∈ {0, 1}3.
The Hasse diagram of IMPLf is shown in Figure 5.5. Clearly, IMPLf =

L0
f∪L1

f because there is no consensus possible among any two of the implicants
from L1

f .
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� � � �

x0
1x

1
2x

1
3 x1

1x
0
2x

1
3 x1

1x
1
2x

0
3 x1

1x
1
2x

1
3

� ��

x1
2x

1
3 x1

1x
1
3 x1

1x
1
2

Fig. 5.5. Hasse diagram of IMPLf .

Definition 5.87. A nonempty set of terms T = {tB1 , . . . , tBm} of impli-
cants of a binary Boolean function f : {0, 1}n −→ {0, 1} is a cover of f
if f(x1, . . . , xn) =

∨m
i=1 t

Bi(x1, . . . , xn).
T is a minimal cover of f if T is a cover of f and no proper subset of T

is a cover of f .

The set of all minterms of f is clearly a cover of f . However, other covers
may exist for f that contain terms of rank that is higher than 0 and it is
important to determine such simpler covers.

Since (IMPLf ,≤) is a finite poset, for every tB ∈ IMPLf there is a prime
implicant tA such that tB ≤ tA.

Theorem 5.88. Let f be a binary Boolean function that is not the constant
function f0. A set of implicants of f , T = {tB1 , . . . , tBm} is a cover of f if
and only if for every minterm tA of f there is an implicant tB ∈ T such that
tA ≤ tBi .

Proof. Suppose that T satisfies the condition of the theorem. Let {A ∈
{0, 1}n | f(A) = 1} = {A1, . . . ,Ak}. Then, since

f(x1, . . . , xn) =
∨

1≤i≤k

tA(x1, . . . , xn) ≤
∨

1≤l≤m

tBl ≤ f(x1, . . . , xn),

it is immediate that T is a cover for ϕ.
Conversely, let T be a cover of f , T = {tB1 , . . . , tBm} and let tA be a

minterm, where A = (a1, . . . , an). Since

tA(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤
∨
{tB(x1, . . . , xn) | tB ∈ T},

it follows that there is B such that tB(a1, . . . , an) = 1. This implies tA ≤ tB.
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Corollary 5.89. Let f : {0, 1}n −→ {0, 1} be a function that is distinct from
the constant function f0. If T = {tB1 , . . . , tBm} is a cover of f , and tC is
an implicant of f such that tBi < tC for some i, 1 ≤ i ≤ m, then T ′ =
{tB1 , . . . , tBi−1 , tC, tBi+1 , . . . , tBm} is a cover of f .

Proof. The statement follows immediately from Theorem 5.88.
We now discuss the Quine-McCluskey systematic construction that starts

with the set of prime implicants and the set of minterms of a nonzero Boolean
function f : {0, 1}n −→ {0, 1} and yields covers of f that consist of prime
implicants.

Let Mf = (mij) be a p×q-matrix having one row for each prime implicant
tB1 , . . . , tBp and one column for each minterm {tA1 , . . . , tAq} of f . Define

mij =

{
1 if tAj ≤ tAi ,

0 otherwise.

If a column of Mf contains a single 1, that corresponding prime implicant
will be referred to as an essential prime implicant. Denote by Ef the set of
essential prime implicants for f . Clearly, the set Ef must be contained in any
cover by prime implicants of f .

Eliminate from M all essential prime implicants and the columns corre-
sponding to the minterms they dominate.

If the set of rows of Mf in which a column of a minterm tA has 1s strictly
includes the set of rows in which some other column of a minterm tA

′
has 1s,

then eliminate column tA. Next, if among the remaining columns several have
the same pattern of 1s, then retain only one of them.

Eliminate from Mf all rows that contain no 1s. The output consists of
every minimal set of rows in Mf such that at least one 1 exists in these rows
for every column, to each of which we add the set of essential prime implicants
Ef .

Example 5.90. Let f : {0, 1}4 −→ {0, 1} be the binary Boolean function de-
fined by
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x1 x2 x3 x4 f(x1, x2, x3)
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Starting from the minterms

tA1 = x̄1x̄2x̄3x̄4, t
A5 = x̄1x2x3x̄4,

tA2 = x̄1x̄2x3x̄4, t
A6 = x̄1x2x3x4,

tA3 = x̄1x2x̄3x̄4, t
A7 = x1x̄2x3x̄4,

tA4 = x̄1x2x̄3x4, t
A8 = x1x2x3x̄4,

we have the following sets of implicants computed by using the Quine-
McCluskey algorithm:

L0
f = {x̄1x̄2x̄3x̄4, x̄1x̄2x3x̄4, x̄1x2x̄3x̄4, x̄1x2x̄3x4,

x̄1x2x3x̄4, x̄1x2x3x4, x1x̄2x3x̄4, x1x2x3x̄4, },
L1

f = {x̄1x̄2x̄4, x̄1x̄3x̄4, x̄1x3x̄4, x̄2x3x̄4, x̄1x2x̄3,

x̄1x2x4, x̄1x2x3, x2x3x̄4, x1x3x̄4},
L2

f = {x̄1x̄4, x3x̄4, x̄1x2}.

The prime implicants of f are the terms tB1 = x̄1x̄4, tB2 = x3x̄4, and tB3 =
x̄1x2.

The matrix Mf introduced above is a 3× 8 matrix:

Mf =

⎛
⎝1 1 1 0 1 0 0 0

0 1 0 0 1 0 1 1
0 0 1 1 1 1 0 0

⎞
⎠ .

The first, fourth, and the last three columns contain exactly one 1. Thus, all
three prime implicants are essential, and they form a unique cover of prime
implicants of f .
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Definition 5.91. A partially defined Boolean function (pdBf) on the two-
element Boolean algebra is a partial function f : {0, 1}n � {0, 1}.

A pdBf f : {0, 1}n � {0, 1} is completely defined by the pair of disjoint
sets

Tf = {A ∈ Dom(f) | f(A) = 1},
Ff = {A ∈ Dom(f) | f(A) = 0}.

Definition 5.92. Let f : {0, 1}n −→ {0, 1} be a binary Boolean function and
let i be an integer such that 1 ≤ i ≤ n. The function is i-positive if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for every x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
Similarly, f is i-negative if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for every x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
The function is i-monotonic if it is either i-positive or i-negative.

Example 5.93. For every A ∈ {0, 1, ∗}n, the term tA is i-monotonic for 1 ≤
i ≤ n. Indeed, if ai ∈ {1, ∗}, then tA is i-positive; if ai ∈ {0, ∗}, then tA is
i-negative.

Theorem 5.94. Let f : {0, 1}n −→ {0, 1} be a binary Boolean function and
let i be an integer such that 1 ≤ i ≤ n. If f is i-positive, then for every prime
implicant tA of f we have ai ∈ {1, ∗}, where A = (a1, . . . , an).

If f is i-negative, then ai ∈ {0, ∗}.

Proof. Suppose that f is i-positive. Then,

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for every x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
Suppose that ai = 0, that is,

tA(x1, . . . , xn) = · · · ∧ x̄i ∧ · · · .

We claim that this implies the inequality

xa1
1 · · ·xai−1

i−1 x
ai+1
i+1 · · ·xan

n ≤ f(x1, . . . , xi−1, xi, xi+1, . . . , xn)

for every x1, . . . , xn ∈ {0, 1}. In other words, we have to prove that we have
both

xa1
1 · · ·xai−1

i−1 x
ai+1
i+1 · · ·xan

n ≤ f(x1, . . . , xi−1, 0, xi+1, . . . , xn)



5.6 Logical Data Analysis 211

and
xa1

1 · · ·xai−1
i−1 x

ai+1
i+1 · · ·xan

n ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

Since f is i-positive, only the proof of the first inequality is necessary. The
fact that tA is an implicant of f means that

tA(x1, . . . , xn) ≤ f(x1, . . . , xn)

for every x1, . . . , xn ∈ {0, 1}. Therefore,

tA(x1, . . . , xi−1, 0, xi+1, . . . , xn) = xa1
1 · · ·xai−1

i−1 x
ai+1
i+1 · · ·xan

n

≤ f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Thus, tB(x1, . . . , xn) = xa1
1 · · ·xai−1

i−1 x
ai+1
i+1 · · ·xan

n is also an implicant of f and,
since tA < tB, this contradicts the fact that tA is a prime implicant of f .

The second part of the theorem can be shown in a similar manner. 	


5.6 Logical Data Analysis

Logical data analysis (LDA) is a methodology that aims to discover patterns in
data using Boolean methods. LDA techniques were introduced by the Rutcor
group (see [21]).

Let D = (θ, C) be a pair (also referred to as a decision system), where
θ = (T,H, r) is a table having the heading H = A1 · · ·AnC and C is the
decision attribute. All attributes are binary, that is, we have Dom(A1) =
· · · = Dom(An) = Dom(C) = {0, 1}. The content of θ represents a sequence
of observations that consists of the projections t[A1 · · ·An] of the tuples of
r. The component t[C] of t is the class of the observation t. The sequence of
positive observations is

r+ = {t[A1 · · ·An] in r | t[C] = 1};

the sequence of negative observations is

r− = {t[A1 · · ·An] in r | t[C] = 0}.

It is clear that the sets set(r+) and set(r−) are disjoint and thus define a
partial Boolean function of n arguments. We refer to τ as an observation
table.

Example 5.95. Consider the decision system D = ((T,A1A2A3C, r), C) given
by
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T
A1 A2 A3 C
0 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1
1 0 0 1
1 1 0 1

The sequence of positive observations is

r+ = ((0, 0, 0), (1, 0, 0), (1, 1, 0)).

The sequence of negative observations is

r− = ((0, 0, 1), (0, 1, 1), (1, 1, 1)).

Starting from a pdBf specified by two sequences of positive and negative
observations, r+ = (A1, . . . ,Ap) ∈ Seq({0, 1}n) and r− = (B1, . . . ,Bq) ∈
Seq({0, 1}n), we define two corresponding binary Boolean functions f+ and
f− as

f+(x1, . . . , xn) =

{
1 if (x1, . . . , xn) does not occur in r−,
0 otherwise,

for (x1, . . . , xn) ∈ {0, 1}n, and

f−(x1, . . . , xn) =

{
1 if (x1, . . . , xn) does not occur in r+,

0 otherwise,

for (x1, . . . , xn) ∈ {0, 1}n. Clearly, we have

f+(x1, . . . , xn) =
∨
{(x1, . . . , xn)A | A occurs in r−},

f−(x1, . . . , xn) =
∨
{(x1, . . . , xn)A | A occurs in r+}.

Definition 5.96. The positive (negative) patterns of a decision system D =
(θ, C), where θ = (T,H, r), are the prime implicants of the binary Boolean
function f+ (of the function f−) that cover at least one minterm tA, where
A is a positive (negative) observation of τ .

Example 5.97. For the positive and negative observations considered in Ex-
ample 5.95, the binary Boolean functions f+ and f− are given by

f+(x1, x2, x3, x) = x̄1x̄2x̄3 ∨ x̄1x2x̄3 ∨ x1x̄2x̄3 ∨
x1x̄2x3 ∨ x1x2x̄3
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and

f−(x1, x2, x3, x) = x̄1x̄2x3 ∨ x̄1x2x̄3 ∨ x̄1x2x3 ∨
x1x̄2x3 ∨ x1x2x3

for (x1, x2, x3) ∈ {0, 1}3. The Hasse diagram of the poset of implicants
(IMPLf+ ,≤) is shown in Figure 5.6. The prime implicants of f+ are x̄3 and
x1x̄2, and they are both positive patterns. Indeed, x̄3 covers every positive
observation, while x1x̄2 covers the minterm that corresponds to the positive
observation (1, 0, 0).

�

�

�

�

�

�

�

�

�

�

x̄1x̄2x̄3 x̄1x2x̄3 x1x̄2x̄3 x1x̄2x3 x1x2x̄3

�

x̄1x̄3 x̄2x̄3 x1x̄2 x2x̄3 x1x̄3

x̄3

Fig. 5.6. Hasse diagram of (IMPLf+ ,≤).

A positive pattern can be regarded as a combination of values taken by
a small number of variables that never appeared in a negative observation
and did appear in some positive observation. Thus, if a new observation is
covered by a positive pattern, this fact can be regarded as an indication that
the observation is a positive one.

Next, we discuss algorithms for generating positive patterns (the negative
patterns can be found using similar techniques).

Two basic approaches are described for finding positive patterns: a top-
down approach and a bottom-up approach (directions are defined relative to
the Hasse diagram of the poset (T(B2, n),≤)). In the bottom-up approach, we
start with the minterms that correspond to positive observations, which are
clearly positive patterns of rank 0. If one or more literals are removed from
such a pattern, the resulting term may still be a pattern if it does not cover
any negative examples. The process consists of a systematic removal of literals
from minterms and verifying whether the resulting minterms remain positive
patterns until prime patterns are reached.

The top-down approach begins with terms of rank n − 1; that is, with
patterns that contain one literal. If such a term does not cover any negative
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observations, then it is a positive pattern; otherwise, literals are added sys-
tematically until a positive pattern is obtained.

The number of positive patterns can be huge, which suggests that seek-
ing only patterns whose rank is sufficiently high (and therefore contain few
literals) is a good practical compromise.

Example 5.98. The Hasse diagram of the poset (T(B2, 3),≤) is shown in
Figure 5.7. We apply the top-down method to determine the positive pat-
terns of the decision system introduced in Example 5.95.

� � � � � � � �

x̄1x̄2x̄3 x̄1x̄2x3 x̄1x2x̄3 x̄1x2x3 x1x̄2x̄3 x1x̄2x3 x1x2x̄3 x1x2x3

� � � � � � � � � � � �

x̄1x̄2

x̄1x2 x1x̄2 x1x2 x̄1x̄3 x̄1x3 x1x̄3 x1x3 x̄2x̄3 x̄2x3 x2x̄3

x2x3

� � � � � �

x̄1 x1 x̄2 x2 x̄3 x3

+++++++++ −−−−−−−−− −−−−−−−−− +++++++++ +++++++++ −−−−−−−−−

Fig. 5.7. Hasse diagram of the poset (T(B2, 3),≤).

We begin with the minterms that correspond to positive observations,

t(0,0,0)(x1, x2, x3) = x̄1x̄2x̄3,

t(1,0,0)(x1, x2, x3) = x1x̄2x̄3,

t(1,1,0)(x1, x2, x3) = x1x2x̄3.

The terms that can be obtained from these terms by discarding one literal are
listed below.

Original Derived Negative Patterns
Term Term Covered
x̄1x̄2x̄3 x̄2x̄3 none
x̄1x̄2x̄3 x̄1x̄3 none
x̄1x̄2x̄3 x̄1x̄2 x̄1x̄2x3

x1x̄2x̄3 x̄2x̄3 none
x1x̄2x̄3 x1x̄3 none
x1x̄2x̄3 x1x̄2 none
x1x2x̄3 x2x̄3 none
x1x2x̄3 x1x̄3 none
x1x2x̄3 x1x2 x1x2x3

The preceding table yields a list of seven positive patterns of rank 1:
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x̄2x̄3, x̄1x̄3, x̄2x̄3, x1x̄3, x1x̄2, x2x̄3, x1x̄3.

By discarding one literal, we have the following patterns of rank 2:

Original Derived Negative Patterns
Term Term Covered
x̄2x̄3 x̄2 x̄1x̄2x3

x̄2x̄3 x̄3 none
x̄1x̄3 x̄3 none
x̄1x̄3 x̄1 x̄1x̄2x3, x̄1x2x3

x̄2x̄3 x̄3 none
x̄2x̄3 x̄2 x̄1x̄2x3

x1x̄3 x̄3 none
x1x̄3 x1 x̄1x̄2x3, x̄1x2x3

x1x̄2 x̄2 x̄1x̄2x3

x1x̄2 x1 x1x2x3

x2x̄3 x̄3 none
x2x̄3 x2 x̄1x2x3, x1x2x3

x1x̄3 x̄3 none
x1x̄3 x1 x1x2x3

The unique positive pattern of rank 2 is x̄3, which covers all positive patterns
of rank 1 with the exception of x1x̄2. Thus, we retrieve the results obtained
in Example 5.97, where we used the Hasse diagram of (IMPLf+ ,≤).

A pattern generation algorithm is given in [21]. The algorithm gives pref-
erence to high-ranking patterns and attempts to cover every positive obser-
vation.

Data binarization is a preparatory process for LAD. Its goal is to allow
the application of the Boolean methods developed in the LAD, and there are
other computational benefits that follow from the binarization process.

Let D = (θ, C) be a decision system where θ = (T,H, r) is a table having
the heading H = A1 · · ·AnC. We assume that the attributes of H, except C,
are nominal or numerical rather than binary. Nominal attributes have discrete
domains that do not admit a natural partial order. For example, a color at-
tribute having as domain the set {red,white, blue} is a nominal attribute. The
domain of C is the set {0, 1}, and we continue to refer to θ as an observation
table.

As in Section 5.6, the content of θ represents a sequence of observations
that consists of the projections t[A1 · · ·An] of the tuples of r, and t[C] of t is
the class of the observation t. The sequence of positive observations is

r+ = {t[A1 · · ·An] in r | t[C] = 1};

the sequence of negative observations is

r− = {t[A1 · · ·An] in r | t[C] = 0}.
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Data binarization consists of replacing nominal or numerical attributes by
binary attributes. The technique that is described here was introduced in [21].

In the case of a nominal attribute B whose domain consists of the values
{b1, . . . , bp}, we introduce p attributes B1, . . . , Bp. The B-component of a
tuple t[B] will be replaced with p components corresponding to the attributes
B1, . . . , Bp such that

t[Bi] =

{
1 if t[B] = bi,

0 otherwise,

for 1 ≤ i ≤ p.
For a numerical attribute A, we define a set of cut points. Suppose that

the set of values that appear under the attribute A is {a1, . . . , ak} such that
a1 < a2 < · · · < ak. If two consecutive values aj and aj+1 belong to two
different classes, a cut point v is defined as v = aj+aj+1

2 . The role of cut
points is to separate consecutive values of an attribute that belong to different
classes.

There is no sense in choosing cut points below mini ai or above maxi ai

because they could not distinguish between positive or negative observations.
Also, there is no reason to choose cut points between consecutive values that
correspond to two positive observations or two negative observations. There-
fore, we need to consider at most one cut point between any two consecutive
values of A that correspond to different classes.

Each cut point v defines a level binary attribute Av. The Av-component of
a tuple t is

t[Av] =

{
0 if t[A] < v,
1 if t[A] ≥ v.

Each pair (v, v′) of consecutive cut points defines an interval binary attribute
Avv′ , where the Avv′-component of t is

t[Avv′ ] =

{
0 if v ≤ t[A] < v′,
1 otherwise.

Example 5.99. Consider the decision system D = (θ, P layTennis), where θ is
the following table.

TENNIS
Outlook Temperature Humidity Wind PlayTennis
overcast 90 70 weak 1

rain 65 72 weak 1
rain 50 60 weak 1

overcast 55 55 strong 1
rain 89 58 weak 1
rain 58 52 strong 0

sunny 75 75 weak 0
rain 77 77 strong 0
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The attributes Outlook and Wind are nominal, while the attributes Temper-
ature and Humidity are numerical.

Since there exist three distinct values (overcast, rain, and sunny) for the
attribute Outlook, this attribute will be replaced with three binary attributes,
Oo,Or,Os that correspond to these values. Similarly, the attribute Wind will
be replaced by two binary attributes, Ww and Ws.

The sequence of values for Temperature is shown together with the class
of the observations:

50 55 58 65 75 77 89 90
+ + − + − − + +

This requires four cut points placed at the midpoints of intervals determined
by consecutive values that belong to distinct classes: 56.5, 61.5, 70, 83.

Similarly, the sequence of values for Humidity is

52 55 58 60 70 72 75 77
− + + + + + − −

In this case, we need two cut points: 53.5 and 73.5. We use a simplified notation
for binary attributes shown in the right column of the next table.

Attribute Simplified
Notation

Oo B1

Or B2

Os B3

T56.5 B4

T61.5 B5

T70 B6

T83 B7

T56.5,61.5 B8

T61.5,70 B9

T70,83 B10

H53.5 B11

H73.5 B12

H53.5,73.5 B13

Ww B14

Ws B15

The binarized table is

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 C
t1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1
t2 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1
t3 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1
t4 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
t5 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1
t6 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
t7 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0
t8 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0
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The number of binary attributes can be reduced; however, the remaining
attributes must allow the differentiation between positive and negative cases.

Definition 5.100. Let D = (θ, C) be a decision system where θ = (T,H, r) is
a table having the heading H = B1 · · ·BpC that consists of binary attributes.

A support heading for D is a subset L = Bi1 · · ·Biq
of B1 · · ·Bp such that

if u occurs in r+ and v occurs in r−, then u[L] �= v[L]. For any two such
tuples, define their difference set ΔD(u, v) = {i ∈ H | u[Bi] �= v[Bi]}.

A support heading L is irredundant if no proper subset of L is a support
heading of D.

If L is a support set for a decision system D = (θ, C), then L must have
a nonempty intersection with each set of the form {Bi | i ∈ ΔD(u, v)} for
each positive example u and each negative example v. Finding an irredundant
support heading can be expressed as a discrete optimization problem, as was
shown in [21].

Example 5.101. Let y = (y1, . . . , y14) be the characteristic sequence of a sup-
port heading L; that is,

yi =

{
1 if Bi ∈ L,
0 otherwise.

The decision system introduced in Example 5.99 has five positive examples
and three negative examples, so there are 15 difference sets:

ΔD(t1, t6) = {1, 2, 5, 6, 7, 8, 11, 13, 14, 15},
ΔD(t1, t7) = {1, 3, 7, 10, 12, 13},
ΔD(t1, t8) = {1, 2, 7, 10, 12, 13, 14, 15},
ΔD(t2, t6) = {5, 8, 9, 11, 13, 14, 15},
ΔD(t2, t7) = {2, 3, 6, 9, 10, 12, 13},
ΔD(t2, t8) = {6, 9, 10, 12, 13, 14, 15},
ΔD(t3, t6) = {4, 8, 11, 13, 14, 15},
ΔD(t3, t7) = {2, 3, 4, 5, 6, 10, 12, 13},
ΔD(t3, t8) = {4, 5, 6, 10, 12, 13, 14, 15},
ΔD(t4, t6) = {1, 2, 4, 8, 11, 13},
ΔD(t4, t7) = {1, 3, 4, 5, 6, 10, 12, 13, 14, 15},
ΔD(t4, t8) = {1, 2, 4, 5, 6, 10, 12, 13},
ΔD(t5, t6) = {5, 6, 7, 8, 11, 13, 14, 15},
ΔD(t5, t7) = {2, 3, 7, 10, 12, 13},
ΔD(t5, t8) = {7, 10, 12, 13, 14, 15}.



Exercises and Supplements 219

The requirement that a support heading intersect each of these sets leads to
15 inequalities. For example, the requirement that ΔD(t1, t6)∩L �= ∅ amounts
to

y1 + y2 + y5 + y6 + y7 + y8 + y11 + y13 + y14 + y15 ≥ 1.

Fourteen other similar inequalities can be similarly written.
Note that the set {13} intersects all these sets, so it is a minimal support

heading.

To find an irredundant support heading for a decision system D = (θ, C),
where θ = (T,H, r) is a table having the heading H = B1 · · ·BpC, we need to
minimize the sum

∑p
i=1 yi subjected to restrictions of the form:∑

{yi | i ∈ ΔD(ti, tj)} ≥ 1

for every pair of tuples (ti, tj) such that ti is a positive example and tj is a
negative example.

Exercises and Supplements

1. Consider the partially ordered sets (P,≤) and (Q,≤) whose Hasse dia-
grams are given in Figures 5.8(a) and (b), respectively. Determine which
diagram corresponds to a lattice.
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Fig. 5.8. Hasse diagrams of two partially ordered sets.
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2. Prove that if (L, {∧,∨}) is a lattice, then for every finite, nonempty subset
K of L, infK and supK exist.

3. Prove that every chain is a lattice.
4. Let L = (L, {∧,∨}) be a lattice and let x and y be two elements of L. Prove

that the least sublattice of L that contains x and y is {x, y, x ∧ y, x ∨ y}.

Let L = (L, {∧,∨}) be a lattice. A nonempty subset I of L is an ideal of L if
x∨y ∈ I holds if and only if both x ∈ I and y ∈ I. A filter of L is a nonempty
subset F of L such that x ∧ y ∈ F if and only if x ∈ F and y ∈ F.

5. Prove that a set K is an ideal of the lattice L = (L, {∧,∨}) if and only if
x ∈ K and y ∈ K imply x ∨ y ∈ K, and x ∈ K and t ≤ x imply t ∈ K.

6. Prove that a set K is a filter of the lattice L = (L, {∧,∨}) if and only if
x ∈ K and y ∈ K imply x ∧ y ∈ I, and x ∈ K and t ≥ x imply t ∈ K.

7. Prove that, for every element x of a lattice L = (L, {∧,∨}), the set Ix =
{t ∈ L | t ≤ x} is an ideal and the set Fx = {t ∈ L | x ≤ t} is a filter.
They are referred to as the principal ideal of x and the principal filter of
x.

8. Let L = (L, {∧,∨}) be a lattice and let A = (aij) be an m× n matrix of
elements of L.
a) Prove the following generalization of the minimax inequality (see Ex-

ercise 22 of Chapter 2): ∨
j

∧
i

aij ≤
∧
i

∨
j

aij

b) Suppose that L has the least element 0. Write the inequality that
follows from the application of the minimax inequality to the matrix

A =

⎛
⎝0 a b
b 0 c
a c 0

⎞
⎠ .

9. Prove the following generalization of Theorem 5.40. In a distributive lat-
tice L = (L, {∧,∨}), the equalities x ∨ y = x ∨ z and x ∧ y = x ∨ z imply
y = z. Conversely, if x ∨ y = x ∨ z and x ∧ y = x ∨ z imply y = z for all
x, y, z ∈ L, then L is distributive.

10. Prove that every lattice having four elements is distributive.
11. Prove that a lattice L = (L, {∧,∨}) is modular if and only if

x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z)

for every x, y, z ∈ L.
12. Let L = (L, {∧,∨}) be a lattice that has the least element 0. If the set

{t ∈ L | x ∨ t = 0} has a largest element x∗, then we say that x∗ is the
pseudocomplement of x. If every element of L has a pseudocomplement,
then we say that L is a pseudocomplemented lattice.
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a) Prove that any pseudocomplemented lattice has a largest element.
b) Prove that if L is a chain having the least element 0 and the largest

element 1, then L is pseudocomplemented.
c) Prove that x ≤ x∗∗ and x∗ = x∗∗∗ for x ∈ L.
d) Prove that (x ∧ y)∗∗ = x∗∗ ∧ y∗∗ for x, y ∈ L.

13. Let (S,≤) be a poset, x be an element of S, and Ix = {s ∈ S | s ≤ x}.
a) Prove that for every x ∈ S the set Ix = {s ∈ S | s ≤ x} is an order

ideal of (S,≤). This is the principal order ideal of x.
b) Let Ip(S,≤) be the collection of principal order ideals of (S,≤) and

let f : S −→ Ip(S,≤) be the mapping defined by f(x) = Ix for x ∈ S.
Prove that f is a monotonic injection.

c) Let T be a subset of S. Prove that if supT (inf T ) exists in (S,≤),
then sup{Ix | x ∈ T} in (Ip(S,≤),⊆) is Isup T (inf{Ix | x ∈ T} in
(Ip(S,≤),⊆) is Iinf T ).

d) Prove that the poset of principal order ideals of S, (Ip(S,≤),⊆) is a
complete lattice.

14. Let (L1,≤) and (L2,≤) be two complete lattices and let f : L1 −→ L2 be
a monotonic function between these posets. Prove that

f
(∨

K
)
≥
∨
f(K),

f
(∧

K
)
≤
∧
f(K),

for every subset K of L1.
15. Let (L,≤) be a complete lattice and let f : L −→ L be a monotonic

mapping. Prove that there exists x ∈ L such that f(x) = x (Tarski’s
fixed-point theorem).

Solution: Let T = {x ∈ L | x ≤ f(x)} and t = supT . Since x ≤ t,
we have f(x) ≤ f(t) for every x ∈ T , so x ≤ f(x) ≤ f(t). This implies
t ≤ f(t), so t ∈ T . Therefore, f(t) ≤ f(f(t)), so f(t) ∈ T , which implies
f(t) ≤ t. This shows that t = f(t).

16. Let S and T be two sets and let f : S −→ T , g : T −→ S be two
injective functions. Define the function F : P(S) −→ P(S) as F (U) =
S − g(T − f(U)) for every U ∈ P(S).
a) Prove that F is a monotonic mapping between the complete lattices

(P(S),⊆) and (P(T ),⊆).
b) Let U0 ⊆ S be a fixed point of F . Define the function h : S −→ T by

h(x) =

{
f(x) if x ∈ U0,

y if x �∈ U0 and g(y) = x.

Show that h is well-defined and, moreover, is a bijection. (The exis-
tence of a bijection h between S and T when the injections f and g
exist is known as the Schröder-Bernstein theorem.)
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17. Prove that f : Bn −→ B is a Boolean function if and only if

(x1, . . . , xn)Af(x1, . . . , xn) = (x1, . . . , xn)Af(A)

for every A ∈ {0, 1}n.
18. Prove that there are 2n−k

(
n
k

)
n-ary terms of rank k.

19. A Horn term is a term tA : Bn −→ B such that A contains at most one
0. Prove that if the consensus tC of the Horn tA, tB exists, then tC is a
Horn term.

20. Let B = (B, {∧,∨, ¯, 0, 1}) be a Boolean algebra and let f : Bn −→ B be
a Boolean function. Prove that, for every b ∈ B, there exists a Boolean
function f(b) : Bn −→ B such that

b ∧ f(x0, . . . , xn−1) = f(b)(b ∧ x0, . . . , b ∧ xn−1)

for (x0, . . . , xn−1) ∈ Bn.
Hint: The argument is by induction on the definition of Boolean functions.

21. Let S be a set and let π be a partition of S. Prove that the collection
of π-saturated subsets of S is a Boolean subalgebra Sπ of the Boolean
algebra (P(S), {∩,∪, ¯, ∅, S}).

22. Let C be a finite collection of subsets of a set S. Prove that the subalgebra
of (P(S), {∩,∪, ¯, ∅, S}) generated by C coincides with the collection of all
πC-saturated sets, where πC is the partition defined in Supplement 6 of
Chapter 1. Further, show that the atoms of this subalgebra are the blocks
of the partition πC.

23. Let S and T be two sets and let f : S −→ T be a mapping.
a) Prove that the function F : P(T ) −→ P(S) defined by F (V ) = f−1(V )

for V ∈ P(T ) is a Boolean algebra morphism between the algebras
(P(T ), {∩,∪, ¯, ∅, T}) and (P(S), {∩,∪, ¯, ∅, S}).

b) Let D = {D1, . . . , Dr} be a finite collection of subsets of T and let
C = {F (D) | D ∈ D} be the corresponding finite collection of subsets
of C.
If πD is the partition of T associated to D, then prove that for any
block B of this partition, F (B) is either the empty set or a block of
the partition πC of S, and each block of the partition πC is of the form
F (B). Further, if f is a surjective mapping, then F (B) is always a
block of πC.

Solution: The first part is a consequence of Theorems 1.65 and 1.67.
For the second part, let

Da1,...,ar
= Da1

1 ∩ · · · ∩Dar
r

be an atom of πD for some (a1, . . . , ar). Note that F (Da1,...,ar
) = Ca1

1 ∩
· · · ∩Car

r , where Ci = f−1(Di) = F (Di) for 1 ≤ i ≤ r. If this intersection
is nonempty, then it is clearly a block of πP.

If f is surjective, the preimage of any nonempty set f−1(Da1,...,ar
) is

nonempty and therefore a block of πC.
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24. Let F : {0, 1}n −→ {0, 1}n be a function. Prove that there exists a bi-
jection G : {0, 1}n −→ {0, 1}n such that G(x) ∧ x = F (x) ∧ x for every
x ∈ {0, 1}n.

Solution: Without loss of generality, we may assume that F (x) ≤ x
for x ∈ {0, 1}n. Thus, we need to prove the existence of G such that
G(x) ∧ x = F (x).

For x ⊆ {0, 1}n let KF (x) = {u ∈ {0, 1}n | u ∧ x = F (x)}. If X ⊆
{0, 1}n, defineKF (X) =

⋃
{K(x) | x ∈ X}. Then, we should haveG(x) ∈

KF (x) for each x ∈ {0, 1}n. To obtain the result it suffices to show that,
for every X, we have |X| ≤ |KF (X)| because this would imply that there
is a bijection G such that G(x) ∈ KF (x).

Note that if F (x) = x, then KF (x) = {u ∈ {0, 1}n | u ≥ x}, so
x ∈ KF (x) for every x ∈ {0, 1}n, which implies |X| ≤ |KF (X)|.

For x = (x1, . . . , xn) and F (x) = (y1, y2, . . . , yn), define F1 : {0, 1}n −→
{0, 1}n by modifying the first component of F (x) as

F1(x) = (x1, y2, . . . , yn).

If u = (u1, u2, . . . , un) ∈ {0, 1}n, denote by u[0] and u[1] the n-tuples
u[0] = (0, u2, . . . , un) and u[1] = (1, u2, . . . , un).

We claim that |KF1(X)| ≤ |KF (X)|. To prove this inequality, it suffices
to show that |KF1(X) ∩ {u[0],u[1]}| ≤ |KF (X) ∩ {u[0],u[1]}| for every
u ∈ {0, 1}n.

If u[0] ∈ KF1(X), then {u[0],u[1]} ⊆ KF (X). Indeed, u[0] ∈ KF1(X)
implies u[0] ∧ x = F1(x) for some x = (x1, x2, . . . , xn) ∈ X, which yields
x1 = 0. Since F (x) ≤ x, it follows that (F (x))1 = 0 and (F (x))1 =
(F1(x))1. Thus, u[1] ∧ x = u[0] ∧ x = F (x), so {u[0],u[1] ⊆ KF (X)}. If
u[1] ∈∈ F1(X) and u[0] �∈ F1(X), then {u[0],u[1]} ∩ KF (X) �= ∅. Under
these assumptions, there exists x ∈ X such that u[1] ∧ x = F1(x) and
u[0] ∧ x �= F1(x). Note that (u[0] ∧ x)i = (u[1] ∧ x)i = (F1(x))i = (F (x))i

for 2 ≤ i ≤ n. Also, we have (F (x))1 = 0 = (u[0] ∧ x)1 or (F (x))1 = 1 =
(u[1] ∧ x)1. Thus, either u[0] ∧ x = F (x) or u[1] ∧ x = F (x).

The treatment applied to the first coordinate can now be repeated
for the second component starting from F1 to produce a function F2 :
{0, 1}n −→ {0, 1}n such that |KF2(X)| ≤ |KF1(X)|, etc. After n steps,
we reach a function Fn such that Fn(x) = x. We have KFn

(x) = {u ∈
{0, 1}n | u ≥ x}, so X ⊆ KFn

(X), which implies |X| ≤ |KFn
(X)| ≤

|KF (X).
25. Let S be a finite set and let U be a subset of S. Prove that there exists

a bijection GU : P(S) −→ P(S) such that GU (T ) ∧ T = T ∩ U for every
subset T of S.
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Topologies and Measures

6.1 Introduction

Topology is an area of mathematics that investigates both the local and the
global structure of space. The term “topology” is derived from the Greek
words τ óπoζ (topos, place) and λóγoζ (logos, reason) and was introduced
in [90]. We present in this chapter an introduction to point-set topology that
is important for a subsequent discussion of various notions of dimensions of
sets. Data mining makes use of topology in formulating searching algorithms
that take into account the local properties of data sets.

6.2 Topologies

The term “topology” is used both to designate a mathematical discipline and
to name the fundamental notion of this discipline, which is introduced next.

Definition 6.1. A topology on a set S is a family O of subsets of S that
satisfies the following conditions.
(i) ∅ ∈ O and S ∈ O.
(ii) For every collection C such that C ⊆ O,

⋃
C ∈ O.

(iii) If D is a finite collection and D ⊆ O, then
⋂

D ∈ O.
The sets that belong to O are referred to as the open sets of the topology O.
The pair (S,O) will be referred to as a topological space.

It is easy to see that Part (iii) of Definition 6.1 is equivalent to
(iii′) if U,U ′ ∈ O, then U ∩ U ′ ∈ O.
Actually, the first condition of Definition 6.1 is superfluous. Indeed, since

we deal here with collections of subsets of S, by Part (iii) of the definition,
the intersection of the empty collection of subsets of S belongs to O, and this
intersection is S. On the other hand, by Part (ii), the union of the empty
collection (which is the empty set) belongs to O, so Part (i) is a consequence
of the remaining parts of the definition.

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 6, c© Springer-Verlag London Limited 2008
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Example 6.2. The pair (S,P(S)) is a topological space. The topology P(S) is
known as the discrete topology.

The collection {∅, S} is the indiscrete topology.

Example 6.3. The pair (∅, {∅}) is a topological space as the reader can easily
verify. We refer to (∅, {∅}) as the empty topological space.

Example 6.4. Let O be the collection of subsets of R defined by L ∈ O if for
every x ∈ L there exists ε ∈ R>0 such that |u − x| < ε implies u ∈ L. We
claim that O is a topology on R.

Indeed, it is immediate that ∅ and R belong to O.
Let C be such that C ⊆ O and let x ∈

⋃
C. There exists L ∈ C such that

x ∈ L and, therefore, by the definition of O, there is ε > 0 such that |u−x| < ε
implies u ∈ L. Thus, u ∈

⋃
C, so

⋃
C ∈ O.

Suppose now that D is a finite subcollection of O, D = {D1, . . . , Dn}, and
let x ∈

⋂
D. Since x ∈ Di for 1 ≤ i ≤ n, there exists ε1, . . . , εn such that

|u − x| < εi implies u ∈ Di for every i, 1 ≤ i ≤ n. Therefore, by defining
ε = min{εi | 1 ≤ i ≤ n}, it follows that |x − u| ≤ ε implies u ∈

⋂
D, which

proves that
⋂

D ∈ O. We conclude that O is a topology on R. This topology
is called the usual topology on R. Unless stated otherwise, we assume that the
set of real numbers is equipped with the usual topology.

Example 6.5. Example 6.4 can be extended to R
n by defining the collection of

sets O as consisting of subsets L of R
n such that for every x ∈ L there exists

ε ∈ R>0 such that d2(u,x) < ε implies u ∈ L. It is easy to verify that (Rn,O)
is a topological space.

For each topology O on a set S, we define the collection of closed sets as

closed(O) = {S −X | X ∈ O}

and the collection of neighborhoods of an element x of S as

neighx(O) = {U ∈ P(S)| there is W ∈ O such that x ∈W ⊆ U}.

Theorem 6.6. Let (S,O) be a topological space. The following statements
hold:
(i) ∅ and S are closed sets.
(ii) For every collection C of closed sets,

⋂
C is a closed set.

(iii) For every finite collection D of closed sets,
⋃

D is a closed set.

Proof. This is an immediate consequence of Definition 6.1. 	


6.3 Closure and Interior Operators in Topological Spaces

Theorem 6.6 implies that for every topological space (S,O) the collection
closed(O) of closed sets is a closure system on S. For the closure operator
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attached to this closure system denoted by KS,O, we have the supplementary
property:

KS,O(H ∪ L) = KS,O(H) ∪KS,O(L) (6.1)

for all subsets H,L of S.
Since H,L ⊆ H ∪ L, we have KS,O(H) ⊆ KS,O(H ∪ L) and KS,O(L) ⊆

KS,O(H ∪ L) due to the monotonicity of KS,O. Therefore,

KS,O(H) ∪KS,O(L) ⊆ KS,O(H ∪ L).

To prove the reverse inclusion, note that the set KS,O(H) ∪ KS,O(L) is a
closed set by the third part of Theorem 6.6 and H ∪L ⊆ KS,O(H)∪KS,O(L).
Therefore, the closure of H∪L is a subset of KS,O(H)∪KS,O(L), so KS,O(H∪
L) ⊆ KS,O(H) ∪KS,O(L), which implies Equality (6.1).

Also, note that KS,O(∅) = ∅ because the empty set itself is closed.
If there is no risk of confusion, we will denote the closure operator KS,O

simply by K.
Note that Equality (6.1) is satisfied for every H,L ∈ P(S) if and only if the

union of two K-closed sets is K-closed. Indeed, suppose that Equality (6.1)
is satisfied, and let U and V be two K-closed sets. Since U = K(U) and
V = K(V ), it follows that U ∪ V = K(U) ∪K(V ) = K(U ∪ V ), which shows
that U∪V is K-closed. Conversely, suppose that the union of two K-closed sets
is K-closed. Then, K(U) ∪K(V ) is K-closed and contains U ∪ V . Therefore,
K(U∪V ) ⊆ K(U)∪K(V ). The reverse equality follows from the monotonicity
of K.

Theorem 6.7. Let S be a set and let K : P(S) −→ P(S) be a closure oper-
ator that satisfies Equality (6.1) for every H,L ∈ P(S) and K(∅) = ∅. The
collection OK = {S − U | U ∈ CK} is a topology on S.

Proof. We have K(S) = S, so both ∅ and S are K-closed sets, which implies
∅, S ∈ OK.

Suppose that C = {Li | i ∈ I} ⊆ OK. Since S − Li ∈ CK, it follows that⋂
{S − Li | i ∈ I} = S −

⋃
i∈I Li ∈ CK. Thus,

⋃
i∈I Li ∈ OK.

Finally, suppose that D = {D1, . . . , Dn} is a finite collection of subsets
such that D ⊆ OK. Since S−Di ∈ CK we have S−

⋃n
i=1Di =

⋂n
i=1(S−Di) ∈

CK, hence
⋃n

i=1Di ∈ OK. This proves that OK is indeed a topology. 	


Theorem 6.8. Let (S,O) be a topological space and let U and W be two sub-
sets of S. If U is open and U ∩W = ∅, then U ∩K(W ) = ∅.

Proof. U ∩W = ∅ implies W ⊆ S − U . Since U is open, the set S − U is
closed, so K(W ) ⊆ K(S − U) = S − U . Therefore, U ∩K(W ) = ∅. 	


Often, we shall use the contrapositive of this statement: if U is an open
set such that U ∩K(W ) �= ∅ for some set W , then U ∩W �= ∅.
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Example 6.9. In the topological space (R,O), every open interval (a, b) with
a < b is an open set. Indeed, if x ∈ (a, b) and |x−u| < ε, where ε = 1

2 min{|x−
a|, |x − b|}, then u ∈ (a, b). A similar argument shows that the half-lines
(b,+∞) and (−∞, a) are open sets for a, b ∈ R. Therefore, (−∞, a)∪ (b,+∞)
is an open set which implies that its complement, the interval [a, b], is closed.
Also, (−∞, b] and [a,∞) are closed sets (as complements of the open sets
(b,∞) and (a,∞), respectively).

Open sets of the topological space (R,O), where O is the usual topology
on the set of real numbers have the following useful characterization.

Theorem 6.10. A subset U of R is open in the topological space (R,O) if and
only if it may be written as a union of a countable collection of disjoint open
intervals.

Proof. Since every open interval (finite or not) is an open set, it follows that
the union of a countable collection of disjoint open intervals is open.

To prove the converse, let U be an open set. Note that U can be written
as a union of open intervals since for each x ∈ U there exists ε > 0 such that
x ∈ (x− ε, x+ ε) ⊆ U .

Define the relation θU on the set U by xθUy if there exist a, b ∈ R such
that {x, y} ⊆ (a, b) ⊆ U , where (a, b) is the open interval determined by a, b.
We claim that θU is an equivalence relation on U .

Since U is open, x ∈ U implies the existence of a positive number ε such
that {x} ⊆ (x − ε, x + ε) ⊆ U for every x ∈ U , so θU is reflexive. The
symmetry of θU is immediate. To prove its transitivity, let x, y, z ∈ U be such
that xθUz and zθUy. There are a, b, c, d ∈ R such that {x, z} ⊆ (a, b) ⊆ U and
{z, y} ⊆ (c, d) ⊆ U . Since z ∈ (a, b) ∩ (c, d), it follows that (a, b) ∪ (c, d) is an
interval (e, e′) such that {x, y} ⊆ (e, e′) ⊆ U , which shows that xθUy. Thus,
θU is an equivalence on U .

We claim that each equivalence class [x]θU
is an open interval or a set of the

form (a,+∞) or a set of the form (−∞, b). Indeed, suppose that u, v ∈ [x]θU

(that is, uθUx and vθUx) and that t ∈ (u, v). We now prove that tθUx.
There are two open intervals (a, b) and (c, d) such that {u, x} ⊆ (a, b) ⊆ U

and {x, v} ⊆ (c, d) ⊆ U . Again, (a, b)∪ (c, d) is an open interval (e, e′) and we
have (u, v) ⊆ (e, e′) ⊆ U . Thus, if [x]θU

contains two numbers u and v, it also
contains the interval (u, v) determined by these numbers.

To prove that [x]θU
has the desired form, we will prove that this set has no

least element and no greatest element. Suppose that [x]θU
has a least element

y. Then, there exist a and b such that a < y < x < b and (a, b) ⊆ U . Since y
is supposed to be the least element of [x]θU

, if a < z < y, we have z �∈ [x]θU
.

This contradicts yθUz and yθUx. In a similar manner, it is possible to show
that [x]θU

has no largest element.
Finally, we prove that the partition that corresponds to θU is countable.

Select a rational number rx ∈ [x]θU
∩ Q. Since the equivalence classes [x]θU

are pairwise disjoint, it follows that [x]θU
�= [y]θU

implies rx �= ry. Thus, we
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have an injection r : U/θU −→ Q given by r([x]θU
) = rx for x ∈ U . By

Theorem 1.131, the set U/θU is countable. 	


Example 6.11. Let S be an infinite set. The family of sets

O = {∅} ∪ {L ∈ P(S) | S − U is finite}

is a topology on S. We shall refer to O as the cofinite topology on S.
Note that both ∅ and S belong to O. Further, if C is a subcollection of O,

then S−
⋃

C =
⋂
{(S−L) | L ∈ C}, which is a finite set because it is a subset

of every finite set S − L, where L ∈ C.
Also, if U, V ∈ O, then S− (U ∩V ) = (S−U)∪ (S−V ), which shows that

S − (U ∩ V ) is a finite set. Thus, U ∩ V ∈ O.

Example 6.12. Let (S,≤) be a partially ordered set. A subset T of S is upward
closed if x ∈ T and x ≤ y implies y ∈ T . The collection of upwards closed sets
O↑ is a topology on S.

It is clear that both ∅ and S belong to O↑. Further, if {Li | i ∈ I} is a
family of upwards closed sets, then

⋃
{Li | i ∈ I} is also an upwards closed

set. Indeed, suppose that x ∈
⋃
{Li | i ∈ I} and x ≤ y. There exists Li such

that x ∈ Li and therefore y ∈ Li, which implies y ∈
⋃
{Li | i ∈ I}. Moreover,

it is easy to see that any intersection of sets from O↑ belongs to O↑, not just a
finite intersection (which would suffice for O↑ to be a topology). This topology
is known as the Alexandrov topology on the poset (S,≤).

Definition 6.13. A topology O is finer than a topology O′ or, equivalently, O′

is a coarser than O, if O′ ⊆ O.

Every topology on a set S is finer than the indiscrete topology on S; the
discrete topology P(S) (which has the largest collection of open sets) is finer
than any topology on S.

Theorem 6.14. Let (S,O) be a topological space and let T be a subset of S.
The collection O �T defined by

O �T = {L ∩ T | L ∈ O}

is a topology on the set T .

Proof. We leave the proof of this theorem to the reader as an exercise. 	


Definition 6.15. If U is a subset of S, where (S,O) is a topological space,
then we refer to the topological space (U,O �U ) as a subspace of the topological
space (S,O).

To simplify notation, we shall denote the subspace (U,O �U ) just by U .
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Theorem 6.16. Let (S,O) be a topological space and let (T,O �T ) be a sub-
space of this space. Then, a set H is closed in (T,O �T ) if and only if there
exists a closed set H0 in (S,O) such that H = T ∩H0.

Proof. Suppose that H is closed in (T,O �T ). Then, the set T − H is open
in this space and therefore there exists an open set L0 in (S,O) such that
T −H = T ∩L0. This is equivalent to H = T − (T ∩L0) = T ∩ (S −L0). We
define H0 as the closed set S − L0.

Conversely, suppose that H = T ∩H0, where H0 is a closed set in S. Since
T − H = T ∩ (S − H0) and S − H0 is an open set in (S,O), it follows that
T −H is open in the subspace and therefore H is closed. 	


Corollary 6.17. Let (S,O) be a topological space and let T ⊆ S. Denote by
KS and KT the closure operators of (S,O) and (T,O �T ), respectively. For
every subset W of T , we have KT (W ) = KS(W ) ∩ T .

Proof. The set KS(W ) is closed in S, so KS(W ) ∩ T is closed in T by Theo-
rem 6.16. Since W ⊆ KS(W ) ∩ T , it follows that KT (W ) ⊆ KS(W ) ∩ T .

To prove the converse inclusion, observe that we can write KT (W ) =
T ∩H, where H is a closed set in S because KT (W ) is a closed set in T . Since
W ⊆ H, it follows that KS(W ) ⊆ H, so KS(W ) ∩ T ⊆ H ∩ T = KT (W ). 	


Corollary 6.18. Let (S,O) be a topological space and let T ⊆ S. If U is a
subset of S, then

KT (U ∩ T ) ⊆ KS(U) ∩ T.

Proof. By applying Corollary 6.17 to the subset U ∩ T of T we have

KT (U ∩ T ) = KS(U ∩ T ) ∩ T.

The needed inclusion follows from the monotonicity of KS . 	


Definition 6.19. A set U is dense in a topological space (S,O) if K(U) = S.
A topological space is separable if there exists a countable set U that is dense
in (S,O).

Theorem 6.20. If T is a subspace of a separable topological space (S,O), then
T itself is separable.

Proof. Since S is separable, there exists a countable set U such that KS(U) =
S. On the other hand, KT (U∩T ) = KS(U∩T )∩T ⊆ KS(U)∩T = S∩T = T ,
which implies that the countable set U ∩T is dense in T . Thus, T is separable.
	


Theorem 6.21. If T is a separable subspace of a topological space (S,O), then
so is KS(T ).
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Proof. Let U be a countable subset of T that is dense in T , that is, KT (U) =
T . We need to prove that KKS(T )(U) = KS(T ) to prove that U is dense in
KS(T ) also.

By Corollary 6.17, we have

KKS(T )(U) = KS(U) ∩KS(T ) = KS(U)

due to the monotonicity of KS .
Note that T = KT (U) = KS(U) ∩ T , so T ⊆ KS(U), which implies

KS(T ) ⊆ KS(U). Since KS is monotonic, we have the reverse inclusion
KS(U) ⊆ KS(T ), so KS(U) = KS(T ). This allows us to conclude that
KKS(T )(U) = KS(T ), so U is dense in KS(T ). 	


Theorem 6.22. Let (S,O) be a topological space. The set U is dense in (S,O)
if and only if U ∩ L �= ∅ for every non-empty open set L.

Proof. Suppose that U is dense, so K(U) = S. Since K(U ∩ L) = K(U) ∩
K(L) = S ∩K(L) = K(L), U ∩ L = ∅ would imply K(L) = K(∅) = ∅, which
is a contradiction because ∅ �= L ⊆ K(L).

Conversely, suppose that U has a non-empty intersection with every non-
empty open set L. Since K(U) is closed, S − K(U) is open. Observe that
U ∩ (S−K(U)) = ∅, so the open set S−K(U) must be empty. Therefore, we
have K(U) = S. 	


Theorem 6.23. Let (S,O) be a topological space and let x ∈ S. The following
statements hold:
(i) If U, V ∈ neighx(O), then U ∩ V ∈ neighx(O).
(ii) If U ∈ neighx(O) and U ⊆W ⊆ S, then W ∈ neighx(O).
(iii) A set L is open if and only if L is a neighborhood of all its points.

Proof. The first two parts follow immediately from Definition 6.6. We discuss
here only the third statement.

If L is open, it is immediate that L is a neighborhood of all its points.
Conversely, suppose that L is a neighborhood of all its members. Then, for
each x ∈ L there exists Wx ∈ O such that x ∈Wx ⊆ L. Therefore,

L =
⋃
x∈L

{x} ⊆
⋃
x∈L

Wx ⊆ L,

which implies L =
⋃

x∈LWx. This in turn implies L ∈ O. 	


Definition 6.24. Let (S,O) be a topological space. A subset U of S is clopen
if it is both open and closed.

Clearly, in every topological space (S,O), both ∅ and S are clopen sets.
In Chapter 4, we discussed the notion of an interior system of sets on a set S

and the notion of an interior operator. Since ∅ is an open set in any topological
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space (S,O) and any union of open sets is an open set, it follows that the
topology itself is an interior system on S. In addition, an interior system of
open sets is closed to finite intersection. Definition 6.25 which follows is a
restatement of the definition of the interior operator associated to an interior
system contained by Theorem 4.50.

Definition 6.25. Let (S,O) be a topological space. The interior of a set U ,
U ⊆ S, is the set

I(U) =
⋃
{L ∈ O | L ⊆ U}.

The interior I(U) of a set U is the largest open set included in U , because
the union of any collection of open sets is an open set. Furthermore, a set is
open in a topological space if and only if it equals its interior.

Theorem 6.26. Let (S,O) be a topological space and let U be a subset of S.
The closure K(S − U) of the set S − U equals S − I(U).

Proof. Since I(U) is an open set, the set S−I(U) is closed. Note that S−U ⊆
S − I(U). Therefore, K(S − U) ⊆ S − I(U).

Conversely, the inclusion S − U ⊆ K(S − U) implies S −K(S − U) ⊆ U .
Since S −K(S −U) is an open set included in U and I(U) is the largest such
set, it follows that S−K(S−U) ⊆ I(U), which implies S− I(U) ⊆ K(S−U).
	


Corollary 6.27. For every subset U of a topological space (S,O), we have

I(U) = S −K(S − U)

and
K(U) = S − I(S − U).

Proof. The first equality is immediate; the second follows from Theorem 6.26
by replacing U by S − U . 	


Theorem 6.28. Let (S,O) be a topological space. The following statements
are equivalent:
(i) Every countable intersection of dense open sets is a dense set.
(ii) Every countable union of closed sets that have an empty interior has an

empty interior.

Proof. (i) implies (ii): Let H1, . . . , Hn, . . . be a sequence of closed sets with
I(Hi) = ∅ for n ≥ 1. Then, for the open sets Li given by Li = S − Hi, we
have K(Li) = K(S −Hi) = S − I(Hi) = S, so every set Li is dense. By (i),
we have K(

⋂
i≥1 Li) = S, so
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I

⎛
⎝⋃

i≥1

Hi

⎞
⎠ = S −K

⎛
⎝S −⋃

i≥1

Hi

⎞
⎠

= S −K

⎛
⎝⋂

i≥1

(S −Hi)

⎞
⎠

= S −K

⎛
⎝⋂

i≥1

Li

⎞
⎠ = ∅,

which shows that (ii) holds.
(ii) implies (i): this argument is similar to the preceding one and we will

omit it. 	

A topological space that satisfies one of the equivalent conditions of this

theorem is called a Baire space. As we shall see in Chapter 11 (Theorem 11.54),
a very important category of topological spaces, the complete topological met-
ric spaces, are Baire spaces.

Definition 6.29. Let (S,O) be a topological space. The border of a set U ,
where U ∈ P(S), is the set ∂SK = K(U) ∩K(S − U).

If S is clear from the context, then we will omit the subscript and will
denote the border of U just by ∂U .

The border itself is obviously a closed set, as it is an intersection of two closed
sets.

Note that, by using Corollary 6.27, the border of a set can be expressed
also in term of interiors:

∂U = (S − I(S − U)) ∩ (S − I(U)) = S − (I(S − U) ∪ I(U)). (6.2)

Theorem 6.30. The border of a subset U of a topological space (S,O) consists
of those elements s of S such that for every open set L that contains s we have
both L ∩ U �= ∅ and L ∩ (S − U) �= ∅.

Proof. Let x ∈ ∂U and let L be an open set such that x ∈ L. By Equality( 6.2),
we have both x �∈ I(S − U) and x �∈ I(U). Therefore, L �⊆ S − U and L �⊆ U ,
which imply L ∩ U �= ∅ and L ∩ (S − U) �= ∅.

Conversely, suppose that, for every open set L that contains s, we have
both L∩U �= ∅ and L∩ (S−U) �= ∅. This implies x �∈ I(U) and s �∈ I(S−U),
so x ∈ ∂U by Equality (6.2). 	


Theorem 6.31. Let (S,O) be a topological space, (T,O �T ) be a subspace, and
W be a subset of S. The border ∂T (W ∩ T ) of W ∩ T in the subspace T is a
subset of the intersection ∂S(W ) ∩ T , where ∂S(W ) is the border of W in S.
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Proof. By Definition 6.29, we have

∂T (W ∩ T ) = KT (W ∩ T ) ∩KT (T − (W ∩ T ))
= KT (W ∩ T ) ∩KT (T −W )
⊆ (KS(W ) ∩ T ) ∩KT (T −W )

by Corollary 6.17.

Again, by Corollary 6.17, we have KT (T −W ) = KT (T ∩ (S−W )) ⊆ KS(S−
W ) ∩ T , and this allows us to write

∂T (W ∩ T ) ⊆ (KS(W ) ∩ T ) ∩KS(S −W ) ∩ T = ∂S(W ) ∩ T,

which is the desired conclusion. 	

The next statement relates three important sets that we defined for each

subset U of a topological space (S,O).

Theorem 6.32. Let (S,O) be a topological space. For every subset U of S,
we have K(U) = I(U) ∪ ∂U .

Proof. By Equality (6.2), we have ∂U = (S−I(S−U))∩(S−I(U)). Therefore,

∂U ∪ I(U) = (S − I(S − U)) ∩ I(U)
(by Corollary 6.27)

= K(U) ∩ I(U)
(because I(U) ⊆ K(U))

= K(U).

	


Corollary 6.33. Let (S,O) be a topological space and let (T,O �T ) be a sub-
space of (S,O). For any subset U of S, we have ∂T (U ∩ T ) ⊆ ∂S(U).

Proof. Let t ∈ ∂T (U ∩T ). By Theorem 6.30, for every open set L ∈ O �T such
that t ∈ L we have both L ∩ (U ∩ T ) �= ∅ and L ∩ (T − (U ∩ T )) �= ∅.

If L1 is an open set of (S,O) that contains S, then L1 ∩ T is an open set
of (T,O �T ) that contains t, so for L1 we have both (L1 ∩ T ) ∩ (U ∩ T ) �= ∅
and (L1 ∩ T ) ∩ (T − (U ∩ T )) �= ∅. This immediately implies L1 ∩ U �= ∅ and
L1 ∩ (S − U) �= ∅, that is, t ∈ ∂S(U). 	


Theorem 6.34. Let (S,O) be a topological space. A set U is clopen if and
only if ∂U = ∅.

Proof. Suppose that U is clopen. Then U = K(U); moreover, S − U is also
closed (because U is open) and therefore S − U = K(S − U). Thus, K(U) ∩
K(S − U) = U ∩ (S − U) = ∅, so ∂U = ∅.
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Conversely, suppose that ∂U = ∅. Then, since K(U) ∩K(S − U) = ∅, it
follows that K(U) ⊆ S−K(S−U). Therefore, K(U) ⊆ S−(S−U) = U , which
implies K(U) = U . Thus, U is closed. Furthermore, by Equality (6.2), ∂U = ∅
also implies I(S − L) ∪ I(L) = S, so S − I(S − L) ⊆ I(L). By Corollary 6.27,
we have K(L) ⊆ I(L), so L ⊆ I(L). Thus, L = I(L), so L is also an open set.
	


Definition 6.35. Let (S,O) be a topological space and let U be a subset of S.
An element t of S is an accumulation point or a cluster point of the set U if,
for every open set L such that t ∈ L, the set U ∩ (L− {t}) is not empty.

The set of all accumulation points of a set U is the derived set of U and
is denoted by U ′.

Lemma 6.36. Let (S,O) be a topological space and let U be a subset of S.
We have ∂U ⊆ U ∪ U ′.

Proof. By Theorem 6.30, if x ∈ ∂U , then for every open set L such that x ∈ L,
we have both L ∩ U �= ∅ and L ∩ (S − U) �= ∅.

If U ∩ (L − {x}) �= ∅ for every open set L, then x ∈ U ′. Otherwise, there
is an open set L0 such that x0 ∈ L and U ∩ (L0 − {x}) = ∅. This can happen
only if x ∈ U . Therefore, in either case, x ∈ U ∪ U ′, which gives the desired
inclusion. 	


Theorem 6.37. Let (S,O) be a topological space and let U be a subset of S.
We have K(U) = U ∪ U ′ for every subset U of S.

Proof. By Theorem 6.32 and Lemma 6.36, we have K(U) = I(U) ∪ ∂U ⊆
I(U) ∪ U ∪ U ′ = U ∪ U ′ because I(U) ⊆ U .

Let x be an accumulation point of U . If x ∈ U , then clearly x ∈ K(U).
Otherwise, x �∈ U and we claim that in this case x ∈ K(U). Indeed, if x were
not an element of K(U), it would belong to the open set S−K(U). This would
imply that the set U∩(S−K(U)−{x}) is not empty, which is a contradiction.
This yields the reverse inclusion, U ∪ U ′ ⊆ K(U). 	


6.4 Bases

Let O = {Oi | i ∈ I} be a family of topologies defined on a set S that contains
the discrete topology P(S). We claim that O is a closure system on P(S). The
first condition of Definition 4.32 is satisfied due to the definition of O. It is
easy to verify that for every subfamily O′ of O,

⋂
O′ is a topology, so O is

indeed a closure system.
Thus, if S is a family of subsets of S, there exists the smallest topology

that includes S.
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Theorem 6.38. The topology TOP(S) generated by a family S of subsets of
S consists of unions of finite intersections of the members of S.

Proof. Let E be the collection of all unions of finite intersections of the mem-
bers of S. It is clear that S ⊆ E. We claim that E is a topology that contains
S.

Note that the intersection of the empty collection of sets in S is S, so
S ∈ E; also, the union of an empty collection of finite intersections is ∅, so
∅ ∈ E.

Every U ∈ E can be written as

U =
⋃
{Vj | j ∈ JU},

where the sets Vj are finite intersections of sets of S. Therefore, it is immediate
that any union of sets of this form belongs to E.

Suppose that {Ui | i ∈ I} is a finite collection of parts of S, where
Ui =

⋃
{Vj ∈ S | j ∈ Ji} and that each Vj can be written as Vj =

⋂
{Wjh ∈

S | h ∈ Hj}, where each set Hj is finite. One can prove by induction on
p = |I| that

⋂
{Ui | i ∈ I} ∈ E. To simplify the presentation, we discuss here

only the case where |I| = 2. So, if Ui =
⋃
{Vj ∈ S | j ∈ Ji} for i = 1, 2, we

have

U1 ∩ U2 =
⋃
{Vj1 ∈ S | j1 ∈ J1} ∩

⋃
{Vj2 ∈ S | j2 ∈ J2}

=
⋂

j1,j2

(Vj1 ∩ Vj2).

Since each intersection Vj1 ∩ Vj2 is in turn a finite intersection of sets of S, it
follows that U1 ∩ U2 ∈ S.

Thus, TOP(S) is contained in E because TOP(S) is the coarsest topology
that contains S. This gives the desired conclusion. 	


Corollary 6.39. Let B be a collection of subsets of the set S such that for
every finite subcollection D of B, x ∈

⋂
D implies the existence of a set B ∈ B

such that x ∈ B ⊆
⋂

D. Then, TOP(B), the topology generated by B, consists
of sets that are unions of subcollections of B.

Proof. By Theorem 6.38, TOP(B) consists of unions of finite intersections of
the members of B. Therefore, unions of sets of B belong to TOP(B).

Conversely, let U ∈ B, that is, U =
⋃
{Vi | i ∈ I}, where each Vi is a finite

intersection of members of B. For every x ∈ Vi, there exists a set Bx,i ∈ B

such that x ∈ Bx,i ⊆ Vi. Therefore, Vi =
⋃

x∈Vi
Bx,i, and this implies that U

is indeed a union of sets from B. 	


Definition 6.40. Let S be a set. A collection S is a subbasis for a topology
O if O = TOP(S).
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A collection B of subsets is a basis for a topology if, for every finite sub-
collection D of B, if x ∈

⋂
D, then there exists a set B ∈ B such that

x ∈ B ⊆
⋂

D.

Corollary 6.39 implies that, for a basis B, we have
⋃

B = S. Indeed,
consider the intersection of the empty collection of parts of B, which equals
S. Then, for every x ∈ S, there is a set B ∈ B such that x ∈ B ⊆ S, which of
course implies

⋃
B = S.

Clearly, every set of B is an open set in the topological space (S,TOP(B).
Starting from a topology, we find a basis using the following theorem.

Theorem 6.41. Let (S,O) be a topological space. If B is a collection of open
subsets of S such that for every x ∈ S and every open set L ∈ O there exists
a set B ∈ B such that x ∈ B ⊆ L, then B is a basis for (S,O).

Proof. This statement is an immediate consequence of Definition 6.40. 	


Theorem 6.42. Let (S,O) be a topological space. The following statements
involving a family B of subsets of S are equivalent.
(i) B is a basis for (S,O);
(ii) For every x ∈ S and U ∈ neighx(O), there exists B ∈ B such that x ∈

B ⊆ U .
(iii) For every open set L, there is a subcollection C of B such that L =

⋃
C.

Proof. (i) implies (ii): Let B be a basis for (S,O) and let U ∈ neighx(O). There
exists an open set L such that x ∈ L ⊆ U . Since B is a basis, there exists a
set B ∈ B such that x ∈ B ⊆ L ⊆ U , which is what we aimed to prove.

(ii) implies (iii): Suppose that the second statement holds, and let L be an
open set. Since L is a neighborhood for all its elements, for every x ∈ L there
exists Bx ∈ B such that {x} ⊆ Bx ⊆ L. Therefore, L =

⋃
{Bx | x ∈ L}.

(iii) implies (i): Part (iii) implies Part (i) immediately. 	


Corollary 6.43. Let U be a subspace of a topological space (S,O). If B is a
basis of (S,O), then BU = {U ∩B | B ∈ B} is a basis of the subspace U .

Proof. Let K be an open subset in the subspace U . There is an open set L in
(S,O) such that K = U ∩ L. Since B is a basis for (S,O), by the third part
of Theorem 6.42, there is a subcollection C of B such that L =

⋃
C, which

implies K =
⋃
{U ∩ C | C ∈ C}. Thus, BU is a basis for U . 	


Example 6.44. The collection of open intervals {(a, b) | a, b ∈ R and a <
b} is a basis for the topological space (R,O) by Theorem 6.10. Further, the
collection

S = {(a,+∞) | a ∈ R} ∪ {(−∞, b) | b ∈ R}
is a subbasis of this topology because every member (a, b) of the basis can be
written as (a, b) = (−∞, b) ∩ (a,+∞).
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Definition 6.45. A topological space satisfies the first axiom of countability
if for every x ∈ S there is a countable family of open sets Lx = {Ln | n ∈ N}
such that x ∈

⋂
{Ln | n ∈ N} and for every open set L that contains x there

is a set Ln ∈ Lx such that Ln ⊆ L.
A topological space satisfies the second axiom of countability if it has a

countable basis.

It is clear that the second axiom of countability implies the first, and we
will deal mostly with this second axiom. Furthermore, by Corollary 6.43, every
subspace of a topological space that satisfies the second axiom of countability
satisfies this axiom itself.

Theorem 6.46. Let (S,O) be a topological space. If (S,O) has a countable
basis, then (S,O) is separable.

Proof. Let {Bn | n ∈ N} be a countable basis for (S,O) and let xn be an
element of Bn for n ∈ N. We claim that S = K({xn | n ∈ N}), which is
equivalent to S −K({xn | n ∈ N}) = ∅.

Indeed, observe that S − K({xn | n ∈ N}) is a non-empty open set;
therefore, there exists m ∈ N such that Bm ⊆ S − K({xn | n ∈ N}), so
xm ∈ S −K({xn | n ∈ N}) ⊆ S − {xn | n ∈ N}, which is a contradiction.
Therefore, the countable set {xn | n ∈ N} is dense in (S,O). 	


The notion of an open cover of a topological space is introduced next.

Definition 6.47. A cover of a topological space (S,O) is a collection of sets
C such that

⋃
C = S.

If C is a cover of (S,O) and every set C ∈ C is open (closed), then we refer
to C as an open cover (a closed cover, respectively).

A subcover of an open cover C is a collection D such that D ⊆ C and⋃
D = S.

Theorem 6.48. If a topological space (S,O) satisfies the second axiom of
countability, then every basis B for (S,O) contains a countable collection B0

that is a basis for (S,O).

Proof. Let B′ = {Li | i ∈ N} be a countable basis for (S,O) and let Ci be the
subcollection of B defined by Ci = {V ∈ B | V ⊆ Li} for i ∈ N. Since B is a
basis for (S,O), it is clear that Ci is an open cover for Li; that is,

⋃
Ci = Li

for every i ∈ N. Since each subspace Li has a countable basis, Ci contains a
countable subcover C′

i of Li. The collection B0 =
⋃
{C′

i | i ∈ N} is countable
and is a basis for (S,O) that is included in B. 	


Corollary 6.49. If a topological space (S,O) has a countable basis, then every
open cover of (S,O) contains a countable subcover.

Proof. This fact follows directly from Theorem 6.48. 	
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6.5 Compactness

Definition 6.50. A topological space (S,O) is compact if every open cover C

of this space contains a finite subcover.

Another useful concept is the notion of a family of sets with the finite
intersection property.

Definition 6.51. A collection C of subsets of a set S has the finite intersection
property (f.i.p.) if

⋂
D �= ∅ for every finite subcollection D of C.

Theorem 6.52. The following three statements concerning a topological space
(S,O) are equivalent:
(i) (S,O) is compact.
(ii) If D is a family of closed subsets of S such that

⋂
D = ∅, then there exists

a finite subfamily D0 of D such that
⋂

D0 = ∅.
(iii) If E is a family of closed sets having the f.i.p., then

⋂
E �= ∅.

Proof. The argument is left to the reader. 	

Another characterization of compactness that is just a variant of Part (iii)

of Theorem 6.52 that applies to an arbitrary family of sets (not necessarily
closed) is given next.

Theorem 6.53. A topological space (S,O) is compact if and only if for every
family of subsets C that has the f.i.p.,

⋂
{K(C) | C ∈ C} �= ∅.

Proof. If for every family of subsets C that has the f.i.p. we have
⋂
{K(C) |

C ∈ C} �= ∅, then, in particular, if C consists of closed sets, it follows that⋂
{C | C ∈ C} �= ∅, which amounts to Part (iii) of Theorem 6.52, so (S,O) is

compact.
Conversely, suppose that the space (S,O) is compact, which means that the

property of Part (iii) of Theorem 6.52 holds. Suppose that C is an arbitrary
collection of subsets of S that has the f.i.p. Then, the collection of closed
subsets {K(C) | C ∈ C} also has the f.i.p. because C ∈ K(C) for every
C ∈ C. Therefore,

⋂
{K(C) | C ∈ C} �= ∅. 	


Example 6.54. Let U1 ⊇ U2 ⊇ · · · be a descending sequence of non-empty
closed subsets of a compact space (S,O). Its intersection

⋂
n≥1 Un is non-

empty because (S,O) is compact and
⋂k

p=1 Uip
= Ul �= ∅, where l =

min{i1, . . . , ik} for every k ≥ 1.
This implies that the topological space (R,O) introduced in Example 6.4

is not compact because
⋂

n≥1[n,∞) = ∅.

The notion of cover refinement can be used to characterize compact topo-
logical spaces. Recall that we introduced this notion in Definition 1.12.



240 6 Topologies and Measures

Theorem 6.55. A topological space (S,O) is compact if and only if every
open cover C is refined by some finite open cover of the space.

Proof. Suppose that (S,O) is compact. Then, every open cover C contains a
finite subcover C′. Since every C ′ ∈ C′ is a member of C, it follows that C is
refined by C′.

Conversely, suppose that every open cover C is refined by some finite open
cover D = {D1, . . . , Dp}. Then, for everyDi ∈ D there exists a set Ci ∈ C such
that Di ⊆ Ci for 1 ≤ i ≤ p. Since

⋃n
i=1Di = S, it follows that

⋃n
i=1 Ci = S,

so {C1, . . . , Cn} is a finite subcover of C, which means that (S,O) is compact.
	


If (T,O �T ) is a compact topological space, then we say that T is a compact
set.

Example 6.56. Every closed interval [x, y] of R is a compact set. Indeed, if C is
an open cover of [x, y] we can assume without loss of generality that C consists
of open intervals C = {(ai, bi) | i ∈ I}.

Let

K =

⎧⎨
⎩c | c ∈ [x, y] and [x, c] ⊆

⋃
j∈J

(aj , bj) for some finite J ⊆ I

⎫⎬
⎭ .

Observe thatK �= ∅ because x ∈ K. Indeed, we have [x, x] = {x} and therefore
[x, x] ⊆ (ai, bi) for some i ∈ I.

We claim that y ≤ w = supK. It is clear that w ≤ y because y is an upper
bound of [x, y] and therefore an upper bound of K. Suppose that w < y. Note
that in this case there exists an open interval (ap, bp) for some p ∈ I such
that w ∈ (ap, bp). By Theorem 4.28, for every ε > 0, there is z ∈ K such
that supK − ε < z. Choose ε such that ε < w − ap. Since the closed interval
[x, z] is covered by a finite collection of open intervals [x, z] ⊆ (aj1 , bj1) ∪
· · · ∪ (ajr

, bjr
), it follows that the interval [x,w] is covered by (aj1 , bj1)∪ · · · ∪

(ajr
, bjr

) ∪ (ap, bp). This leads to a contradiction because the open interval
(ap, bp) contains numbers in K that are greater than w. So we have w = y,
which shows that [x, y] can be covered by a finite family of open intervals
extracted from C.

Example 6.57. The open interval (0, 1) is not compact. Indeed, it is easy to
see that the collection of open sets

{(
1
n , 1−

1
n

)}
is an open cover of (0, 1).

However, no finite sub-collection of this collection of sets is an open cover of
(0, 1).

Example 6.57 suggests the interest of the following definition.

Definition 6.58. A subset T of a topological space is relatively compact if its
closure K(T ) is compact.
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Example 6.59. The set (0, 1) is a relatively compact subset of R but not a
compact one.

Theorem 6.60. If (S,O) is a compact topological space, any closed subset T
of S is compact.

Proof. Let T be a closed subset of (S,O). We need to show that the subspace
(T,O �T ) is compact. Let C be an open cover of the space (T,O �T ). Then,
C ∪ {S − T} is a open cover of (S,O). The compactness of (S,O) means that
there exists a finite subcover D of (S,O) such that D ⊆ C∪{S−T}. It follows
immediately that D− {S − T} is a finite subcover of C for (T,O �T ). 	


A topological space (S,O) is locally compact if for every x ∈ S there exists
an open set L ∈ O such that x ∈ L and K(L) is a compact set.

Theorem 6.61. If (S,O) is a compact topological space, then, for every infi-
nite subset U of S we have U ′ �= ∅ (the Bolzano-Weierstrass property).

Proof. Let U = {xi | i ∈ I} be an infinite subset of S. Suppose that U has no
accumulation point. For every s ∈ S, there is an open set Ls such that s ∈ Ls

and U ∩ (Ls − {s}) = ∅. Clearly the collection {Ls | s ∈ S} is an open cover
of S, so it contains a finite subcover {Ls1 , . . . , Lsp

}. Thus, S = Ls1 ∪· · ·∪Lsp
.

Note that each Lsi
contains at most one element of U (which happens when

si ∈ U), which implies that U is finite. This contradiction means that U ′ �= ∅.
	


6.6 Continuous Functions

The notion of a continuous function is central in topology; we introduce it in
the next definition.

Definition 6.62. Let (S1,O1) and (S2,O2) be two topological spaces. A func-
tion f : S1 −→ S2 is continuous if, for every open set V ∈ O2, we have
f−1(V ) ∈ O1.

If f : S1 −→ S2 is a continuous function between the topological spaces
(S1,O1) and (S2,O2) and O′

1 and O′
2 are topologies on S1 and S2, respectively,

such that O′
2 ⊆ O2 and O1 ⊆ O′

1, then f is also a continuous function between
the topological spaces (S1,O

′
1) and (S2,O

′
2). Therefore, any function defined

on the topological space (S,P(S)) (equipped with the discrete topology) with
values in an arbitrary topological space (S′,O′) is continuous; similarly, any
function f : S −→ S′ between a topological space (S,O) and (S′, {∅, S′})
(equipped with the discrete topology) is continuous.

Theorem 6.63. Let (S,O), (T,O′), and (U,O′′) be three topological spaces and
let f : S −→ T and g : T −→ U be two continuous functions. Then, the
function gf : S −→ T is continuous.
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Proof. This statement is an immediate consequence of Definition 6.62 and
Theorem 1.63. 	


The next theorem provides several equivalent characterizations of contin-
uous functions and thus gives several alternative methods for proving the
continuity of a function.

Theorem 6.64. Let (S,O) and (T,O′) be two topological spaces and let f :
S −→ T be a function. The following statements are equivalent:
(i) f is continuous.
(ii) For every closed set L, L ⊆ T , the set f−1(L) is a closed set in (S,O).
(iii) f(K1(H)) ⊆ K2(f(H)) for every H ⊆ S, where K1 and K2 are the closure

operators of the topological spaces (S,O) and (T,O′), respectively.
(iv) For every x ∈ S and V ∈ neighf(x)(O′), there exists U ∈ neighx(O) such

that f(U) ⊆ V .

Proof. To prove that (i) implies (ii), let f be a continuous function and let
C be the open set given by C = T − L. By (i), f−1(C) is open in (S,O) and
therefore S − f−1(C) is closed in (S,O). Since

S − f−1(C) = S − f−1(T − L) = f−1(L)

(see Exercise 21), we have shown the desired implication.
To prove that (ii) implies (iii), we start from the fact that H ⊆ f−1(f(H)).

Therefore, H ⊆ f−1(K2(f(H))). Since K2(f(H)) is closed, it follows that
f−1(K2(f(H))) is also closed. Thus, K1(H) ⊆ f−1(K2(f(H))).

We now show that (iii) implies (iv). Let V be a neighborhood of f(x)
in (T,O′) and let W be an open set such that f(x) ∈ W ⊆ V . Define the
set U ⊆ S as U = S − f−1(T − W ). Since f(x) ∈ W , f(x) �∈ T − W ,
x �∈ f−1(T −W ) and therefore x ∈ U .

By (iii), we have

f
(
K1(f−1(T −W ))

)
⊆ K2(f(f−1(T −W ))) ⊆ K2(T −W ) = T −W,

because T −W is a closed set. Consequently, K1(f−1(T −W )) ⊆ f−1(T −W ),
so K1(f−1(T−W )) = f−1(T−W ), which implies that f−1(T−W ) is a closed
set. This means that U is an open set, and hence it is a neighborhood of x.
Then,

f(U) = f
(
S − f−1(T −W )

)
= f(f−1(W )) ⊆W.

Finally, to show that (iv) implies (i), let V be an open set in (T,O′) and
x ∈ f−1(V ), so f(x) ∈ V . Since V is open, it is a neighborhood of f(x),
so by (iv) there exists U ∈ neighx(O) such that f(U) ⊆ V , which implies
U ⊆ f−1(V ) and f−1(V ) is a neighborhood of x. By Theorem 6.23, f−1(V )
is open so f is continuous. 	


Definition 6.65. Let (S,O) and (T,O′) be two topological spaces. A bijection
f : S −→ T is a homeomorphism if both f and its inverse f−1 are continuous
functions.



6.6 Continuous Functions 243

If a homeomorphism exists between the topological spaces (S,O) and (S,O′),
we say that these spaces are homeomorphic.

Theorem 6.66. A bijection f : S −→ T between two topological spaces (S,O)
and (T,O′) is a homeomorphism if and only if U ∈ O is equivalent to f(U) ∈
O′.

Proof. Suppose that f is a homeomorphism between (S,O) and (T,O′). If
U ∈ O the continuity of f−1 implies that (f−1)−1(U) = f(U) ∈ O′; on the
other hand, if f(U) ∈ O′, then, since U = f−1(f(U)), the continuity of f
yields U ∈ O.

Conversely, suppose that for the bijection f : S −→ T , U ∈ O if and only
if f(U) ∈ O′. Suppose that V ∈ O′; since f is a bijection, there is W ⊆ S such
that V = f(W ) and W ∈ O by hypothesis. Observe that f−1(V ) = W , so f is
continuous. To prove that f−1 is continuous, note that we need to verify that
(f−1)−1(Z) is an open set in (S,O) for any set Z ∈ O′, which is effectively
the case because (f−1)−1(Z) = f(Z). 	


Any property of (S,O) that can be expressed using the open sets of this
topological space is preserved in topological spaces (T,O′) that are homeo-
morphic to (S,O). Therefore, such a property is said to be topological.

The collection of all pairs of topological spaces that are homeomorphic
is an equivalence relation on the class of topological spaces as can be easily
shown.

Example 6.67. We prove that all open intervals of R, bounded or not, are
homeomorphic.

Let (a, b) and (c, d) be two bounded intervals of R and let f : (a, b) −→
(c, d) be the linear function defined by f(x) = px + q, where p = d−c

b−a and
q = bc−ad

b−a . It is easy to verify that f is a homeomorphism, so any two bounded
intervals of R are homeomorphic; in particular, any bounded interval (a, b) is
homeomorphic with (0, 1).

Any two unbounded intervals (a,∞) and (b,∞) are homeomorphic; the
mapping g(x) = b

ax is a homeomorphism between these sets. Similarly, any
two unbounded intervals of the form (−∞, a) and (−∞, b) are homeomorphic,
and so are (a,∞) and (−∞, b).

The function h : (0, 1) −→ (0,∞) defined by h(x) = tan πx
2 is a homeo-

morphism, whose inverse mapping is h−1(x) = 2
π arctanx so (0, 1) is homeo-

morphic with (0,∞). Finally, (−1, 1) is homeomorphic to (−∞,∞) since the
mapping h1 : (−1, 1) −→ (−∞,∞) defined by h(x) = tan πx

2 for x ∈ (−1, 1)
is a homeomorphism.

The next theorem shows that compactness is preserved by continuous func-
tions.

Theorem 6.68. Let (S,O) and (T,O′) be two topological spaces and let f :
S −→ T be a continuous function. If (S,O) is compact, then f(S) is compact
in (T,O′).
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Proof. Let D = {Di | i ∈ I} be an open cover of f(S). Then f−1(Di) is an
open set in (S,O) because f is continuous and the collection C = {f−1(Di) |
i ∈ I} is an open cover of S. Since (S,O) is compact, there exists a finite
subcover C1 = {f−1(Di) | i ∈ I1} of S (I1 is a finite subset of I). Since
S =

⋃
{f−1(Di) | i ∈ I1}, we have

f(S) = f
(⋃

{f−1(Di) | i ∈ I1}
)

=
⋃
{f(f−1(Di)) | i ∈ I1}

=
⋃
{Di | i ∈ I1},

which shows that D contains a finite subcover of f(S). 	

Using the notion of the neighborhood of an element, it is possible to localize

the notion of continuity.

Definition 6.69. Let (S,O) and (T,O′) be two topological spaces. A function
f : S −→ T is continuous at s, where s ∈ S, if for every neighborhood V of
f(s) there exists a neighborhood U of s such that f(U) ⊆ V .

Theorem 6.70. Let (S,O) and (T,O′) be two topological spaces. A function
f : S −→ T is continuous if and only if it is continuous at every element s of
S.

Proof. This statement follows immediately from Definition 6.70 and from the
last part of Theorem 6.64. 	


6.7 Connected Topological Spaces

We now discuss a formalization of the notion of a “one-piece” topological
space.

Theorem 6.71. Let (S,O) be a topological space. The following statements
are equivalent:
(i) There exists a clopen subset K of S such that K �∈ {∅, S}.
(ii) There exist two non-empty open subsets L,L′ of S that are complementary.
(iii) There exist two non-empty closed subsets H,H ′ of S that are complemen-

tary.

Proof. (i) implies (ii): If K is clopen and K �∈ {∅, S}, then both K and K̄ are
non-empty open sets.

(ii) implies (iii): Suppose that L and L′ are two non-empty complementary
open subsets of S. Then, L and L′ are in the same time closed because the
complements of each set is open.

(iii) implies (i): If H and H ′ are complementary closed sets, then each of
them is also open because the complements of each set is closed. Thus, both
sets are clopen. 	
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Definition 6.72. A topological space (S,O) is disconnected if it satisfies any
of the equivalent conditions of Theorem 6.71. Otherwise, (S,O) is said to be
connected.

A subset T of a connected topological space is connected if the subspace T
is connected.

Theorem 6.73. Let T be a subset of S, where (S,O) is a topological space.
The following statements are equivalent:
(i) T is connected.
(ii) There are no open sets L1, L2 in (S,O) such that T ⊆ L1∪L2, and T ∩L1,

and T ∩ L2 are non-empty and disjoint.
(iii) There are no closed sets H1,H2 in (S,O) such that T ⊆ H1 ∪ H2, and

T ∩H1 and T ∩H2 are non-empty and disjoint.
(iv) There is no clopen set in (S,O) that has a non-empty intersection with T .

Proof. The equivalence of the statements follows immediately from the defi-
nition of the subspace topology. 	


Theorem 6.74. Let C = {Ci | i ∈ I} be a family of connected subsets of a
topological space (S,O). If Ci ∩Cj �= ∅ for every i, j ∈ I such that i �= j, then⋃

C is connected.

Proof. Suppose that C =
⋃

C is not connected. Then C contains two com-
plementary open subsets L′ and L′′. For every i ∈ I, the sets Ci ∩ L′ and
Ci ∩ L′′ are complementary and open in Ci. Since each Ci is connected, we
have either Ci ∩ L′ = ∅ or Ci ∩ L′′ = ∅ for every i ∈ I. In the first case,
Ci ⊆ L′′, while in the second, Ci ⊆ L′. Thus, the collection C can be parti-
tioned into two subcollections, C = C′ ∪ C′′, where C′ = {Ci ∈ C | Ci ⊆ L′}
and C′′ = {Ci ∈ C | Ci ⊆ L′′}. Clearly, two sets Ci ∈ C′ and Cj ∈ C′′

are disjoint because the sets L′ and L′′ are disjoint, and this contradicts the
hypothesis. 	


Corollary 6.75. Let (S,O) be a topological space and let x ∈ S. The collection
Cx of connected subsets of S that contain x has Kx =

⋃
Cx as its largest

element.

Proof. This follows immediately from Theorem 6.74. 	

We will refer to Kx as the connected component of x.

Theorem 6.76. Let T be a connected subset of a topological space (S,O),
and suppose that W is a subset of S such that T ⊆ W ⊆ K(T ). Then W is
connected.

Proof. Suppose that W is not connected (that is, W = U ∪ U ′, where U and
U ′ are two nonempty, disjoint, and open sets in W ). There exist two open
sets L,L′ in S such that U = W ∩L and U ′ = W ∩L′. Since T ⊆W , the sets
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T ∩U and T ∩U ′ are open in T , disjoint, and their union equals T . Thus, we
have either T ∩ U = ∅ or T ∩ U ′ = ∅ because T is connected.

If T ∩ U = ∅, then T ∩ L = (T ∩W ) ∩ L = T ∩ (W ∩ L) = T ∩ U = ∅,
so T ⊆ L̄. Since L̄ is closed, K(T ) ⊆ L̄, which implies W ⊆ L̄, which implies
U = W ∩ L = ∅. This contradicts the assumption made earlier about U . A
similar contradiction follows from T ∩ U ′ = ∅. Thus, W is connected. 	


Corollary 6.77. If T is a connected subset of a topological space (S,O), then
K(T ) is also connected.

Proof. This statement is a special case of Theorem 6.75. 	


Theorem 6.78. Let (S,O) be a topological space. The collection of all con-
nected components of S is a partition of S that consists of closed sets.

Proof. Corollary 6.77 implies that each connected component Kx is closed.
Suppose that Kx and Ky are two connected components that are not disjoint.
Then, by Theorem 6.74, Kx ∪Ky is connected. Since x ∈ Kx ∪Ky, it follows
that Kx ∪Ky ⊆ Kx because Kx is the maximal connected set that contains
x, so Ky ⊆ Kx. Similarly, Kx ⊆ Ky, so Kx = Ky. 	


Example 6.79. The topological space (R,O) is connected. Suppose that K is
a clopen set in R distinct from R and ∅, and let x ∈ R−K.

Suppose that the set K ∩ [x,∞) is nonempty. Then, this set is closed
and bounded below and therefore has a least element u. Since K ∩ [x,∞) =
K∩(x,∞) is also open, there exists ε > 0 such that (u−ε, u+ε) ⊆ K∩ [x,∞),
which contradicts the fact that u is the least element of K ∩ [x,∞). A similar
contradiction is obtained if we assume that K ∩ (−∞, x] �= ∅, so R cannot
contain a clopen set distinct from R or ∅.

Theorem 6.80. The image of a connected topological space through a contin-
uous function is a connected set.

Proof. Let (S1,O1) and (S2,O2) be two topological spaces and let f : S1 −→
S2 be a continuous function, where S1 is connected. If f(S1) were not con-
nected, we would have two nonempty open subsets L and L′ of f(S1) that
are complementary. Then, f−1(L) and f−1(L′) would be two nonempty, open
sets in S1 which are complementary, which contradicts the fact that S1 is
connected. 	


A characterization of connected spaces is given next.

Theorem 6.81. Let (S,O) be a topological space and let ({0, 1},P({0, 1}) be
a two-element topological space equipped with the non-discrete topology. Then,
S is connected if and only if every continuous application f : S −→ {0, 1} is
constant.
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Proof. Suppose that S is connected. Both f−1(0) and f−1(1) are clopen sets
in S because both {0} and {1} are clopen in the discrete topology. Thus, we
have either f−1(0) = ∅ and f−1(1) = S, or f−1(0) = S and f−1(1) = ∅. In
the first case, f is the constant function f(x) = 1; in the second, it is the
constant function f(x) = 0.

Conversely, suppose that the condition is satisfied for every continuous
function f : S −→ {0, 1} and suppose (S,O) is not connected. Then, there
exist two nonempty disjoint open subsets L and L′ that are complementary.
Let f = 1L be the indicator function of L, which is continuous because both
L and L′ are open. Thus, f is constant and this implies either L = ∅ and
L′ = S or L = S and L′ = ∅, so S is connected. 	


Example 6.82. Theorem 6.81 allows us to prove that the connected subsets of
R are exactly the intervals.

Suppose that T is a connected subset of S but is not an interval. Then,
there are three numbers x, y, z such that x < y < z, x, z ∈ T but y �∈ T .
Define the function f : T −→ {0, 1} by f(u) = 0 if u < y and f(u) = 1
if y < u. Clearly, f is continuous but is not constant, and this contradicts
Theorem 6.81. Thus, T must be an interval.

Suppose now that T is an open interval of R. We saw that T is homeomor-
phic to R (see Example 6.67), so T is indeed connected. If T is an arbitrary
interval, its interior I(T ) is an open interval and, since I(T ) ⊆ T ⊆ K(I(T )),
it follows that T is connected.

Definition 6.83. A topological space (S,O) is totally disconnected if, for ev-
ery x ∈ S, the connected component of x is Kx = {x}.

Example 6.84. Any topological space equipped with the discrete topology is
totally disconnected.

Theorem 6.85. Let (S,O) be a topological space and let T be a subset of S.
If for every pair of distinct points x, y ∈ T there exist two disjoint closed

sets Hx and Hy such that T ⊆ Hx ∪ Hy, x ∈ Hx, and y ∈ Hy, then T is
totally disconnected.

Proof. Let Kx be the connected component of x, and suppose that y ∈ Kx

and y �= x, that is, Kx = Ky = K. Then, K ∩Hx and K ∩Hy are nonempty
disjoint closed sets and K = (K ∩ Hx) ∪ (K ∩ Hy), which contradicts the
connectedness of K. Therefore, Kx = {x} for every x ∈ T and T is totally
disconnected. 	


6.8 Separation Hierarchy of Topological Spaces

The next definition introduces a hierarchy of topological spaces that is based
on separation properties of these spaces.
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Definition 6.86. Let (S,O) be a topological space and let x and y be two
arbitrary, distinct elements of S. This topological space is:
(i) a T0 space if there exists U ∈ O such that one member of the set {x, y}

belongs to U and the other to S − U ;
(ii) a T1 space if there exist U, V ∈ O such that x ∈ U − V and y ∈ V − U ;
(iii) a T2 space or a Hausdorff space if there exist U, V ∈ O such that x ∈ U

and y ∈ V and U ∩ V = ∅;
(iv) a T3 space if for every closed set H and x ∈ S −H there exist U, V ∈ O

such that x ∈ U and H ⊆ V and U ∩ V = ∅;
(v) a T4 space if for all disjoint closed sets H,L there exist U, V ∈ O such

that H ⊆ U , L ⊆ V , and U ∩ V = ∅.

Theorem 6.87. A topological space (S,O) is a T1 space if and only if every
singleton {x} is a closed set.

Proof. Suppose that (S,O) is a T1, space and for every y ∈ S−{x} let Uy and
Vy be two open sets such as x ∈ Uy−Vy and y ∈ Vy−Uy. Then, x ∈

⋃
y �=x Uy

and x �∈
⋃

y �=x Vy, so y ∈
⋃

y �=x Vy ⊆ S − {x}. Thus, S − {x} is an open set,
so {x} is closed.

Conversely, suppose that each singleton {u} is closed. Let x, y ∈ S be two
distinct elements of S. Note that the sets S − {x} and S − {y} are open and
x ∈ (S − {y})− (S − {x}) and y ∈ (S − {x})− (S − {y}), which shows that
(S,O) is a T1-space. 	


Theorem 6.88. Let (S,O) be a T4-separated topological space. If H is a closed
set and L is an open set such that H ⊆ L, then there exists an open set U
such that H ⊆ U ⊆ K(U) ⊆ L.

Proof. Observe that H and S − L are two disjoint closed sets under the as-
sumptions of the theorem. Since (S,O) is a T4-separated topological space,
there exist U, V ∈ O such that H ⊆ U , S − L ⊆ V and U ∩ V = ∅. This
implies U ⊆ S − V ⊆ L. Since S − V is closed, we have

H ⊆ U ⊆ K(U) ⊆ K(S − V ) = S − V ⊆ L,

which proves that U satisfies the conditions of the theorem. 	

The next theorem is in some sense a reciprocal result of Theorem 6.60,

which holds in the realm of Hausdorff spaces.

Theorem 6.89. Each compact subset of a Hausdorff space (S,O) is closed.

Proof. Let H be a compact subset of (S,O) and let y be an element of the set
S −H. It suffices to show that the set S −H is open. For every x ∈ H, we
have two open subsets Ux and Vx such that x ∈ Ux, y ∈ Vx and Ux ∩ Vx = ∅.
The collection {Ux | x ∈ H} is an open cover of H and the compactness of
H implies the existence of a finite subcover Ux1 , . . . , Uxn

of H. Consider the
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open set V =
⋂n

i=1 Vxi
, which is disjoint from each of the sets Ux1 , . . . , Uxn

and, therefore, it is disjoint from H. Thus, for every y ∈ S −H there exists
an open set V such that y ∈ V ⊆ S −H, which implies that S −H is open.
	


Corollary 6.90. In a Hausdorff space (S,O), each finite subset is a closed
set.

Proof. Since every finite subset of S is compact, the statement follows imme-
diately from Theorem 6.89. 	


It is clear that every T2 space is a T1 space and each T1 space is a T0

space. However, this hierarchy does not hold beyond T2. This requires the
introduction of two further classes of topological spaces.

Definition 6.91. A topological space (S,O) is regular if it is both a T1 and a
T3 space; (S,O) is normal if it is both a T1 and a T4 space.

Theorem 6.92. Every regular topological space is a T2 space and every nor-
mal topological space is a regular one.

Proof. Let (S,O) be a topological space that is regular and let x and y be
two distinct points in S. By Theorem 6.87, the singleton {y} is a closed set.
Since (S,O) is a T3, space, two open sets U and V exist such that x ∈ U ,
{y} ⊆ V , and U ∩ V = ∅, so (S,O) is a T2 space. We leave the second part of
the theorem to the reader. 	


6.9 Products of Topological Spaces

Theorem 6.93. Let {(Si,Oi) | i ∈ I} be a family of topological spaces in-
dexed by the set I. Define on the set S =

∏
i∈I Si the collection of sets

B = {
⋂

j∈J p
−1
j (Lj) | Lj ∈ Oj and J finite}. Then, B is a basis.

Proof. Note that every set
⋂

j∈J p
−1
j (Lj) has the form

∏
i∈I−J ×

∏
j∈J Lj . We

need to observe only that a finite intersection of sets in B is again a set in B.
Therefore, B is a basis. 	


Definition 6.94. The topology TOP(B) generated on the set S by B is called
the product of the topologies Oi and is denoted by

∏
i∈I Oi.

The topological space {(Si,Oi) | i ∈ I} is the product of the collection of
topological spaces {(Si,Oi) | i ∈ I}.

The product of the topologies {Oi | i ∈ I} can be generated starting from
the subbasis S that consists of sets of the form Dj,L = {t | t ∈

∏
i∈I | t(j) ∈

L}, where j ∈ I and L is an open set in (Sj ,Oj). It is easy to see that any set
in the basis B is a finite intersection of sets of the form Dj,L.
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Example 6.95. Let R
n = R × · · · × R, where the product involves n copies of

R and n ≥ 1. In Example 6.44, we saw that the collection of open intervals
{(a, b) | a, b ∈ R and a < b} is a basis for the topological space (R,O). There-
fore, a basis of the topological space (Rn,O×· · ·O) consists of parallelepipeds
of the form (a1, b1)× · · · × (an, bn), where ai < bi for 1 ≤ i ≤ n.

Theorem 6.96. Let {(Si,Oi) | i ∈ I} be a collection of topological spaces.
Each projection p� :

∏
i∈I Si −→ S� is a continuous function for � ∈ I. More-

over, the product topology is the coarsest topology on S such that projections
are continuous.

Proof. Let L be an open set in (S�,O�). We have

p−1
� (L) =

{
t ∈
∏
i∈I

Si | t(�) ∈ L
}
,

which has the form
∏

i∈I Ki, where each set Ki is open because

Ki =

{
Si if i �= �,

L if i = �,

for i ∈ I. Thus, p−1
� (L) is open and p� is continuous.

The proof of the second part of the theorem is left to the reader. 	

The next lemma is a preliminary result to a theorem that refers to the

compactness of products of topological spaces.

Lemma 6.97. Let C be a collection of subsets of S =
∏

i∈I Si such that C has
the f.i.p. and C is maximal with this property.

We have
⋂

D ∈ C for every finite subcollection D of C. Furthermore, if
T ∩ C �= ∅ for every C ∈ C, then T ∈ C.

Proof. Let D = {D1, . . . , Dn} be a finite subcollection of C and letD =
⋂

D �=
∅. Note that the intersection of every finite subcollection of C ∪ {D} is also
nonempty. The maximality of C implies D ∈ C, which proves the first part of
the lemma.

For the second part of the lemma, observe that the intersection of any
finite subcollection of D ∪ {T} is not empty. Therefore, as above, T ∈ C. 	


Theorem 6.98 (Tychonoff’s Theorem). Let {(Si,Oi) | i ∈ I} be a
collection of topological spaces such that Si �= ∅ for every i ∈ I. Then,
(
∏

i∈I Si,
∏

i∈I Oi) is compact if and only if each topological space (Si,Oi)
is compact for i ∈ I.

Proof. If (
∏

i∈I Si,O) is compact, then, by Theorem 6.68, it is clear that each
of the topological spaces (Si,Oi) is compact because each projection pi is
continuous.
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Conversely, suppose that each of the topological spaces (Si,Oi) is compact.
Let E be a family of sets in S =

∏
i∈I Si that has the f.i.p. and let (C,⊆)

be the partially ordered set whose elements are collections of subsets of S that
have the f.i.p. and contain the family E.

Let {Ci | i ∈ I} be a chain in (C,⊆). It is easy to verify that
⋃
{Ci | i ∈ I}

has the f.i.p., so every chain in (C,⊆) has an upper bound. Therefore, by Zorn’s
lemma (see Theorem 4.101), the poset (C,⊆) contains a maximal collection
C that has the f.i.p.and contains E. We aim to find an element t ∈

∏
i∈I Si

that belongs to
⋂
{K(C) | C ∈ C} because, in this case, the same element

will belong to
⋂
{K(C) | C ∈ E} and this would imply by Theorem 6.53 that

(S,O) is compact.
Let Ci be the collection of closed subsets of Si defined by

Ci = {Ki(pi(C)) | C ∈ C}

for i ∈ I, where Ki is the closure of the topological space (Si,Oi).
It is clear that each collection Ci has the f.i.p. in Si. Indeed, since C has

the f.i.p., if {C1, . . . , Cn} ⊆ C and x ∈
⋂n

k=1 Ck, then pi(x) ∈
⋂n

k=1 K(pi(Ck)),
so Ci has the f.i.p. Since (Si,Oi) is compact, we have

⋂
Ci �= ∅, by Part (iii)

of Theorem 6.52. Let ti ∈
⋂

Ci =
⋂
{Ki(pi(C)) | C ∈ C} and let t ∈ S be

defined by t(i) = ti for i ∈ I.
Let Dj,L = {u | u ∈

∏
i∈I | u(j) ∈ L}, a set of the subbasis of the

product topology that contains t, defined earlier, where L is an open set in
(Sj ,Oj). Since g(j) ∈ L, the set L has a nonempty intersection with every
set Ki(pi(C)), where C ∈ C. On the other hand, since pi(Dj,L) = Si for
i �= j, it follows that for every i ∈ I we have pi(Dj,L) ∩

⋂
C∈C Ki(pi(C)) �= ∅.

Therefore, pi(Dj,L) has a nonempty intersection with every set of the form
Ki(pi(C)), where C ∈ C. By the contrapositive of Theorem 6.8, this means
that pi(Dj,L) ∪ pi(C) �= ∅ for every i ∈ I and C ∈ C. This in turn means
that Dj,L ∪C �= ∅ for every C ∈ C. By Lemma 6.97, it follows that Dj,L ∈ C.
Since every set that belongs to the basis of the product topology is a finite
intersection of sets of the form Dj,L, it follows that any member of the basis
has a nonempty intersection with every set of C. This implies that g belongs
to
⋃
{K(C) | C ∈ C}, which implies the compactness of (

∏
i∈I Si,

∏
i∈I Oi).

	


Example 6.99. In Example 6.56, we have shown that every closed interval [x, y]
of R where x < y is compact. By Theorem 6.98, any subset of R

n of the form
[x1, y1]× · · · × [xn, yn] is compact.

6.10 Fields of Sets

In this section, we introduce collections of sets that play an important role in
measure and probability theory.
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Definition 6.100. Let S be a set. A field of sets on S is a family of subsets
E of S that satisfies the following conditions:
(i) S ∈ E.
(ii) If U ∈ E, then Ū = S − U ∈ E.
(iii) If U0, . . . , Un−1 belong to E, then

⋃
0≤i≤n−1 Ui belongs to E.

A σ-field of sets on S is a family of subsets E of S that satisfies Conditions
(i) and (ii) and, in addition, satisfies the following condition:

(iii′) if {Ui | i ∈ N} is a countable family of sets included in E, then⋃
i∈N

Ui belongs to E.
Clearly, every σ-field is also a field on S.

If E is a σ-field of sets on S, we shall refer to the pair (S,E) as a measur-
able space.

Example 6.101. The collection E0 = {∅, S} is a σ-field on S; moreover, for
every σ-field E on S, we have E0 ⊆ E.

The set P(S) of all subsets of a set S is a σ-field on S.
If T is a subset of S, then the collection {∅, T, S − T, S} is a σ-field on S.

Theorem 6.102. The class of all fields (σ-fields) of sets on S is a closure
system on P(S).

Proof. Let E = {Ei | i ∈ I} be a collection of fields of sets on S. Since S ∈ Ei

for every i ∈ I, it follows that S ∈
⋂
{Ei | i ∈ I}.

Suppose that A ∈
⋂

E. Since A ∈ Ei for every i ∈ I, it follows that Ā ∈ Ei

for every i ∈ I, which implies that Ā ∈
⋂
{Ei | i ∈ I}.

Finally, if {Ai | 1 ≤ i ≤ n} ∈
⋂
{Ei | i ∈ I}, it is easy to see that⋃n

i=1Ai ∈
⋂
{Ei | i ∈ I}.

A similar argument proves that the class of all σ-fields of sets is also a
closure system on P(S). 	


Example 6.103. Let A be a subset of the set S. The σ-field generated by the
collection {A} is {∅, A, Ā, S}.

Definition 6.104. Let (S,O) be a topological space. A subset T of S is said
to be a Borel set if it belongs to the σ-field generated by the topology O.

The σ-field of Borel sets of (S,O) is denoted by BO.

It is clear that all open sets are Borel sets. Also, every closed set, as a com-
plement of an open set, is a Borel set.

Example 6.105. We identify several families of Borel subsets of the topological
space (R,O).

It is clear that every open interval (a, b) and every set (a,∞) or (−∞, a)
is a Borel set for a, b ∈ R because they are open sets. The closed intervals of
the form [a, b] are Borel sets because they are closed sets in the topological
space.
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Since [a, b) = (−∞, b)− (−∞, a), it follows that the half-open intervals of
this form are also Borel sets.

For every a ∈ R, we have {a} ∈ BO because {a} = [a, b)− (a, b) for every
b ∈ R such that b > a. Therefore, every countable subset {an | n ∈ N} of R

is a Borel set.

Example 6.106. Let π = {Bi | i ∈ I} be a countable partition of a set S. The
σ-field generated by π is

Eπ =

{⋃
i∈J

Bi | J ⊆ I
}
.

Clearly, every block Bi belongs to Eπ, so π ⊆ Eπ.
To verify that Eπ is a σ-field, note first that we have S ∈ Eπ since S =⋃

i∈I Bi. If A ∈ Epi, then A =
⋃

i∈J Bi for some subset J of I, so Ā =⋃
i∈I−J Bi, which shows that Ā ∈ Eπ. Let {A� | � ∈ L} be a family of sets

included in Eπ. For each set A�, there exists a set J� such that A� =
⋃
{Bi |

i ∈ J�}. Therefore,

⋃
�∈L

A� =
⋃{

Bi | i ∈
⋃
�∈L

J�

}
,

which shows that
⋃

�∈LA� ∈ Eπ. This proves that Eπ is a σ-field. Moreover,
any σ-field on S that includes π also includes Eπ, which concludes the argu-
ment.

Theorem 6.107. Let (S,E) be a measurable space. The following statements
hold:
(i) ∅ ∈ E.
(ii) If {Ai | i ∈ N} ⊆ E, then

⋂
i∈N

Ai ∈ E.
(iii) If A,B ∈ E, then A−B and A⊕B belong to E.

Proof. The first statement follows from the fact that ∅ = S̄.
Let {Ai | i ∈ N} be a family of subsets of S such that Ai ∈ E for i ∈ N.

Since Ai ∈ E, we have
⋃
{Ai | i ∈ N} ∈ E. Thus,

⋃
{Ai | i ∈ N} =

⋂
{Ai | i ∈ N} ∈ E,

which yields the second part of the theorem.
The third statement of the theorem is immediate. 	


Corollary 6.108. Let (S,E) be a measurable space and let {Un | n ∈ E} be a
sequence of members of E. Then, both lim inf{Un | n ∈ N} and lim sup{Un |
n ∈ N} belong to E.



254 6 Topologies and Measures

Proof. This statement follows immediately from Definition 6.100 and from
Theorem 6.107. 	


Note that if (S,E) is a measurable space (that is, if E is a σ-field on S),
then condition (iii′) of Definition 6.100 amounts to Eσ ⊆ E. Moreover, by Part
(ii) of Theorem 6.107, we also have Eδ ⊆ E.

Example 6.109. Let S be an arbitrary set and let B be the family of sets that
consists of sets that are either countable or complements of countable sets.
We claim that (S,B) is a measurable space.

Note that S ∈ B because S is the complement of ∅, which is countable.
Next, if A ∈ B is countable, Ā is a complement of a countable set, so Ā ∈ B;
otherwise, if A is not countable, then it is the complement of a countable set,
which means that Ā is countable, so Ā ∈ B.

Let A and B be two sets of B. If both are countable, then A ∪ B ∈ B. If
Ā and B̄ are countable, then A ∪B = A ∩ B, so A ∪ B ∈ B because it has
a countable complement. If A is countable and B is countable, then A ∩B is
countable because it is a subset of B. Therefore, A∪B ∈ B as a complement
of a countable set. The case where A and B are countable is treated similarly.
Thus, in any case, the union of two sets of B belongs to B.

Finally, we have to prove that if {Ai | i ∈ N} is a family of sets included
in B, then the set A =

⋃
i∈N

Ai belongs to B. Indeed, let us split the set I into
I ′ and I ′′, where i ∈ I ′ if the set Ai is countable and i ∈ I ′′ if the complement
Ai = S − Ai is countable. Note that both A′ =

⋃
i∈I′ Ai and A′′ =

⋂
i∈I′′ Ai

are countable sets (by Theorem 1.130 and by the fact that every subset of a
countable set is countable, respectively), and that A = A′ ∪ A′′. Since both
A′ and A′′ belong to B, it follows that A ∈ B.

Definition 6.110. Let (S,D) and (T,E) be two measurable spaces. A function
f : S −→ T is said to be measurable if f−1(V ) ∈ D for every V ∈ E.

It is easy to verify that if (Si,Ei) are measurable spaces for 1 ≤ i ≤ 3 and
f : S1 −→ S2, g : S2 −→ S3 are measurable functions, then their composition
gf is also a measurable function.

Theorem 6.111. Let S and T be two sets and let f : S −→ T be a function. If
E is a σ-field on T , then the collection f−1(E) defined by f−1(E) = {f−1(V ) |
V ∈ E} is a σ-field on S.

Proof. Since T ∈ E, it is clear that S = f−1(T ) belongs to f−1(E).
Suppose that U ∈ f−1(E); that is, U = f−1(W ) for some W ∈ E. Since

S − U = f−1(T ) − f−1(W ) = f−1(T − W ) (by Theorem 1.67), it follows
that S − U ∈ f−1(E). Similarly, if {Wi | i ∈ N} is a countable family of sets
included in E, then {f−1(Wi) | i ∈ N} is a countable family of sets included in
f−1(E) and

⋃
{f−1(Wi) | i ∈ N} belongs to f−1(E) by Theorem 1.65. Thus,

f−1(E) is a σ-field on S. 	
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Corollary 6.112. Let f : S −→ T be a function, where (T,E) is a measurable
space. Then, f−1(E) is the least σ-field of subsets of S such that f is is a
measurable function between S and (T,E).

Proof. Suppose that D is a σ-field on S such that f is measurable. Then,
f−1(E) ∈ D for every E ∈ E, so f−1(E) ⊆ D. The statement follows immedi-
ately since f−1(E) is a σ-field of sets. 	


Theorem 6.113. Let S and T be two sets and let f : S −→ T be a function.
If E is a σ-field on S, then the collection E′ = {W ∈ P(T ) | f−1(W ) ∈ E} is
a σ-field on T .

Proof. The proof is straightforward and is left to the reader as an exercise.
	


Theorem 6.114. Let (S,O) and (T,O′) be two topological spaces and let
f : S −→ T be a continuous function. Then, f is measurable relative to the
measurable spaces (S,BO) and (T,BO′), where BO and BO′ are the collections
of Borel sets in (S,O) and (T,O′), respectively.

Proof. The collection of sets E′ = {W ∈ P(T ) | f−1(W ) ∈ BO} is a σ-field
on T . Since f is continuous, it is clear that E′ contains every open set in O′, so
the σ-field of Borel sets BO′ that is generated by O′ is contained in E′. Thus,
for every Borel set U in T , f−1(U) ∈ BO, which allows us to conclude that f
is indeed measurable. 	


Next, we describe the σ-field generated by a countable partition of a set.

Theorem 6.115. Let π = {Bi | i ∈ I} be a countable partition of a set S. In
other words, we assume that the set of indices I of the blocks of π is countable.

The σ-field generated by π is the collection of sets:{⋃
i∈J

Bi | J ⊆ I
}
.

Proof. Let Eπ be the σ-field generated by π. Clearly, we have

π ⊆
{⋃

i∈J

Bi | J ⊆ I
}
⊆ Eπ.

The collection {
⋃

i∈J Bi | J ⊆ I} is a σ-field. Indeed, we have S =
⋃
{B |

B ∈ π}, so S ∈ {
⋃

i∈J Bi | J ⊆ I}.
Suppose that A =

⋃
{Bi | i ∈ J}. Then Ā = {Bi | i ∈ I − J}, which

shows that Ā ∈ {
⋃

i∈J Bi | J ⊆ I}.
Suppose that A0, . . . , An, . . . belong to E, so Ak =

⋃
{Bi | i ∈ Jk}, where

Jk ⊆ I for k ∈ N. Then,
⋃

k≥0Ak =
⋃
{Bi | i ∈

⋃
k≥0 Jk}, which implies that⋃

k≥0Ak ∈ {
⋃

i∈J Bi | J ⊆ I}.
This implies that Eπ = {

⋃
i∈J Bi | J ⊆ I}. 	


We now give a technical result that concerns σ-fields.
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Theorem 6.116. Let (S,E) be a measurable space and let {Ui ∈ E | i ∈ N}
be a family of sets from E. There exists a family of sets {Vi ∈ E | i ∈ N} that
satisfies the following conditions:
(i) If i, j ∈ N and i �= j, then Vi ∩ Vj = ∅.
(ii) Vi ⊆ Ui for i ∈ N.
(iii)

⋃
{Vi | i ∈ N} =

⋃
{Ui | i ∈ N}.

Proof. The sets Vn are defined inductively by

V0 = U0,

Vi = Ui −
⋃
{Uj | 0 ≤ j ≤ i− 1}.

It is clear that the first two conditions of the theorem are satisfied; we prove
the last part of the theorem.

For x ∈
⋃
{Ui | i ∈ N}, let ix be the least i such that x ∈ Ui; clearly,

x �∈ Uj for j < i, so x ∈ Vi. Thus,
⋃
{Ui | i ∈ N} ⊆

⋃
{Vi | i ∈ N}. The

reverse inclusion follows immediately from the fact that Vi ⊆ Ui for every
i ∈ N. 	


6.11 Measures

Measurable spaces provide the natural framework for introducing the notion
of measure.

Definition 6.117. Let (S,E) be a measurable space. A measure is a function
m : E −→ R̂≥0 that satisfies the following conditions:
(i) m(∅) = 0.
(ii) For every countable collection U0, U1, . . . of sets in E that are pairwise

disjoint, we have

m

⎛
⎝ ⋃

n∈N

Un

⎞
⎠ =

∑
n∈N

m(Un)

the (additivity property).
We refer to the triple (S,E,m) as a measure space.

In particular, if the collection U0, U1, . . . consists of two disjoint sets U and
V , then

m(U ∪ V ) = m(U) +m(V ). (6.3)

Observe that if U, V ∈ E and U ⊆ V , then V = U ∪ (V − U), so by the
additivity property, m(V ) = m(U) + m(V − U) ≥ m(U). This shows that
U ⊆ V implies m(U) ≤ m(V ) (the monotonicity of measures).

Let X and Y be two subsets of E. Since X ∪ Y = X ∪ (Y − X), Y =
(Y −X) ∪ (Y ∩X), and the pairs of sets X, (Y −X) and (Y −X), (Y ∩X)
are disjoint, we can write
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m(X ∪ Y ) = m(X) +m(Y −X)
= m(X) +m(Y )−m(X ∩ Y ). (6.4)

The resulting equality

m(X ∪ Y ) +m(X ∩ Y ) = m(X) +m(Y ) (6.5)

for X,Y ∈ E is known as the modularity property of measures.

Example 6.118. Let S be a finite set and let E = P(S). The mapping m :
P(S) −→ R given by m(U) = |U | is a measure on P(S), as can be verified
immediately.

Example 6.119. Let S be a set and let s be a fixed element of S. Define the
mapping ms : P(S) −→ R̂≥0 by

ms(U) =

{
1 if s ∈ U,
0 otherwise.

It is easy to verify that ms is a measure defined on P(S). Indeed, we have
ms(∅) = 0. If U0, U1, . . . is a countable collection of pairwise disjoint sets,
then s may belong to at most one of these sets. If there is a set Ui such that
s ∈ Ui, s ∈

⋃
n∈N

Ui, so ms

(⋃
n∈N

Un

)
=
∑

n∈N
ms(Un) = 1. If no such

set Ui exists, then ms

(⋃
n∈N

Un

)
=
∑

n∈N
ms(Un) = 0. In either case, the

second condition of Definition 6.117 is satisfied.

The behavior of measures with respect to limits of sequences of sets is
discussed next.

Theorem 6.120. Let (S,E,m) be a measure space. If (U0, U1, . . .) is an in-
creasing or a decreasing sequence of sets from E, then m(limUn) = limm(Un).

Proof. Suppose that U0 ⊂ U1 ⊂ · · · is an increasing sequence of sets, so
m(limUn) = m(

⋃
n Un).

By Theorem 6.116, there exists a sequence V0 ⊂ V1 ⊂ · · · of disjoint sets
in E such that

⋃
Un =

⋃
Vn and V0 = U0, and Vn = Un − Vn−1 for n ≥ 1.

Then,

m(limUn) = m

(⋃
n

Vn

)
= m(V0) +

∑
n≥1

m(Vn)

= lim
n→∞

(
m(V0) +

n∑
i=1

m(Vi)

)

= lim
n→∞

m

⎛
⎝V0 ∪

⋃
n≥1

Vi

⎞
⎠

= lim
n→∞

m(Ui).
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Suppose now that U0 ⊃ U1 ⊃ · · · is a decreasing sequence of sets, so
m(limUn) = m(

⋂
n Un).

Define the sequence of sets W0,W1, . . . by Wn = U0 −Un for n ∈ N. Since
this sequence is increasing, we have m(

⋃
n∈N

Wn) = limm(Wn) by the first
part of the theorem. Thus, we can write

m

⎛
⎝ ⋃

n∈N

Wn

⎞
⎠ = limm(Wn) = m(U0)− limm(Un).

Since

m

⎛
⎝ ⋃

n∈N

Wn

⎞
⎠ = m

⎛
⎝ ⋃

n∈N

(U0 − Un)

⎞
⎠

= m

⎛
⎝U0 −

⋂
n∈N

Un

⎞
⎠

= m(U0)−m

⎛
⎝ ⋂

n∈N

Un

⎞
⎠ ,

it follows that

m(limUn) = m

⎛
⎝ ⋂

n∈N

Un

⎞
⎠ = limm(Un).

	


Definition 6.121. Let S be a set. An outer measure on S is a function μ :
P(S) −→ R̂≥0 that satisfies the following properties:
(i) μ(∅) = 0.
(ii) μ is countably subadditive; that is,

μ

⎛
⎝ ⋃

n∈N

En

⎞
⎠ ≤∑{μ(En) | n ∈ N}

for every countable family {En ∈ P(S) | n ∈ N} of subsets of S.
(iii) μ is monotonic.

A subset T of S is μ-measurable if

μ(H) = μ(H ∩ T ) + μ(H ∩ T̄ )

for every set H ∈ P(S).
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Lemma 6.122. Let S be a set and let μ be an outer measure on a set S. A
set T is μ-measurable if and only if

μ(H) ≥ μ(H ∩ T ) + μ(H ∩ T̄ )

for every H ∈ P(S) such that μ(H) <∞.

Proof. The necessity of the condition is obvious. Suppose therefore that the
condition is satisfied. Since μ is subadditive, we have

μ(H) ≤ μ(H ∩ T ) + μ(H ∩ T̄ ),

which implies μ(H) = μ(H ∩ T ) + μ(H ∩ T̄ ). 	


Theorem 6.123. Let μ be an outer measure on a set S. The collection of
μ-measurable sets is a σ-field Eμ on S.

Proof. It is immediate that ∅ ∈ Eμ. Suppose that T0, T1, . . . is a sequence of
μ-measurable sets. Then, we can write

μ(H) = μ(H ∩ T0) + μ(H ∩ T̄0).

By substituting H ∩ T0 and H ∩ T̄0 by H, we obtain

μ(H ∩ T0) = μ(H ∩ T0 ∩ T1) + μ(H ∩ T0 ∩ T̄1),
μ(H ∩ T̄0) = μ(H ∩ T̄0 ∩ T1) + μ(H ∩ T̄0 ∩ T̄1),

which implies

μ(H) = μ(H∩T0∩T1)+μ(H∩T0∩ T̄1)μ(H∩ T̄0∩T1)+μ(H∩ T̄0∩ T̄1). (6.6)

Replacing H by H ∩ (T0 ∪ T1), we obtain the equality

μ(H ∩ (T0 ∪ T1)) = μ(H ∩ T0 ∩ T1) + μ(H ∩ T0 ∩ T̄1) + μ(H ∩ T̄0 ∩ T1). (6.7)

Therefore,
μ(H) = μ(H ∩ (T0 ∪ T1)) + μ(H ∩ T0 ∪ T1),

which shows that T0 ∪ T1 is μ-measurable. An easy argument by induction
shows that

⋃n
i=0 Ti is μ-measurable for every n ∈ N.

By replacing H in Equality (6.6) by H ∩T0 − T1 = H ∩ (T̄0 ∪T1), we have

μ(H ∩ (T̄0 ∪ T1)) = μ(H ∩ T0 ∩ T1) + μ(H ∩ T̄0 ∩ T1) + μ(H ∩ T̄0 ∩ T̄1),

which allows us to write

μ(H) = μ(H ∩ T0 − T1) + μ(H ∩ (T0 ∩ −T1)),

which proves that T0 − T1 is μ-measurable.
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If U0 and U1 are two disjoint μ-measurable sets, then Equality (6.7) implies

μ(H ∩ (U0 ∪ U1)) = μ(H ∩ U0) + μ(H ∩ U1)

for every H. Again, an inductive argument allows us to show that if T0, . . . , Tn

are pairwise disjoint, μ-measurable sets, then

μ

(
H ∩

n⋃
i=0

Ui

)
=

n∑
i=0

μ(H ∩ Ui). (6.8)

Define Wn =
⋃n

i=0 Ti. We have seen that Wn is μ-measurable for every
n ∈ N. Thus, we have

μ(H) = μ(H ∩Wn) + μ(H ∩ W̄n)

= μ

(
H ∩

(
n⋃

i=0

Ti

))
+ μ(H ∩ W̄n)

≥ μ
(
H ∩

(
n⋃

i=0

Ti

))
+ μ(H ∩ W̄ ),

where W =
⋃

i≥0 Ti. By Equality (6.8), we have

μ(H) ≥
n∑

i≥0

μ(H ∩ Ti) + μ(H ∩ W̄ ) (6.9)

for every n ∈ N. Therefore,

μ(H) ≥
∞∑

i≥0

μ(H ∩ Ti) + μ(H ∩ W̄ ),

hence μ(H) ≥ μ(H ∩ W ) + μ(H ∩ W̄ ). By Lemma 6.122, the set W is μ-
measurable. Note also that we have shown that

μ(H) =
n∑

i≥0

μ(H ∩ Ti) + μ(H ∩ W̄ ) = μ(H ∩W ) + μ(H ∩ W̄ ). (6.10)

Suppose now that the sets T0, T1, . . . are not disjoint. Consider the sequence
of pairwise disjoint sets V0, V1, . . . defined by

V0 = T0,

Vn = Tn −
n−1⋃
i=0

Ti,

for n ≥ 1. The measurability of each set Vn is immediate and, by the pre-
vious argument,

⋃
n∈N

Vn is μ-measurable. Since
⋃

n∈N
Vn =

⋃
n∈N

Tn, it
follows that

⋃
n∈N

Tn is μ-measurable. We conclude that the collection of
μ-measurable sets is a σ-field. 	
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Corollary 6.124. Let S be a set and let μ : P(S) −→ R̂≥0 be an outer mea-
sure on S. The restriction μ �Eμ

to the σ-field Eμ is a measure.

Proof. Let T0, T1, . . . be a sequence of sets in Eμ that are pairwise disjoint.
Choosing H = W in Equality (6.10), we have

μ(W ) =
n∑

i≥0

μ(Ti),

which proves that μ �Eμ
is indeed a measure. 	


Corollary 6.125. Let μ be an outer measure and let U0, U1, . . . be a sequence
of μ-measurable sets. Then, both lim inf Un and lim supUn are μ-measurable
sets.

Proof. This statement follows immediately from Theorem 6.123 and from
Corollary 6.108. 	


Theorem 6.127, which follows gives a technique for constructing outer mea-
sures known as Munroe’s Method I or simply as Method I (see [100, 61, 44]).

First, we need the following definition.

Definition 6.126. A sequential cover of a set S is a collection C of subsets of
S such that ∅ ∈ C, and for every subset T of S there is a countable subcollection
D = {D0,D1, . . .} of C such that T ⊆

⋃∞
n=0Dn.

The family of all countable collections of sets from C that are covers of a
set W ∈ P(S) is denoted by DC,W . If the collection C is clear from the context,
the subscript C will be omitted.

Theorem 6.127. Let S be a set, C a sequential cover of the set S, and f :
C −→ R̂≥0 a nonnegative function defined on C such that f(∅) = 0.

The function μf : P(S) −→ R̂≥0 given by

μf (T ) = inf

{∑
U∈D

f(U) | D ∈ DC,T

}

for T ∈ P(S) is an outer measure on S.

Proof. Since ∅ is covered by the empty collection, and an empty sum has the
value 0, it follows that μf (∅) = 0.

If T, T ′ ∈ P(S) and T ⊆ T ′, then any cover of T ′ is also a cover of T ; that
is, DC,T ′ ⊆ DC,T . Therefore, μf (T ) ≤ μf (T ′).

Let {Tn | n ∈ N} be a countable collection of subsets of S. If μf (Tn) = +∞
for one of the members of this collection, then the subadditivity of μf ,

μf

⎛
⎝ ⋃

n∈N

Un

⎞
⎠ ≤ ∑

n∈N

μf (Un),
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is satisfied. Therefore, we assume now that the value μf (Tn) is finite for each
n ∈ N.

The definition of μf (Tn) as an infimum allows us to assume the existence
of a collection of sets Dn ∈ DUn

such that∑
U∈Dn

f(U) ≤ μf (Tn) +
ε

2n
.

Consider the collection D =
⋃

n∈N
Dn. D is a cover for

⋃
n∈N

Tn. Therefore,
by the definition of μf , we have

μf

⎛
⎝ ⋃

n∈N

Tn

⎞
⎠ ≤∑{f(U) | U ∈ D}

≤
∑
n∈N

∑
U∈Dn

f(U)

≤
∑
n∈N

μf (Tn) + ε
∑
n∈N

1
2n

=
∑
n∈N

μf (Tn) + 2ε.

Since this inequality holds for every ε, it follows that

μf

⎛
⎝ ⋃

n∈N

Tn

⎞
⎠ ≤∑{μf (Tn) | n ∈ N},

which proves that μf is subadditive. We conclude that μf is an outer measure.
	


Corollary 6.128. Let S be a set, C a sequential cover of the set S, and f :
C −→ R̂≥0 a function such that f(∅) = 0. The outer measure μf is the unique
outer measure on S that satisfies the following properties:
(i) μf (U) ≤ f(U) for every U ∈ C, and
(ii) if μ′ is an outer measure such that μ′(U) ≤ f(U) for every U ∈ C then

μ′(T ) ≤ μf (T ) for every T ∈ P(S).

Proof. Since {∅, U} is a cover for U , the inequality μf (U) ≤ f(U) is immediate
for every U ∈ C.

Let μ′ be an outer measure such that μ′(U) ≤ f(U) for every U ∈ C and
let D be a sequential cover of a set T ∈ P(S). Then, we have

μ′(T ) ≤ μ′
(⋃

D
)
≤ {μ′(U) | U ∈ D} ≤

∑
{f(U) | U ∈ D}

so μ′(T ) ≤ μf (T ). The uniqueness of μf follows by changing the roles of μf

and μ′. 	
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Corollary 6.129. Let S be a set, C′ and C two sequential covers of S such
that C′ ⊆ C, and f : C −→ R̂≥0 a function such that f(∅) = 0. If μ′f and μf are
the outer measures that correspond to the collections C′ and C, respectively,
then μf (T ) ≤ μ′f (T ) for T ∈ P(S).

Proof. Observe that if D′
T ⊆ DT , where D′

T and DT are the families of count-
able collections of sets from C′ and C, respectively, that are covers of T , then
the definitions of μ′f and μf immediately imply the desired inequality. 	


Example 6.130. Theorem 6.127 allows us to introduce a very important outer
measure on R. Let C be the collection of open intervals of R to which the
empty set is added.

Define the function f : C −→ R by f(a, b) = b− a for every open interval
(a, b) ∈ C and f(∅) = 0. For a subset T of R, the value of the outer measure
μ(T ) = mf (T ) is

μ(T ) = inf

⎧⎨
⎩
∑
n∈N

(bn − an) ∈ C | T ⊆
⋃
n

(an, bn)

⎫⎬
⎭ ,

where the infimum is considered over all countable collections of open intervals
(an, bn) that cover the set T . This is the Lebesgue outer measure of the set T .

Let μ be the Lebesgue outer measure on R. We have μ([a, b]) = b − a.
Since [a, b] ⊆ (a− ε, b+ ε) for every ε > 0, it follows that μ([a, b]) < b− a+ 2ε
for every ε > 0, so μ([a, b]) ≤ b − a. On the other hand, (a, b) ⊆ [a, b], so
μ([a, b]) ≥ b− a, which yields μ([a, b]) = b− a.

This type of measure can be generalized to R
n by defining C as the collec-

tion of n-dimensional intervals of the form I = (a1, b1)×· · ·×(an, bn) to which
we add the empty set and letting f(I) be the volume vol(I) =

∏n
i=1 |bi − ai|

of I. Thus, the Lebesgue measure of a set T ⊆ R
n is

μ(T ) = inf
{∑

vol(I) | I ∈ C, T ⊆
⋃
I
}
, (6.11)

Definition 6.131. An outer measure μ on a set S is regular if for every
T ∈ P(S) there exists a μ-measurable set U such that T ⊆ U and μ(T ) = μ(U).

Example 6.132. Let μ be the Lebesgue outer measure on R
n and let T be a

subset of R
n. For every m ∈ N there exists a countable collection of intervals

{Ik
m | k ∈ N} such that

μ(T ) ≤
∑
k∈N

μ(Ik
m) < μ(T ) +

1
m
< μ

⎛
⎝⋃

k∈N

Ik
m

⎞
⎠+

1
m
.

Let U =
⋂

m∈N

⋂
k∈N

Ik
m. Clearly, U is μ-measurable and T ⊆ U , so μ(T ) ≤

μ(U). Since U ⊆
⋂

k∈N
Ik
m, we have
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μ(U) ≤ μ

⎛
⎝⋂

k∈N

Ik
m

⎞
⎠ ≤∑

k∈N

μ

⎛
⎝⋂

k∈N

Ik
m

⎞
⎠ ≤ μ(T ) +

1
m
,

so μ(U) ≤ μ(T ). Consequently, μ(U) = μ(T ), which proves that the Lebesgue
outer measure on R

n is regular.

Theorem 6.133. Let S be a set and let (S0, S1, . . .) be a sequence of subsets of
S. If μ is a regular outer measure on S, then μ(lim infn Sn) ≤ lim infn μ(Sn).

Proof. Since μ is regular, for each n ∈ N there exists a μ-measurable set Un

such that Sn ⊆ Un and μ(Sn) = μ(Un). Then, lim infn μ(Sn) lim infn μ(Un).
Since lim infn μ(Un) is measurable (by Corollary 6.125), we have

μ(lim inf
n
Sn) ≤ μ(lim inf

n
Un) ≤ lim inf

n
μ(Un) = lim inf

n
μ(Sn).

	


Corollary 6.134. Let μ be an outer measure on a set S. If S = (S0, S1, . . .)
is an expanding sequence of subsets of S, then μ(limn Sn) = limn μ(Sn).

Proof. Since S is an expanding sequence limn Sn =
⋃

n Sn, then μ(limn Sn) ≥
μ(Sn) for n ∈ N, so μ(limn Sn) ≥ limn μ(Sn). On the other hand, Theo-
rem 6.133 implies μ(limSn) ≤ limμ(Sn), which gives the desired equality.
	


For finite regular outer measures, the measurability condition can be sim-
plified, as shown next.

Theorem 6.135. Let μ be a regular outer measure on a set S such that μ(S)
is finite. A subset T of S is measurable if and only if μ(S) = μ(T ) + μ(T̄ ),
where T̄ = S − T .

Proof. The condition is clearly necessary. To prove its sufficiency, let T be a
subset of S such that μ(S) = μ(T ) + μ(T̄ ). By Lemma 6.122, to prove that
T is measurable, it suffices to show that if H is a set with μ(H) < ∞, then
μ(H) ≥ μ(H ∩ T ) + μ(H ∩ T̄ ).

The regularity of μ implies the existence of a μ-measurable set K such
that H ⊆ K and μ(H) = μ(K). Since K is measurable, we have

μ(H) = μ(H ∩K) + μ(H ∩ K̄),
μ(H̄) = μ(H̄ ∩K) + μ(H̄ ∩ K̄).

This implies

μ(S) = μ(T ) + μ(T̄ )
= μ(T ∩K) + μ(T ∩ K̄) + μ(T̄ ∩K) + μ(T̄ ∩ K̄)
≥ μ(K) + μ(K̄) = μ(S).
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Thus,

μ(T ∩K) + μ(T ∩ K̄) + μ(T̄ ∩K) + μ(T̄ ∩ K̄) = μ(K) + μ(K̄) = μ(S).

Since μ(K̄) ≤ μ(T∩K̄)+μ(T̄∩K̄), it follows that μ(K∩T )+μ(K∩T̄ ) ≤ μ(K).
Since H ∩ T ⊆ K ∩ T and H ∩ T̄ ⊆ K ∩ T̄ , we have μ(H ∩ T ) + μ(H ∩ T̄ ) ≤
μ(K) = μ(H), which shows that T is indeed μ-measurable. 	


Exercises and Supplements

1. Prove that the family of subsets {(−n, n) | n ∈ N} ∪ {∅,R} is a topology
on R.

2. Let S be a set and let s0 be an element of S. Prove that the family of
subsets Os0 = {L ∈ P(S) | s0 ∈ L} ∪ {∅} is a topology on S.

3. Let (S,O) be a topological space, L be an open set in (S,O), and H be a
closed set.
a) Prove that a set V is open in the subspace (L,O �L) if and only if V

is open in (S,O) and V ⊆ L.
b) Prove that a set W is closed in the subspace (H,O �H) if and only if
W is closed in (S,O) and W ⊆ H.

4. Let (S,O) be a topological space where O = {∅, U, V, S}, where U and V
are two subsets of S. Prove that either {U, V } is a partition of S or one
of the sets {U, V } is included in the other.

5. Let (S,O) be a topological space and let I be its interior operator. Prove
that the poset of open sets (O,⊆) is a complete lattice, where sup L =

⋃
L

and inf L = I (
⋂

L) for every family of open sets L.
6. Let (S,O) be a topological space, let K be its interior operator and let

K be its collection of closed sets. Prove that (K,⊆) is a complete lattice,
where sup L = K (

⋃
L) and inf L =

⋂
L for every family of closed sets.

7. Prove that if U, V are two subsets of a topological space (S,O), then
K(U ∩ V ) ⊆ K(U)∩K(V ). Formulate an example where this inclusion is
strict.

8. Let T be a subspace of the topological space (S,O). Let KS , IS , and ∂S

be the closure, interior and border operators associated to S and KT , IT

and ∂T the corresponding operators associated to T . Prove that
a) KT (U) = KS(U) ∩ T ,
b) IS(U) ⊆ IT (U), and
c) ∂TU ⊆ ∂SU

for every subset U of T .
9. Let (S,O) be a topological space and let K and I be its associated closure

and interior operator, respectively. Define the mappings φ, ψ : P(S) −→
P(S) by φ(U) = I(K(U)) and ψ(U) = K(I(U)) for U ∈ P(S).
a) Prove that φ(U) is an open set and ψ(U) is a closed set for every set
U ∈ P(S).
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b) Prove that ψ(H) ⊆ H for every closed set H and L ⊆ φ(L) for every
open set L.

c) Prove that φ(φ(U)) = φ(U) and ψ(ψ(U)) = ψ(U) for every U ∈ P(S).
d) Let (J1, . . . ,Jn) be a sequence such that Ji ∈ {K, I}. Prove that there

are at most seven distinct sets of the form Jn(· · · (J1(U)) · · · ) for every
set U ∈ P(S), and give an example of a topological space (S,O) and
a subset U of S such that these seven sets are pairwise distinct.

10. Let S be the set of subsets of R such that, for every U ∈ S, x ∈ U implies
−x ∈ U . Prove that {∅} ∪ S is a topology on R.

11. Let (S,O) be a topological space, and U and U ′ be two subsets of S.
a) Prove that ∂(U ∪ V ) ⊆ ∂U ∪ ∂V .
b) Prove that ∂U = ∂(S − U).

12. Let (S,O) be a topological space. The subsets X and Y are said to be
separated if X ∩K(Y ) = K(X) ∩ Y = ∅.
a) Prove that X and Y are separated sets in (S,O) if and only if they

are disjoint and clopen in the subspace X ∪ Y .
b) Prove that two disjoint open sets or two disjoint closed sets in (S,O)

are separated.
13. Let B be a base for a topological space (S,O). Prove that if B′ is a col-

lection of subsets of S such that B ⊆ B′ ⊆ O, then B′ is a basis for
O.

14. Let (S,O) be a topological space, U and U ′ two subsets of S, and B and B′

two bases in the subspaces (U,O �U ) and (U ′,O �U ′), respectively. Prove
that B ∨B′ is a basis in the subspace U ∪ U ′.

Solution: LetM be an open set in the subspace U∪V . By the definition
of the subspace topology, there exists an open set L ∈ O such that M =
L∩ (U ∪V ) = (L∩U)∪ (L∩V ), so L is the union of two open sets, L∩U
and L ∩ U ′, in the subspaces U and U ′. Since B is a basis in U , there
is a subcollection B1 such that L ∩ U =

⋃
B1. Similarly, B′ contains a

subcollection B′
1 such that L∩U =

⋃
B′

1. Therefore, M =
⋃

B1∪
⋃

B′
1 =⋃

B1 ∨B′
1.

15. Let S be an uncountable set and let (S,O) be the cofinite topology on S.
a) Prove that every nonfinite set is dense.
b) Prove that there is no countable basis for this topological space. What

does this say about Theorem 6.46?
16. Let C be the family of open intervals C = {(a, b) | a, b ∈ R and ab > 0}.

Prove that:
a) Every open set L of (R,O) contains a member of C.
b) C is not a basis for the topology O.

17. Let C be a chain of subsets of a set S such that
⋃

C = S. Prove that C is
the basis of a topology.

18. Prove that if (S,O) is a topological space such that O is finite, then (S,O)
is compact.

19. Prove that the topological space (R,O) introduced in Example 6.4 is not
compact.
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20. Let (S,O) be a compact space and let H = (H0,H1, . . .) be a non-
increasing sequence of nonempty and closed subsets of S. Prove that⋂

i∈N
Hi is nonempty.

21. Let (S1,O1) and (S2,O2) be two topological spaces and let f : S1 −→ S2

be a continuous surjective function. Prove that if (S2,O2) is compact, then
(S1,O1) is compact.

22. Let f : R −→ R be a continuous function defined on the topological space
(R,O). Prove that if f(q) = 0 for every q ∈ Q, then f(x) = 0 for every
x ∈ R.

23. Let f : R −→ R be a continuous function in x0. Prove that if f(x0) > 0,
then there exists an open interval (a, b) such that x0 ∈ (a, b) and f(x) > 0
for every x ∈ (a, b).

24. Let (S,Os0) be the topological space defined in Exercise 2, where s0 ∈ S.
Prove that any continuous function f : S −→ R is a constant function.

25. Let (S,O) and (T,O′) be two topological spaces and let B′ be a basis of
(T,O′). Prove that f : S −→ T is continuous if and only if f−1(B) ∈ O

for every B ∈ B′.

Let (S1,O1) and (S2,O2) be two topological spaces and let f : S1 −→ S2 be
a function. Then f is an open function if f(L) is open for every open set L,
where L ∈ O1; the function f is a closed function if f(H) is closed for every
closed set H in S1.

26. Let (S1,O1) and (S2,O2) be two topological spaces and let Ki and Ii be
the closure and interior operators of the space Si for i = 1, 2.
a) Prove that f : S1 −→ S2 is an open function if and only if f(I1(U)) ⊆

I2(f(U)) for every U ∈ P(S1).
b) Prove that f : S1 −→ S2 is a closed function if and only if K2(f(U)) ⊆
f(K1(U)) for every U ∈ P(S1).

c) Prove that a bijection f : S1 −→ S2 is open if and only if it is closed.
27. Prove that the function f : R −→ R defined by f(x) = x2 for x ∈ R is

continuous but not open.
28. Prove that if a < b and c < d, then the subspaces [a, b] and [c, d] are

homeomorphic.
29. Let (S,O) be a connected topological space and f : S −→ R be a contin-

uous function. Prove that if x, y ∈ S, then for every r ∈ [f(x), f(y)] there
is z ∈ S such that f(z) = r.

30. Let a and b be two real numbers such that a ≤ b. Prove that if f : [a, b] −→
[a, b] is a continuous function, then there is c ∈ [a, b] such that f(c) = c.

31. Prove that a topological space (S,O) is connected if and only if ∂T = ∅
implies T ∈ {∅, S} for every T ∈ P(S).

Let (S,O) be a topological space and let x and y be two elements of S. A
continuous path between x and y is a continuous function f : [0, 1] −→ S
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such that f(0) = x and f(1) = y. We refer to x as the origin and to y as the
destination of f .

(S,O) is said to be arcwise connected if any two points x and y are the
origin and destination of a continuous path.

32. Prove that any arcwise connected topological space is connected.
33. Let (S,O) be a T0 topological space. Define the relation “≤” on S by

x ≤ y if x ∈ K({y}). Prove that ≤ is a partial order.
34. Let (S,O) be a T4 topological space.

a) Let H and H ′ be two closed sets and L be an open set such that
H ∩H ′ ⊆ L. Prove that there exists two open sets U and U ′ such that
H ⊆ U , H ′ ⊆ U ′, and L = U ∩ U ′.

b) If {H1, . . . ,Hp} is a collection of closed sets such that p ≥ 2 and⋂p
i=1Hi = ∅, prove that there exists a family of open sets {U1, . . . , Up}

such that
⋂p

i=1 Ui = ∅ and Hi ⊆ Ui for 1 ≤ i ≤ p.
Solution: Observe that the sets H − L and H ′ − L are closed and

disjoint sets. Since (S,O) is T4, there are two disjoint open sets V and
V ′ such that H − L ⊆ V and H ′ − L ⊆ V ′. Define the open sets U and
U ′ as U = V ∪ L and U ′ = V ′ ∪ L. It is clear that U and U ′ satisfy the
requirements of the statement.

The second part is an extension of Definition 6.86. The argument is
by induction on p. The base case, p = 2, follows immediately from the
definition of T4 spaces.

Suppose that the statement holds for p, and let {H1, . . . , Hp+1} be a
collection of closed sets such that

⋂p+1
i=1 Hi = ∅.

By applying the inductive hypothesis to the collection of p closed sets
{H1, . . . , Hp−1,Hp ∩ Hp+1}, we obtain the existence of the open sets
U1, . . . , Up−1, U such that Hi ⊆ Ui for 1 ≤ i ≤ p− 1, Hp ∩Hp+1 ⊆ U , and(⋂p−1

j=1 Uj

)
∩ U = ∅. By the first part of this supplement, we obtain the

existence of two open sets Up and Up+1 such that Hp ⊆ Up, Hp+1 ⊆ Up+1,
and U = Up ∩ Up+1. Note that

⋂
j=1 Uj = ∅, which concludes the argu-

ment.
35. Let (S,O) be a T4 topological space and let L = {L1, . . . , Lp} be an open

cover of S.
a) Prove that for every k, 1 ≤ k ≤ p there exist k open sets V1, . . . , Vk

such that the collection {S−K(V1), . . . , S−K(Vk), Lk+1, . . . , Lp} is an
open cover of S and for the closed sets Hj = S − Vj we have Hj ⊆ Lj

for 1 ≤ j ≤ k.
b) Conclude that for every open cover L = {L1, . . . , Lp} of S there is a

closed cover H = {H1, . . . , Hp} of S such that Hi ⊆ Li for 1 ≤ i ≤ p.
Solution: The proof of the first part is by induction on k, 1 ≤ k ≤ p.

For the base case, k = 1, observe that S − L1 ⊆
⋃p

j=2 Lj because L is
a cover. Since (S,O) is a T4 space, there exists an open set V1 such that
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S−L1 ⊆ V1 ⊆ K(V1) ⊆
⋃p

j=2 Lj . ForH1 = S−V1, it is clear thatH1 ⊆ L1

and {S −K(V1), L2, . . . , Lp} is an open cover of S.
Suppose that the statement holds for k. This implies

S − Lk+1 ⊆
k⋃

j=1

(S −K(Vj)) ∪
p⋃

j=k+2

Lj .

Again, by the property of T4 spaces, there is an open set Vk+1 such that

S − Lk+1 ⊆ Vk+1 ⊆ K(Vk+1)
k⋃

j=1

(S −K(Vj)) ∪
p⋃

j=k+2

Lj .

Thus, {S−K(V1), . . . , S−K(Vk), S−K(VK+1), Lk+2, . . . , Lp} is an open
cover of S and Hk+1 = S − Vk+1 ⊆ Lk+1, which concludes the inductive
step.

The second part follows immediately from the first by taking k = p.
Indeed, since {S−K(V1), . . . , S−K(Vp)} is a cover of S and S−K(Vi) ⊆
Hi for 1 ≤ i ≤ p, it follows immediately that H is a cover of S.

36. Let (S,O) be a T4 topological space, L = {L1, . . . , Lp} be an open cover
of S, and H = {H1, . . . , Hp} be a closed cover of S such that Hi ⊆ Li for
1 ≤ i ≤ p and

⋂
H = ∅.

a) Prove that for every k, 1 ≤ k ≤ p there exist k open sets M1, . . . ,Mk

such that:
i. Hj ⊆Mj and K(Mj) ⊆ Lj for 1 ≤ j ≤ k,
ii. the collection {M1, . . . ,Mk, Lk+1, . . . , Lp} is an open cover of S,

and
iii.
⋂k

i=1 K(Mi) ∩
⋂p

i=k+1Hi = ∅.
b) Prove that there exists an open cover M = {M1, . . . ,Mp} of S such

that Mi ⊆ Li for 1 ≤ i ≤ p and
⋂

M = ∅.
Solution: The proof of the first part is by induction on k, 1 ≤ k ≤ p.

For the base case, k = 1, observe that H1 ∩
⋂p

i=2Hi = ∅ implies H1 ⊆
S −

⋂p
i=2Hi, so H1 ⊆ L1 ∩ (S −

⋂p
i=2Hi). This implies the existence of

an open set M1 such that

H1 ⊆M1 ⊆ K(M1) ⊆ L1 ∩
(
S −

p⋂
i=2

Hi

)
,

which implies K(M1) ⊆ L1 and K(M1) ∩
⋂p

i=2Hi = ∅.
Suppose that the statement holds for k. We have Hk+1 ⊆ Lk+1 and, by

the inductive hypothesis, Hk+1 ⊆ S−
(⋂k

i=1 K(Mi) ∩
⋂p

i=k+2Hi

)
. Thus,

Hk+1 ⊆ Lk+1 ∩
(
S −

(
k⋂

i=1

K(Mi) ∩
p⋂

i=k+2

Hi

))
.
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By the T4 separation property, there exists an open set Mk+1 such that

Hk+1 ⊆Mk+1 ⊆ K(Mk+1) ⊆ Lk+1 ∩
(
S −

(
k⋂

i=1

K(Mi) ∩
p⋂

i=k+2

Hi

))
,

which implies K(Mk+1) ⊆ Lk+1 and
⋂k+1

i=1 K(Mi) ∩
⋂p

i=k+2Hi = ∅.
The second part of the supplement follows directly from the first part.

37. Prove that if (S,P(S)) and (S′,P(S′)) are two discrete topological spaces,
then their product is a discrete topological space.

38. Let (S,O), (S,O′) be two topological spaces. Prove that the collection

{S × L′ | L′ ∈ O′} ∪ {L× S′ | L ∈ O}

is a subbase for the product topology O× O′.
39. Let (S,O), (S,O′) be two topological spaces and let (S × S′,O × O′) be

their product.
a) Prove that for all sets T, T ′ such that T ⊆ S and T ′ ⊆ S′, K(T×T ′) =

K(T )×K(T ′) and I(T × T ′) = I(T )× I(T ′).
b) Prove that ∂(T × T ′) = (∂(T )× k(T ′)) ∪ (k(T )× ∂T ′).

40. Prove that the following classes of topological spaces are closed with re-
spect to the product of topological spaces:
a) the class of spaces that satisfy the first axiom of countability;
b) the class of spaces that satisfy the second axiom of countability;
c) the class of separable spaces.

41. Prove that, for a topological space (S,O), the following statements are
equivalent:
a) (S,O) is connected.
b) If S = L1 ∪ L2 and L1 ∩ L2 = ∅, where L1 and L2 are open, then
L1 = ∅ or L2 = ∅.

c) If S = H1 ∪H2 and H1 ∩H2 = ∅, where H1 and H2 are closed, then
H1 = ∅ or H2 = ∅.

d) If K is a clopen set, then K = ∅ or K = S.
42. Prove that any subspace of a totally disconnected topological space is

totally disconnected, and prove that a product of totally disconnected
topological spaces is totally disconnected.

43. Let S be a set and let C be a collection of subsets of S. Define the collec-
tions of sets

C′ = C ∪ {S − T | T ∈ C},
C′′ =

{⋂
D | D ⊆ C′

}
,

C′′′ =
{⋃

D | D ⊆ C′′
}
.

Prove that C′′′ equals the σ-field generated by C.
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44. Let S and T be two sets and let f : S −→ T be a function. Prove that if
E′ is a σ-field on T , then {f−1(V ) | V ∈ E′} is a σ-field on A.

45. Prove that any σ-field E contains the empty set; further, prove that if
s = (S0, S1, . . .) is a sequence of sets of E, then both lim inf s and lim sup s
belong to E.

46. Let S be an infinite set and let E be the collection E = {E ∈ P(S) |
E is finite or cofinite}. Prove that E is a field of sets on X but not a
σ-field.

47. Let S be a set and let E be a σ-field. Define the function m : E −→ R̂≥0

by

m(U) =

{
|U | if U is finite,
∞ otherwise,

for U ∈ P(S). Prove that m is a measure.
48. Let x, y, a1, b1, . . . , an, bn be n real numbers such that x ≤ y and ai ≤ bi

for 1 ≤ i ≤ n. Prove, by induction on n, that if [x, y] ⊆
⋃n

i=1(ai, bi), then
y − x ≤

∑n
i=1(bi − ai).

49. Let (S,E,m) be a measure space. Prove that if s = (S0, S1, . . .) is a se-
quence of sets such that

∑
im(Si) <∞, then m(lim inf s) = 0 (the Borel-

Cantelli lemma).
Solution: Let Tp =

⋃∞
i=p Si for p ∈ N. By the subadditivity of m, we

have m(Tp) ≤
∑∞

i=pm(Si), and therefore limp→∞m(Tp) = 0 because of
the convergence of the series

∑
im(Si). Since lim inf s =

⋂∞
p=0

⋃∞
i=p Si =⋂∞

p=0 Tp, it follows that m(lim inf s) ≤ m(Tp) for every p ∈ N, so
m(lim inf s) ≤ infpm(Tp) = 0, which implies m(lim inf s) = 0.

50. Let I be a bounded interval of R. Prove that if K is a compact subset of R

such that K ⊆ I, then μ(I) = μ(K) + μ(I −K), where μ is the Lebesgue
outer measure.

51. Let {(Si,Ei,mi) | i ∈ I} be a collection of measure spaces such that
SiS| = ∅ if i �= j for i, j ∈ I. Define the triplet (

⋃
i∈I Si,E,m), where

E =

{
U | U ⊆

⋃
i∈I

Si, U ∩ Si ∈ E for i ∈ I
}
,

and m : E −→ R̂≥0 is given by m(U) =
∑

i∈I mi(U ∩Si) for U ∈ E. Prove
that (

⋃
i∈I Si,E,m) is a measure space and that m(U) is finite if and only

if there exists a countable subset J of I such that if j ∈ J , then μj is finite
and μi = 0 if i ∈ I − J .

52. The measure space (S,E,m) is complete if for every W ∈ E such that
m(W ) = 0, U ⊆ W implies U ∈ E. In Corollary 6.124 we saw that for
every outer measure μ : P(S) −→ R̂≥0 the triple (S,Eμ, μ) is a measure
space. Prove that this space is complete.

53. Let (S,E,m) be a measure space. Define E′ = {U ∪ T | U ∈ E, T ⊆ W ∈
E and m(W ) = 0}, and m′ : E′ −→ R̄≥0 by m′(U ∪ T ) = m(U) for every
set T such that T ⊆W ∈ E and m(W ) = 0.
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a) Prove that E′ is a σ-field that contains E.
b) Prove that m′ is a measure. The measure m′ is known as the comple-

tion of m.
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Frequent Item Sets and Association Rules

7.1 Introduction

Association rules have received lots of attention in data mining due to their
many applications in marketing, advertising, inventory control, and many
other areas.

A typical supermarket may well have several thousand items on its shelves.
Clearly, the number of subsets of the set of items is immense. Even though a
purchase by a customer involves a small subset of this set of items, the number
of such subsets is very large. For example, even if we assume that no customer
has more than five items in his shopping cart, there are

∑5
i=1

(
10000

i

)
possible

contents of this cart, which corresponds to the subsets having no more than
five items of a set that has 10,000 items, and this is indeed a large number!

The supermarket is interested in identifying associations between item sets;
for example, it may be interested to know how many of the customers who
bought bread and cheese also bought butter. This knowledge is important
because if it turns out that many of the customers who bought bread and
cheese also bought butter, the supermarket will place butter physically close
to bread and cheese in order to stimulate the sales of butter. Of course, such a
piece of knowledge is especially interesting when there is a substantial number
of customers who buy all three items and a large fraction of those individuals
who buy bread and cheese also buy butter.

We will formalize this problem and will explore its algorithmic aspects.

7.2 Frequent Item Sets

Suppose that I is a finite set; we refer to the elements of I as items.

Definition 7.1. A transaction data set on I is a function T : {1, . . . , n} −→
P(I). The set T (k) is the kth transaction of T . The numbers 1, . . . , n are the
transaction identifiers (tids).

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 7, c© Springer-Verlag London Limited 2008
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An example of a transaction set is the set of items present in the shopping
cart of a consumer that completed a purchase in a store.

Example 7.2. The table below describes a transaction data set on the set of
over-the-counter medicines in a drugstore.

Trans. Content
T (1) {Aspirin, Vitamin C}
T (2) {Aspirin, Sudafed}
T (3) {Tylenol}
T (4) {Aspirin, Vitamin C, Sudafed}
T (5) {Tylenol, Cepacol}
T (6) {Aspirin, Cepacol}
T (7) {Aspirin, Vitamin C}

The same data set can be presented as a 0/1 table:

Aspirin Vitamin C Sudafed Tylenol Cepacol
T (1) 1 1 0 0 0
T (2) 1 0 1 0 0
T (3) 0 0 0 1 0
T (4) 1 1 1 0 0
T (5) 1 0 0 0 1
T (6) 1 0 0 0 1
T (7) 1 1 0 0 0

The entry in the row T (k) and the column ij is set to 1 if ij ∈ T (k); otherwise,
it is set to 0.

Example 7.2 shows that we have the option of two equivalent frameworks
for studying frequent item sets: tables or transaction item sets.

Given a transaction data set T on the set I, we would like to determine
those subsets of I that occur often enough as values of T .

Definition 7.3. Let T : {1, . . . , n} −→ P(I) be a transaction data set on a
set of items I. The support count of a subset K of the set of items I in T is
the number suppcountT (K) given by

suppcountT (K) = |{k | 1 ≤ k ≤ n and K ⊆ T (k)}|.

The support of an item set K is the number

suppT (K) =
suppcountT (K)

n
.
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Example 7.4. For the transaction data set T considered in Example 7.2, we
have

suppcountT ({Aspirin, V itaminC}) = 3

because {Aspirin, V itaminC} is a subset of three of the sets T (k). Therefore,
suppT ({Aspirin, V itaminC}) = 3

7 .

Example 7.5. Let I = {i1, i2, i3, i4} be a collection of items. Consider the
transaction data set T given by

T (1) = {i1, i2},
T (2) = {i1, i3},
T (3) = {i1, i2, i4},
T (4) = {i1, i3, i4},
T (5) = {i1, i2},
T (6) = {i3, i4}.

Thus, the support count of the item set {i1, i2} is 3; similarly, the sup-
port count of the item set {i1, i3} is 2. Therefore, suppT ({i1, i2}) = 1

2 and
suppT ({i1, i3}) = 1

3 .

The following rather straightforward statement is fundamental for the
study of frequent item sets.

Theorem 7.6. Let T : {1, . . . , n} −→ P(I) be a transaction data set on a set
of items I. If K and K ′ are two item sets, then K ′ ⊆ K implies suppT (K ′) ≥
suppT (K).

Proof. Note that every transaction that contains K also contains K ′. The
statement follows immediately. 	


If we seek those item sets that enjoy a minimum support level relative to a
transaction data set T , then it is natural to start the process with the smallest
nonempty item sets.

Definition 7.7. An item set K is μ-frequent relative to the transaction data
set T if suppT (K) ≥ μ.

We denote by F
μ
T the collection of all μ-frequent item sets relative to the

transaction data set T and by F
μ
T,r the collection of μ-frequent item sets that

contain r items for r ≥ 1.

Note that
F

μ
T =

⋃
r≥1

F
μ
T,r.

If μ and T are clear from the context, then we may omit either or both
adornments from this notation.

Let I = {i1, . . . , in} be an item set that contains n elements.
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Denote by GI = (P(I), E) the Rymon tree of P(I). Recall that the root
of the tree is ∅. A vertex K = {ip1 , . . . , ipk

} with ip1 < ip2 < · · · < ipk
has

n− ipk
children K ∪ {j}, where ipk

< j ≤ n.
Let Sr be the collection of item sets that have r elements. The next theorem

suggests a technique for generating Sr+1 starting from Sr.

Theorem 7.8. Let G be the Rymon tree of P(I), where I = {i1, . . . , in}. If
W ∈ Sr+1, where r ≥ 2, then there exists a unique pair of distinct sets U, V ∈
Sr that has a common immediate ancestor T ∈ Sr−1 in G such that U ∩ V ∈
Sr−1 and W = U ∪ V .

Proof. Let u and v be the two elements of W that have the largest and the
second-largest subscripts, respectively. Consider the sets U = W − {u} and
V = W − {v}. Both sets belong to Sr. Moreover, Z = U ∩ V belongs to Sr−1

because it consists of the first r − 1 elements of W . Note that both U and V
are descendants of Z and that U ∪ V = W .

The pair (U, V ) is unique. Indeed, suppose that W can be obtained in the
same manner from another pair of distinct sets U ′, V ′ ∈ Sr such that U ′ and
V ′ are immediate descendants of a set Z ′ ∈ Sr−1. The definition of the Rymon
tree GI implies that U ′ = Z ′ ∪ {im} and V ′ = Z ′ ∪ {iq}, where the letters in
Z ′ are indexed by a number smaller than min{m, q}. Then, Z ′ consists of the
first r − 1 symbols of W , so Z ′ = Z. If m < q, then m is the second-highest
index of a symbol inW and q is the highest index of a symbol inW , so U ′ = U
and V ′ = V . 	


Example 7.9. Consider the Rymon tree of the collection P({i1, i2, i3, i4})
shown in Figure 7.1.

The set {i1, i3, i4} is the union of the sets {i1, i3} and {i1, i4} that have
the common ancestor {i1}.

Next we discuss an algorithm that allows us to compute the collection
F

μ
T of all μ-frequent item sets for a transaction data set T . The algorithm is

known as the Apriori algorithm.
We begin with the procedure apriori gen, which starts with the collec-

tion F
μ
T,k of frequent item sets for the transaction data set T that contain k

elements and generates a collection Ck+1 of sets of items that contains F
μ
T,k+1,

the collection of the frequent item sets that have k + 1 elements. The justifi-
cation for this procedure is based on the next statement.

Theorem 7.10. Let T be a transaction data set on a set of items I and let
k ∈ N such that k > 1.

If W is a μ-frequent item set and |W | = k + 1, then there exists a μ-
frequent item set Z and two items im and iq such that |Z| = k − 1, Z ⊆ W ,
W = Z ∪ {im, iq}, and both Z ∪ {im} and Z ∪ {iq} are μ-frequent item sets.
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Fig. 7.1. Rymon tree for P({i1, i2, i3, i4}).

Proof. If W is an item set such that |W | = k+ 1, then we already know that
W is the union of two subsets U and V of I such that |U | = |V | = k and that
Z = U ∩ V has k − 1 elements. Since W is a μ-frequent item set and Z,U, V
are subsets of W , it follows that each of these sets is also a μ-frequent item
set. 	


Note that the reciprocal statement of Theorem 7.10 is not true, as the
next example shows.

Example 7.11. Let T be the transaction data set introduced in Example 7.5.
Note that both {i1, i2} and {i1, i3} are 1

3 -frequent item sets; however,

suppT ({i1, i2, i3}) = 0,

so {i1, i2, i3} fails to be a 1
3 -frequent item set.

The procedure apriori gen mentioned above is Algorithm 7.12. This pro-
cedure starts with the collection of item sets FT,k and produces a collection
of item sets CT,k+1 that includes the collection of item sets FT,k+1 of frequent
item sets having k + 1 elements.

Algorithm 7.12 (Procedure apriori gen)
Input: a minimum support μ, the collection F

μ
T,k of

frequent item sets having k elements;
Output: the set of candidate frequent item sets C

μ
T,k+1;

Method:
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set j = 1;
C

μ
T,j+1 = ∅;

for each L,M ∈ F
μ
T,k such that

L �= M and L ∩M ∈ F
μ
T,k−1 do

add L ∪M to C
μ
T,k+1;

remove all sets K in C
μ
T,k+1 where

there is a subset of K containing k elements
that does not belong to F

μ
T,k.

Note that in apriori gen no access to the transaction data set is needed.
The Apriori algorithm 7.13 operates on “levels.” Each level k consists of

a collection C
μ
T,k of candidate item sets of μ-frequent item sets. To build the

initial collection of candidate item sets C
μ
T,1, every single item set is consid-

ered for membership in C
μ
T,1. The initial set of frequent item sets consists of

those singletons that pass the minimal support test. The algorithm alternates
between a candidate generation phase (accomplished by using apriori gen)
and an evaluation phase that involves a data set scan and is therefore the
most expensive component of the algorithm.

Algorithm 7.13 (The Apriori Algorithm)
Input: transaction data set T and a minimum support μ;
Output: the collection F

μ
T of μ-frequent item sets;

Method: C
μ
T,1 = {{i} | i ∈ I};

set i = 1;
while (Cμ

T,i �= ∅) do
/* evaluation phase */
F

μ
T,i = {L ∈ C

μ
T,i | suppT (L) ≥ μ};

/* candidate generation */
C

μ
T,i+1 = apriori gen(Fμ

T,i);
i+ +;

end while;
output F

μ
T =

⋃
j<i F

μ
T,j

Example 7.14. Let T be the data set given by

i1 i2 i3 i4 i5
T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1
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The support counts of various subsets of I = {i1, . . . , i5} are given below:

i1 i2 i3 i4 i5
5 6 5 2 5

i1i2 i1i3 i1i4 i1i5 i2i3 i2i4 i2i5 i3i4 i3i5 i4i5
3 2 1 3 5 2 3 2 3 2

i1i2i3 i1i2i4 i1i2i5 i1i3i4 i1i3i5 i1i4i5 i2i3i4 i2i3i5 i2i4i5 i3i4i5
2 1 1 1 1 1 2 3 2 2
i1i2i3i4 i1i2i3i5 i1i2i4i5 i1i3i4i5 i2i3i4i5

1 1 1 1 2
i1i2i3i4i5

0

Starting with μ = 0.25 and F
μ
T,0 = {∅}, the Apriori algorithm computes the

following sequence of sets:

C
μ
T,1 = {i1, i2, i3, i4, i5},

F
μ
T,1 = {i1, i2, i3, i4, i5},

C
μ
T,2 = {i1i2, i1i3, i1i4, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

F
μ
T,2 = {i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

C
μ
T,3 = {i1i2i3, i1i2i5, i1i3i5, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

F
μ
T,3 = {i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

C
μ
T,4 = {i2i3i4i5},

F
μ
T,4 = {i2i3i4i5},

C
μ
T,5 = ∅.

Thus, the algorithm will output the collection

F
μ
T =

4⋃
i=1

F
μ
T,i

= {i1, i2, i3, i4, i5, i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5,
i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5, i2i3i4i5}.

7.3 Borders of Collections of Sets

Let I be a collection of sets such that I ⊆ P(I), where I is a set.

Definition 7.15. The border of I is the collection

BD(I) = {L ∈ P(I) | U ⊂ L implies U ∈ I and L ⊂ V implies V �∈ I}.

The positive border of I is the collection
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BD+(I) = BD(I) ∩ I

= {L ∈ I | U ⊂ L implies U ∈ I and L ⊂ V implies V �∈ I}, }

while the negative border is

BD−(I) = BD(I)− I

= {L ∈ P(I)− I | U ⊂ L implies U ∈ I and L ⊂ V implies V �∈ I}.

Clearly, we have BD(I) = BD+(I) ∪ BD−(I).

If I is a hereditary collection of sets (see Definition 1.14), then the positive
and the negative borders of I are given by

BD+(I) = {L ∈ I | L ⊂ V implies V �∈ I}

and
BD−(I) = {L ∈ P(I)− I | U ⊂ L implies U ∈ I},

respectively. Thus, for a hereditary collection of subsets I, the positive border
consists of the maximal subsets of I, while the negative border of I consists
of the minimal subsets of the collection P(I)− I.

Note that if I and I′ are two hereditary collections of subsets of I and
BD+(I) = BD+(I′), then I = I′. Indeed, if K ∈ I, one of the following two
cases may occur:
1. If K is not a maximal set of I, then there is a maximal set H of I such

that K ⊂ H. Since H ∈ BD+(I) = BD+(I′), it follows that H ∈ I′, hence
K ∈ I′ because I′ is hereditary.

2. If K is a maximal set of I, then K ∈ BD+(I) = BD+(I′); hence, K ∈ I′.
In either case K ∈ I′, so I ⊆ I′. The reverse inclusion can be proven in a
similar way, so I = I′.

Similarly, we can show that for two hereditary collections I, I′ of subsets
of I, BD−(I) = BD−(I′) implies I = I′. Indeed, suppose that K ∈ I−I′. Since
K �∈ I′, there exists a minimal subset V of K such that V �∈ I′ and each of
its subsets is in I′. The set V belongs to the negative border BD−(I′) and,
therefore to BD−(I). This leads to a contradiction because K ∈ I and V is
subset of K does not belong to I, thereby contradicting the fact that I is a
hereditary family of sets.

Since no such set K may exist, it follows that I ⊆ I′. The reverse inclusion
can be be shown in the same manner.

Borders of collections of sets play an important role in the study of the
Apriori algorithm. Observe, for example, that after computing the collection
F

μ
T,3 = {i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5} in Example 7.14, the candidate set

C
μ
T,4 = {i2i3i4i5} is the negative border of F

μ
T,3. In general, C

μ
T,i+1 is the

negative border BD−(Fμ
T,i).

For the same example, the negative and the positive borders of the collec-
tion of frequent sets F

μ
T are given by
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BD+(Fμ
T ) = {i1i5, i1i2i3, i2i3i4i5},

BD−(Fμ
T ) = {i1i4, i1i2i5, i1i3i5},

respectively. Clearly, BD+(Fμ
T ) consists of the maximal μ-frequent item sets,

while BD−(Fμ
T ) consists of the minimal μ-infrequent item sets.

The time complexity of the Apriori algorithm is dominated by the number
of accesses to the data set T that is required for computing the support of
candidate item sets.

Theorem 7.16. The Apriori algorithm performs |Fμ
T | + |BD−(Fμ

T )| support
computations.

Proof. The Apriori algorithm selects the μ-frequent item sets from among the
candidate item sets, and for each candidate item set it must perform a support
computation. A number of |Fμ

T | candidate sets turn out to be μ-frequent, so
the algorithm will perform |Fμ

T | computations for these sets. On the other
hand, a candidate set C is not retained as a μ-frequent set if and only if all its
subsets are μ-frequent (a requirement of apriori-gen) and C itself is not μ-
frequent, which means that none of its supersets are μ-frequent. This happens
if and only if C belongs to the negative border of F

μ
T . Thus, the total number

of support computations is |Fμ
T |+ |BD−(Fμ

T )|. 	


Theorem 7.17. Let I be a set and let I be a hereditary family of subsets of
I. Consider the collection of sets

E = {I − L | L ∈ BD+(I)}

and the hypergraph H = (I,E). Then, the collection of minimal transversals
of the hypergraph E equals BD−(I), the negative border of I.

Proof. The following statements concerning a subset X of I are easily seen to
be equivalent:
(i) X is a transversal of H.
(ii) X ∩ Y �= ∅ for every Y ∈ E.
(iii) X ∩ (I − L) �= ∅ for every L ∈ BD+(I).
(iv) X is not included in any maximal set L of I.
(v) X �∈ I.
Thus, X is a transversal of H if and only if X �∈ I. Consequently, X is a
minimal transversal of H if and only if X is a minimal set with the property
that X �∈ I, which means that X ∈ BD−(I). 	


7.4 Association Rules

Definition 7.18. An association rule on an item set I is a pair of nonempty
disjoint item sets (X,Y ).
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Note that if |I| = n, then there exist 3n − 2n+1 + 1 association rules on
I. Indeed, suppose that the set X contains k elements; there are

(
n
k

)
ways of

choosing X. Once X is chosen, Y can be chosen among the remaining 2n−k−1
nonempty subsets of I−X. In other words, the number of association rules is

n∑
k=1

(
n

k

)
(2n−k − 1) =

n∑
k=1

(
n

k

)
2n−k −

n∑
k=1

(
n

k

)
.

By taking x = 2 in the equality

(1 + x)n =
n∑

k=0

(
n

k

)
xn−k,

we obtain
n∑

k=1

(
n

k

)
2n−k = 3n − 2n.

Since
∑n

k=1

(
n
k

)
= 2n−1 the desired equality follows immediately. The number

of association rules can be quite considerable even for small values of n. For
example, for n = 10, we have 310 − 211 + 1 = 57002 association rules.

An association rule (X,Y ) is denoted byX ⇒ Y . The confidence ofX ⇒ Y
is the number

confT (X ⇒ Y ) =
suppT (XY )
suppT (X)

.

Definition 7.19. An association rule holds in a transaction data set T with
support μ and confidence c if suppT (XY ) ≥ μ and confT (X ⇒ Y ) ≥ c.

Once a μ-frequent item set Z is identified, we need to examine the support
levels of the subsets X of Z to ensure that an association rule of the form
X ⇒ Z−X has a sufficient level of confidence, confT (X ⇒ Z−X) = μ

suppT (X) .
Observe that suppT (X) ≥ μ because X is a subset of Z. To obtain a high level
of confidence for X ⇒ Z −X, the support of X must be as small as possible.

Clearly, if X ⇒ Z − X does not meet the level of confidence, then it is
pointless to look for rules of the form X ′ ⇒ Z −X ′ among the subsets X ′ of
X.

Example 7.20. Let T be the transaction data set introduced in Example 7.14.
We saw that the item set L = i2i3i4i5 has support count equal to 2 and
therefore suppT (L) = 0.25. This allows us to obtain the following association
rules having three item sets in their antecedent that are subsets of L:

Rule suppcountT (X) confT (X ⇒ Y )
i2i3i4 ⇒ i5 2 1
i2i3i5 ⇒ i4 3 2

3
i2i4i5 ⇒ i3 2 1
i3i4i5 ⇒ i2 2 1
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Note that i2i3i4 ⇒ i5, i2i4i5 ⇒ i3, and i3i4i5 ⇒ i2 have 100% confidence. We
refer to such rules as exact association rules.

The rule i2i3i5 ⇒ i4 has confidence 2
3 . It is clear that the confidence of

rules of the form U ⇒ V with U ⊆ i2i3i5 and UV = L will be lower than 2
3

since suppT (U) is at least 3. Indeed, the possible rules of this form are:

Rule suppcountT (X) confT (X ⇒ Y )
i2i3 ⇒ i4i5 5 2

5
i2i5 ⇒ i3i4 3 2

3
i3i5 ⇒ i2i4 3 2

3
i2 ⇒ i3i4i5 6 2

6
i3 ⇒ i2i4i5 5 2

5
i5 ⇒ i2i3i4 5 2

5

Obviously, if we seek association rules having a confidence larger than 2
3 , no

such rule U ⇒ V can be found such that U is a subset of i2i3i5.
Suppose, for example, that we seek association rules U ⇒ V that have a

minimal confidence of 80%. We need to examine subsets U of the other sets,
i2i3i4, i2i4i5, or i3i4i5, which are not subsets of i2i3i5 (since the subsets of
i2i3i5 cannot yield levels of confidence higher than 2

3 ). There are five such
sets:

Rule suppcountT (X) confT (X ⇒ Y )
i2i4 ⇒ i3i5 2 1
i3i4 ⇒ i2i5 2 1
i4i5 ⇒ i2i3 2 1
i3i4 ⇒ i2i5 2 1
i4 ⇒ i2i3i5 2 1

Indeed, all these sets yield exact rules, that is, rules having 100% confidence.

Many transaction data sets produce a huge number of frequent item sets
and therefore a huge number of association rules, particularly when the levels
of support and confidence required are relatively low. Moreover, it is well-
known (see [132]) that limiting the analysis of association rules to the sup-
port/confidence framework can lead to dubious conclusions. The data min-
ing literature contains many references that attempt to derive interestingness
measures for association rules in order to focus data analysis of those rules
that may be more relevant (see [107, 4, 7, 23, 74, 68]).

7.5 Levelwise Algorithms and Posets

This section focuses on the levelwise algorithms, a powerful and elegant gen-
eralization of the Apriori algorithm that was introduced in [95].

Let (P,≤) be a partially ordered set and let Q be a subset of P .
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Definition 7.21. The border of Q is the set

BD(Q) = {p ∈ P | u < p implies u ∈ Q and p < v implies v �∈ Q}.

The positive border of Q is the set:

BD+(Q) = BD(Q) ∩Q,

while the negative border of Q is

BD−(Q) = BD(Q)−Q.

Clearly, we have BD(Q) = BD+(Q) ∪ BD−(Q).
An alternative terminology exists that makes use of the terms general-

ization and specialization. If r, p ∈ P and r < p, then we say that r is a
generalization of p or that p is a specialization of r. Thus, the border of a set
Q consists of those elements p of P such that all of their generalizations are
in Q and none of their specializations is in Q.

Theorem 7.22. Let (P,≤) be a partially ordered set. If Q and Q′ are two
disjoint subsets of P , then BD(Q ∪Q′) ⊆ BD(Q) ∪ BD(Q′).

Proof. Let p ∈ BD(Q ∪Q′). Suppose that u < p, so u ∈ Q ∪Q′. Since Q and
Q′ are disjoint, we have either u ∈ Q or u ∈ Q′. On the other hand, if p < v,
then v �∈ Q ∪Q′, so v �∈ Q and v �∈ Q′. Thus, we have p ∈ BD(Q) ∪ BD(Q′).
	


The notion of a hereditary subset of a poset is an immediate generalization
of the notion of a hereditary family of sets.

Definition 7.23. A subset Q of a poset (P,≤) is said to be hereditary if p ∈ Q
and r ≤ p imply r ∈ Q.

Theorem 7.24. If Q is a hereditary subset of a poset (P,≤), then the positive
and the negative borders of Q are given by

BD+(Q) = {p ∈ Q | p < v implies v �∈ Q}

and
BD−(Q) = {p ∈ P −Q | u < p implies u ∈ Q},

respectively.

Proof. Let t be an element of the positive border BD+(Q) = BD(Q)∩Q. We
have t ∈ Q and t < v implies v �∈ Q because t ∈ BD(Q).

Conversely, suppose that t is an element of Q such that t < v implies
v �∈ Q. Since Q is hereditary, u < t implies u ∈ Q, so t ∈ BD(Q). Therefore,
t ∈ BD(Q) ∩Q = BD+(Q).
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Now let s be an element of the negative border ofQ; that is, s ∈ BD(Q)−Q.
We have immediately s ∈ P−Q. If u < s, then u ∈ Q, because Q is hereditary.
Thus, BD−(Q) ⊆ {p ∈ P −Q | u < p implies u ∈ Q}.

Conversely, suppose that s ∈ P−Q and u < s implies u ∈ Q. If s < v, then
v cannot belong to Q because this would entail s ∈ Q due to the hereditary
property of Q. Consequently, s ∈ BD(Q) and so s ∈ BD(Q) −Q = BD−(Q).
	


Theorem 7.24 can be paraphrased by saying that for a hereditary subset
Q of P the positive border consists of the maximal elements of Q, while the
negative border of Q consists of the minimal elements of P −Q.

Note that if Q and Q′ are two hereditary subsets of P and BD+(Q) =
BD+(Q′), then Q = Q′. Indeed, if z ∈ P , one of the following two cases may
occur:
1. If z is not a maximal element of Q, then there is a maximal element w

of Q such that z < w. Since w ∈ BD+(Q) = BD+(Q′), it follows that
w ∈ Q′; hence z ∈ Q′ because Q′ is hereditary.

2. If z is a maximal element of Q, then z ∈ BD+(Q) = BD+(Q′), hence
z ∈ Q′.

In either case z ∈ Q′, so Q ⊆ Q′. The reverse inclusion can be proven in a
similar way, so Q = Q′.

Similarly, we can show that for two hereditary collections Q and Q′ of
subsets of I, BD−(Q) = BD−(Q′) implies Q = Q′. Indeed, suppose that
z ∈ Q−Q′. Since z �∈ Q′, there exists a minimal element v such that v �∈ Q′

and each of its lower bounds is in Q′. Since v belongs to the negative border
BD−(Q′), it follows that v ∈ BD−(Q). This leads to a contradiction because
z ∈ Q and v (for which we have v < z) does not, thereby contradicting the
fact that Q is a hereditary subset. Since no such z may exist, it follows that
Q ⊆ Q′. The reverse inclusion can be shown in the same manner.

Definition 7.25. Let D be a relational database, SD be the set of states of D,
and (B,≤, h) be a ranked poset referred to as the ranked poset of objects.

A query is a function q : SD×B −→ {0, 1} such that D ∈ SD, b ≤ b′, and
q(D, b′) = 1 imply q(D, b) = 1.

Definition 7.25 is meant to capture the framework of the Apriori algorithm
for identification of frequent item sets. As was shown in [95], this framework
can capture many other situations.

Example 7.26. Let D be a database that contains a tabular variable (T,H)
and let θ = (T,H, ρ) be the table that is the current value of (T,H) contained
by the current state D of D.

The graded poset (B,≤, h) is (P(H),⊆, h), where h(X) = |X|. Given a
number μ, the query is defined by

q(D,K) =

{
1 if suppT (K) ≤ μ,
0 otherwise.



286 7 Frequent Item Sets and Association Rules

Since K ⊆ K ′ implies suppT (K ′) ≤ suppT (K), it follows that q satisfies the
condition of Definition 7.25.

Example 7.27. As in Example 7.26, let D be a database that contains a tabular
variable (T,H), and let θ = (T,H, ρ) be the table that is the current value of
(T,H) contained by the current state D of D. The graded poset (P(H),⊇, g)
is the dual of the graded poset considered in Example 7.26, where g(K) =
|H| − |K|. If L is a set of attributes, the function qL is defined by

qL(D,K) =

{
1 if K → L holds in θ,
0 otherwise.

Note that if K ′ ⊆ K and D satisfies the functional dependency K ′ → L, then
D satisfies K → L. Thus, q is a query in the sense of Definition 7.25.

Definition 7.28. The set of interesting objects for the state D of the database
and the query q is given by

INT(D, q) = {b ∈ B | q(D, b) = 1}.

Note that the set of interesting objects is a hereditary set (B,≤). Indeed,
if b ∈ INT(D, q) and c ≤ b, then c ∈ INT(D, q) according to Definition 7.25.
Thus,

BD+(INT(D, q)) = {b ∈ INT(D, q) | b < v implies v �∈ INT(D, q)},
BD−(INT(D, q)) = {b ∈ B − INT(D, q) | u < b implies u ∈ INT(D, q)}.

In other words, BD+(INT(D, q)) is the set of maximal objects that are in-
teresting, while BD−(INT(D, q)) is the set of minimal objects that are not
interesting.

Algorithm 7.29, which we discuss next, is a general algorithm that seeks
to compute the set of interesting objects for a state of a database. The algo-
rithm is known as the levelwise algorithm because it identifies these objects
by successively scanning the levels of the graded poset of objects.

If L0, L1, . . . are the levels of the graded poset (B,≤, h), then the algo-
rithm begins by examining all objects located on the initial level. The set of
interesting objects located on the level Li is denoted by Fi; for each level Li,
the computation of Fi is preceded by a computation of the set of potentially
interesting objects Ci referred to as the set of candidate objects.

The first set of candidate objects, C1, coincides with the level Li. Only the
interesting objects on this level are retained for the set F1.

The next set of candidate objects, Ci+1, is constructed by examining the
level Li+1 and keeping those objects b having all their subobjects c in the
interesting sets of the previous levels.
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Algorithm 7.29 (General Levelwise Algorithm)
Input: a database state D, a graded poset of objects (B,≤, h),

and a query q;
Output: the set of interesting objects for D;
Method: C1 = L1;

i = 1;
while (Ci �= ∅) do

/* evaluation phase */
Fi = {b ∈ Ci | q(D, b) = 1};
/* candidate generation */
Ci+1 = {b ∈ Li+1 | c < b implies c ∈

⋃
j≤i Fj} −

⋃
j≤i Cj

i+ +;
end while;
output

⋃
j<i Fj

Example 7.30. For frequent item sets, we can work in the framework described
in Example 7.26. The algorithm, which is essentially the Apriori algorithm
described in Section 7.2, goes through the while loop no more than k + 1
times, where

k = max{|X| | X ⊆ H, suppT (X) > μ}.

Example 7.31. In Example 7.27, we defined the grading query qL as

qL(D,K) =

{
1 if K → L holds in θ,
0 otherwise,

for K ∈ P(H). The levelwise algorithm allows us to identify those subsets K
such that a table θ = (T,H, ρ) satisfies the functional dependency K → L.
The first level consists of all subsets K of H that have |H| − 1 attributes.
There are, of course, |H|−1 such subsets, and the set F1 will contain all these
sets such that K → H is satisfied. Successive levels contain sets that have
fewer and fewer attributes. Level Li contains sets that have |H|− i attributes.

The algorithm will go through the while loop at most 1 + |H −K| times,
where K is the smallest set such that K → L holds.

Observe that the computation of Ci+1 in the generic levelwise algorithm

Ci+1 =

⎧⎨
⎩b ∈ Li+1 | c < b implies c ∈

⋃
j≤i

Fj

⎫⎬
⎭−

⋃
j≤i

Cj

can be written as

Ci+1 = BD−

⎛
⎝⋃

j≤i

Fj

⎞
⎠−⋃

j≤i

Cj .
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This shows that the set of candidate objects at level Li+1 is the negative border
of the interesting sets located on the lower level, excluding those objects that
have already been evaluated.

The most expensive component of the levelwise algorithm is the evaluation
of q(D, b) since this requires a scan of the database state D. Clearly, we
need to evaluate this function for each candidate element, so we will require
|
⋃�

i=1 Ci| evaluations, where � is the number of levels that are scanned. Some
of these evaluations will result in including the evaluated object b in the
set Fi. Objects that will not be included in INT(D, q) are such that any of
their generalizations are in INT(D, q), even though they fail to belong to this
set. They belong to BD−(INT(D, q)). Thus, the levelwise algorithm performs
|INT(D, q)| + |BD−(INT(D, q))| evaluations of q(D, b).

7.6 Lattices and Frequent Item Sets

Galois connections discussed in Section 5.4 are useful in the study of frequent
item sets. This approach was introduced for the first time in [105].

Let I be a set of items and T : {1, . . . , n} −→ P(I) be a transaction
data set. Denote by D the set of transaction identifiers D = {1, . . . , n}. The
functions itemsT : P(D) −→ P(I) and tidsT : P(I) −→ P(D) are defined by

itemsT (E) =
⋂
{T (k) | k ∈ E},

tidsT (H) = {k ∈ D | H ⊆ T (k)},

for every E ∈ P(D) and every H ∈ P(I).
Note that suppcountT (H) = |tidsT (H)| for every H ∈ P(I).

Theorem 7.32. Let T : {1, . . . , n} −→ P(I) be a transaction data set. The
pair (itemsT , tidsT ) is a Galois connection between the posets (P(D),⊆) and
(P(I),⊆).

Proof. We need to prove that
1. if E ⊆ E′, then itemsT (E′) ⊆ itemsT (E),
2. if H ⊆ H ′, then tidsT (H ′) ⊆ tidsT (H),
3. E ⊆ tidsT (itemsT (E)), and
4. H ⊆ itemsT (tidsT (H))

for every E,E′ ∈ P(D) and every H,H ′ ∈ P(I).
The first two properties follow immediately from the definitions of the

functions itemsT and tidsT .
To prove Part (iii), let k ∈ E be a transaction identifier. Then, the item

set T (e) includes itemsT (E) by the definition of itemsT (E). By Part (ii),
tidsT (T (e)) ⊆ tidsT (itemsT (E)). Since e ∈ tidsT (T (e)), it follows that e ∈
tidsT (itemsT (E)), so E ⊆ tidsT (itemsT (E)).

The argument for Part (iv) is similar. 	
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The theorem can be obtained directly by noting that (itemsT , tidsT ) is the
polarity determined by the relation

ρ = {(k, i) ∈ D × I | i ∈ T (k)}.

Corollary 7.33. Let T : D −→ P(I) be a transaction data set and let
Ki : P(I) −→ P(I) and Kd : P(D) −→ P(D) be defined by Ki(H) =
itemsT (tidsT (H)) for H ∈ P(I) and Kd(E) = tidsT (itemsT (E)) for E ∈
P(D). Then, Ki and Kd are closure operators on I and D, respectively.

Proof. The argument was made in Example 5.52. 	


Theorem 7.34. Let T : D −→ P(I) be a transaction data set. We have

Ki(H1 ∪H2) = Ki(H1) ∩Ki(H2),
Kd(E1 ∪ E2) = Kd(E1) ∩Kd(E2),

for H1,H2 ⊆ I and E1, E2 ⊆ D.

Proof. This statement is a direct consequence of the definitions of Ki and Kd.
	


Closed sets of items (that is, sets of items H such that H = Ki(H)) can
be characterized as follows.

Theorem 7.35. Let T : {1, . . . , n} −→ P(I) be a transaction data set.
A set of items H is closed if and only if, for every set L ∈ P(I) such that

H ⊂ L, we have suppT (L) < suppT (H).

Proof. Suppose that for every superset L of H we have suppT (H) > suppT (L)
and that H is not a closed set of items. Therefore, the set Ki(H) =
itemsT (tidsT (H)) is a superset of H and consequently suppcountT (H) >
suppcountT (itemsT (tidsT (H))). Since

suppcountT (itemsT (tidsT (H))) = |tidsT (itemsT (tidsT (H)))| = |tidsT (H)|,

this leads to a contradiction. Thus, H must be closed.
Conversely, suppose that H is a closed set of items,

H = Ki(H) = itemsT (tidsT (H)),

and let L be a strict superset of H. Suppose that suppT (L) = suppT (H). This
means that |tidsT (L)| = |tidsT (H)|.

Since H = itemsT (tidsT (H)) ⊂ L, it follows that

tidsT (L) ⊆ tidsT (itemsT (tidsT (H))) = tidsT (H),

which implies the equality tidsT (L) = tidsT (itemsT (tidsT (H))) because the
sets tidsT (L) and tidsT (H) have the same number of elements. Thus, we have
tidsT (L) = tidsT (H). In turn, this yields
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H = itemsT (tidsT (H)) = itemsT (tidsT (L)) ⊇ L,

which contradicts the initial assumption H ⊂ L. 	

The importance of determining the closed item sets is based on the equal-

ity suppcountT (itemsT (tidsT (H))) = |tidsT (itemsT (tidsT (H)))| = |tidsT (H)|.
Thus, if we have the support counts of the closed sets, we have the support
count of every set of items and the number of closed sets can be much smaller
than the total number of item sets. An interesting algorithm focused on closed
item sets was developed in [148].

Exercises and Supplements

1. Let I = {a, b, c, d} be a set of items and let T be a transaction data set
defined by

T (1) = abc,

T (2) = abd,

T (3) = acd,

T (4) = bcd,

T (5) = ab.

a) Find item sets whose support is at least 0.25.
b) Find association rules having support at least 0.25 and a confidence

at least 0.75.
2. Let I = i1i2i3i4i5 be a set of items. Find the 0.6-frequent item sets of the

transaction data set T on I defined by

T (1) = i1, T (6) = i1i2i4,
T (2) = i1i2, T (7) = i1i2i5,
T (3) = i1i2i3, T (8) = i2i3i4,
T (4) = i2i3, T (9) = i2i3i5,
T (5) = i2i3i4, T (10) = i3i4i5.

Also, determine all rules whose confidence is at least 0.75.
3. Let T be a transaction data set T on an item set I, T : {1, . . . , n} −→ P(I).

Define the bit sequence of an item set X as sequence bX = (b1, . . . , bn) ∈
Seqn({0, 1}), where

bi =

{
1 if X ⊆ T (i),
0 otherwise,

for 1 ≤ i ≤ n.
For b ∈ Seqn({0, 1}), the number

√
|{i|1 ≤ i ≤ n, bi = 1}| is denoted by

‖ b ‖. The distance between the sequences b and c is defined as ‖ b⊕c ‖.
Prove that:
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a) bX∪Y = bX ∧ bY for every X,Y ∈ P(I).
b) bK⊕L = bL ⊕ bK , where K ⊕ L is the symmetric difference of the

item sets K and L.
c) |
√

suppT (K)−
√

suppT (L)| ≤ d(bK ,bL)√
|T |

.

4. For a transaction data set T on an item set I = {i1, . . . , in}, T :
{1, . . . , n} −→ P(I) and a number h, 1 ≤ h ≤ n, define the number
νT (h) by

νT (h) = 2n−1bn + · · ·+ 2b2 + b1,

where

bk =

{
1 if ik ∈ T (h),
0 otherwise,

for 1 ≤ k ≤ n. Prove that ik ∈ T (h) if and only if the result of the integer
division νT (h)/k is an odd number.

Suppose that the tabular variables of a database D are (T1,H1), . . . , (Tp,Hp).
An inclusion dependency is an expression of the form Ti[K] ⊆ Tj [L], where
K ⊆ Hi and L ⊆ Hj for some i, j, where 1 ≤ i, j ≤ p are two sets of attributes
having the same cardinality. Denote by IDD the set of inclusion dependencies
of D.

Let D ∈ SD be a state of the database D, φ = Ti[K] ⊆ Tj [L] be an
inclusion dependency, and θi = (Ti,Hi, ρi), θj = (Tj ,Hj , ρj) be the tables that
correspond to the tabular variables (Ti,Hi) and (Tj ,Hj) in D. The inclusion
dependency φ is satisfied in the state D of D if for every tuple t ∈ ρi there is
a tuple s ∈ ρj such that t[K] = s[L].

5. For φ = Ti[K] ⊆ Tj [L] and ψ = Td[K ′] ⊆ Te[L′], define the relation φ ≤ ψ
if d = i, e = j, K ⊆ K ′, and H ⊆ H ′. Prove that “≤” is a partial order
on IDD.

6. Prove that the triple (IDD,≤, h) is a graded poset, where h(Ti[K] ⊆
Tj [L]) = |K|.

7. Prove that the function q : SD × IDD −→ {0, 1} defined by

q(D,φ) =

{
1 if φ is satisfied in D,
0 otherwise,

is a query (as in Definition 7.25).
8. Specialize the generic levelwise algorithm to an algorithm that retrieves

all inclusion dependencies satisfied by a database state.

Let T : {1, . . . , n} −→ P(D) be a transaction data set on an item set D. The
contingency matrix of two item sets X and Y is the 2× 2-matrix:

MXY =
(
m11 m10

m01 m00

)
,
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where

m11 = |{k|X ⊆ T (k) and Y ⊆ T (k)}|,
m10 = |{k|X ⊆ T (k) and Y �⊆ T (k)}|,
m01 = |{k|X �⊆ T (k) and Y ⊆ T (k)}|,
m00 = |{k|X �⊆ T (k) and Y �⊆ T (k)}|.

Also, let m1· = m11 +m10 and m·1 = m11 +m01.

9. Let X ⇒ Y be an association rule. Prove that

confT (X ⇒ Y ) =
m11

m11 +m10
.

Which significance has the number m10 for X ⇒ Y ?
10. Let T : {1, . . . , n} −→ P(I) be a transaction data set on a set of items

I and let π be a partition of the set {1, . . . , n} of transaction identifiers,
π = {B1, . . . , Bp}. Let ni = |Bi| for 1 ≤ i ≤ p.
A partitioning of T is a sequence T1, . . . , Tp of transaction data sets on
I such that Ti : {1, . . . , ni} −→ P(I) is defined by Ti(�) = T (k�), where
Bi = {k1, . . . , kni

} for 1 ≤ i ≤ p.
Intuitively, this corresponds to splitting horizontally the table of T into p
tables that contain n1, . . . , np consecutive rows, respectively.
Let K be an item set. Prove that if suppT (K) ≥ μ, there exists j, 1 ≤ j ≤
p, such that suppTj

(K) ≥ μ. Give an example to show that the reverse
implication does not hold; in other words, give an example of a transaction
data set T , a partitioning T1, . . . , Tp of T , and an item set K such that K
is μ-frequent in some Ti but not in T .

11. Piatetsky-Shapiro formulated in [107] three principles that a rule inter-
estingness measure R should satisfy:
a) R(X ⇒ Y ) = 0 if m11 = m1·m·1

n ,
b) R(X → Y ) increases with m11 when other parameters are fixed, and
c) R(X → Y ) decreases with m·1 and with m1· when other parameters

are fixed.
The lift of a rule X ⇒ Y is the number lift(X ⇒ Y ) = nm11

m1·m·1
. The

PS measure is PS(X → Y ) = m11 − m1·m·1
n . Do lift and PS satisfy

Piatetsky-Shapiro’s principles? Give examples of interestingness measures
that satisfy these principles.
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ner with the purpose of discovering maximal frequent item sets was proposed
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Exercises 5–8 are reformulations of results obtained in [95].
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Applications to Databases and Data Mining

8.1 Introduction

In this chapter, we discuss various applications of partially ordered sets and
some of their associated structures (closure operators), the lattice of parti-
tions, monotonicity of functions, etc.

8.2 Tables and Indiscernibility Relations

Definition 8.1. Let θ = (T,H, r) be a table, where r = (t1, . . . , tn). The
indiscernibility relation defined by a set of attributes X, X ⊆ set(H) is the
relation εX ⊆ {1, . . . , n}2 given by

εX = {(p, q) ∈ {1, . . . , n}2 | tp[X] = tq[X]}.

It is easy to verify that εX is an equivalence for every set of attributes
X. The partition of {1, . . . , n} that corresponds to this equivalence will be
denoted by πX .

Example 8.2. Consider again the table introduced in Example 1.153.

OBJECTS
shape length width height color

1 cube 5 5 5 red
2 sphere 3 3 3 blue
3 pyramid 5 6 4 blue
4 cube 2 2 2 red
5 sphere 3 3 3 blue

Several partitions defined by sets of attributes of this table are:

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 8, c© Springer-Verlag London Limited 2008
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πshape = {{1, 4}, {2, 5}, {3}}
πlength = {{1, 3}, {2, 5}, {4}},
πwidth = {{1}, {2, 5}, {3}, {4}},
πheight = {{1}, {2, 5}, {3}, {4}},
πcolor = {{1, 4}, {2, 3, 5}},

πshape length = {{1}, {4}, {2, 5}, {3}},
πshape color = {{1, 4}, {2, 5}, {3}}.

Theorem 8.3. Let θ = (T,H, r) be a table and let X and Y be two sets of
attributes, X,Y ⊆ H. We have εXY = εX ∩ εY .

Proof. Let tp, tq ∈ set(r) be two tuples such that (p, q) ∈ εXY . This means
that tp[XY ] = tq[XY ]. By the second part of Theorem 1.154, this holds if and
only if tp[X] = tp[X] and tp[Y ] = tq[Y ]; that is, if and only if (p, q) ∈ εX and
(p, q) ∈ εY . Thus, εXY = εX ∩ εY . 	


Corollary 8.4. Let θ = (T,H, r) be a table and let X and Y be two sets of
attributes, X,Y ⊆ H. We have πXY = πX ∧ πY .

Proof. This statement follows immediately from Theorems 8.3 and 4.60. 	


Corollary 8.5. Let θ = (T,H, r) be a table and let X and Y be two sets of
attributes, X,Y ⊆ H. If X ⊆ Y , we have πY ≤ πX .

Proof. Since X ⊆ Y , we have XY = Y , so πY = πX ∧ πY , which implies
πY ≤ πX . 	


Definition 8.6. A reduct of a table θ = (T,H, r) is a set of attributes L that
satisfies the following conditions:
(i) πL = πH , and
(ii) L is a minimal set having the property (i); that is, for every J ⊂ L, we

have πJ ≥ πH .
The core of θ is the intersection of the reducts of the table.

Example 8.7. Let θ = (T,ABCDE, r) be the following table:

T
A B C D E

1 a1 b1 c1 d1 e1
2 a2 b2 c2 d2 e1
3 a1 b2 c2 d1 e2
4 a2 b2 c1 d2 e2
5 a1 b1 c1 d1 e1
6 a1 b1 c1 d1 e1
7 a1 b2 c2 d1 e2
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We have πH = {{1, 5, 6}, {3, 7}, {2}, {4}}. Note that we have πAC = πH and
πDE = πH . On the other hand, we also have

πA = {{1, 3, 5, 6, 7}, {2, 4}},
πC = {{1, 4, 5, 6}, {2, 3, 7}},
πD = {{1, 3, 5, 6, 7}, {2, 4}},
πE = {{1, 2, 5, 6}, {3, 4, 7}},

which shows that both AC and DE are reducts of this table.

Table reducts are minimal sets of attributes that have the same separating
power as the entire set of attributes of the table. Example 8.7 shows that a
table may possess several reducts.

Note that no two distinct reducts may be comparable as sets because of
the minimality condition. Therefore, each maximal chain of sets in the poset
(P(H),⊆) that joins ∅ to H may include at most one reduct. Thus, the largest
number of reducts that a table with n attributes may have is

(
n


n/2�
)
.

Example 8.8. Let θ be the table

T
A B C D

1 a1 b1 c1 d1
2 a1 b2 c1 d2
3 a2 b1 c1 d1
4 a2 b2 c1 d2

It is easy to see that this table has two reducts, AB and AD. Therefore, the
core of this table consists of the attribute A.

On the other hand, the core of the two-tuple table

S
A B C D

1 a1 b1 c1 d1
2 a1 b2 c1 d2

is empty because its two reducts, B and D, have no attributes in common.

The following theorem gives a characterization of table reducts.

Theorem 8.9. Let θ = (T,H, r) be a table such that |r| = n and let δ :
{1, . . . , n}2 −→ P(H) be the function defined by

δ(i, j) = {A ∈ set(H) | ti[A] �= tj [A]}

for 1 ≤ i, j ≤ n. The set of attributes L is a reduct for θ if and only if
L∩ δ(i, j) �= ∅ for every pair (i, j) ∈ {1, . . . , n}2 such that δ(i, j) �= ∅ and L is
minimal with this property.
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Proof. Suppose that L is a reduct for θ and that (i, j) is a pair such that
δ(i, j) �= ∅. The equality δ(i, j) �= ∅ implies that (i, j) �∈ εH = εL, so ti[L] �=
tj [L]. Therefore, L ∩ δ(i, j) �= ∅.

Suppose that there is a strict subset G of L such that G ∩ δ(i, j) �= ∅ for
every pair (i, j) ∈ {1, . . . , n}2 such that δ(i, j) �= ∅. This implies εG = εH ,
which contradicts the minimality of the reduct L.

Conversely, suppose that L ∩ δ(i, j) �= ∅ for every pair (i, j) ∈ {1, . . . , n}2
such that δ(i, j) �= ∅ and L is minimal with this property. Since L ⊆ H, we
have εH ⊆ εL.

Now let (h, k) be a pair in εL. Since th coincides with tk on every attribute
of L, it follows that we must have δ(h, k) = ∅, which implies (h, k) ∈ εH .
Thus, εH = εL. If L is a minimal set satisfying the condition of the theorem,
it follows immediately that L is minimal in the collection of sets of attributes
that differentiate the tuples of θ, so L is a reduct. 	


The notion of a key that is frequently used in databases is related to the
notion of a reduct.

Definition 8.10. A key of a table θ = (T,H, r) and r = (t1, . . . , tn) is a set
of attributes L that satisfies the following conditions:
(i) πL = α{1,...,n}, and
(ii) L is a minimal set having the property (i); that is, for every J ⊂ L, we

have πJ ≥ α{1,...,n}.

A table θ = (T,H, r) has a key if and only if the sequence r does not
contain duplicate tuples.

8.3 Partitions and Functional Dependencies

If we examine the table defined in Example 8.2, we observe that if two objects
have the same shape, then they have the same color. We also note that the
reverse implication is not true because two objects may have the same color
without having the same shape. This observation suggests the introduction of
a type of constraint that applies to the table contents for every table that is
a value of a tabular variable.

Definition 8.11. Let H be a set of attributes. A functional dependency is an
ordered pair (X,Y ) of subsets of H.

The set of all functional dependencies on a set of attributes H is denoted
by FD(H). If (X,Y ) ∈ FD(H) we shall write this pair as X → Y using a
well-established convention in database theory.

Definition 8.12. Let θ = (T,H, r) be a table and let X and Y be two subsets
of H. The table θ satisfies the functional dependency X −→ Y if u[X] = v[X]
implies u[Y ] = v[Y ] for every two tuples u, v ∈ set(r).



8.3 Partitions and Functional Dependencies 299

In other words, a table θ satisfies the functional dependency X → Y if
and only if εX ⊆ εY or, equivalently, πX ≤ πY .

Example 8.13. Let us consider a tabular variable whose values are intended
to store the data reflecting the instructors, students, and musical instruments
studied by the students of a community music school. Lessons are scheduled
once a week, and each instructor is teaching one instrument:

τ = (SCHEDULE, student instructor instrument day time room).

Any table θ that is a value of this tabular variable must satisfy functional
dependencies that reflect these “business rules” as well as other semantic
restrictions:

student instrument→ instructor,
instructor → instrument,
student instrument→ day time,
room day time → student instructor,
student day time → room,
instructor day time → room.

For example, a possible value of this tabular variable is the table:

SCHEDULE
student instructor instrument day time room

1 Margo Donna piano Mon 4 A
2 Danielle Igor violin Mon 4 B
3 Joshua Donna piano Mon 5 A
4 Ondine Donna piano Tue 3 A
5 Michael Donna piano Tue 4 A
6 Linda Mary flute Tue 4 B
7 Todor Mary flute Tue 5 A
8 Sarah Emma piano Tue 6 A
9 Samuel Donna piano Tue 6 B

10 Alex David guitar Tue 6 C
11 Dan Emma piano Wed 3 A
12 William Mary flute Wed 4 A
13 Nora David guitar Wed 4 B
14 Amy Donna piano Wed 5 A
15 Peter Igor violin Thr 4 A
16 Kenneth David guitar Thr 4 B
17 Patrick Donna piano Thr 5 A
18 Elizabeth Emma piano Thr 5 B
19 Helen Mary flute Thr 5 C
20 Cris Mary flute Fri 4 B
21 Richard Igor violin Fri 4 C
22 Yves Donna piano Fri 5 A
23 Paul Emma piano Fri 5 B
24 Colin Igor violin Fri 6 C

The reader can easily check that this table satisfies all functional dependencies
identified after the definition of the tabular variable.

It is clear that if X,Y ⊆ H and Y ⊆ X, any table θ = (T,H, r) satisfies
the functional dependency X → Y .
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Definition 8.14. A functional dependency X → Y is trivial if it is satisfied
by every table θ = (T,H, r) such that X,Y ∈ P(H).

Theorem 8.15. Let H be a finite set of attributes. A functional dependency
X → Y ∈ FD(H) is trivial if and only if Y ⊆ X.

Proof. For each attribute A ∈ H, let uA and vA be two distinct values in
Dom(A). Suppose that X → Y is a trivial functional dependency and that Y
is not included in X. This means that there exists an attribute B ∈ Y −X.
Consider the table θ = (T,XY, r), where r = (t1, t2), where t1[A] = uA for
every A ∈ XY , and

t2[A] =

{
uA if A �= B,

vB if A = B.

Since t1[X] = t2[X] and t1[Y ] �= t2[Y ], it follows that θ violates the functional
dependency X → Y , which contradicts the fact that X → Y is trivial.

The sufficiency of the condition is immediate. 	

Suppose now that θ = (T,H, r) satisfies the functional dependencies X →

Y and Y → Z, where X,Y,Z are subsets of H. This means that πX ≤ πY

and πY ≤ πZ , which implies πX ≤ πZ . Therefore, θ satisfies the functional
dependency X → Z.

If θ = (T,H, r) satisfies the functional dependency X → Y and W is a
subset of H, then we have πX ≤ πY . Therefore, we have

πXW = πX ∧ πW ≤ πY ∧ πW = πY W ,

which means that θ satisfies the functional dependency XW → YW .
In the database design process, it is necessary to identify functional de-

pendencies satisfied by tables that are values of tabular variables. Thus, for a
tabular variable τ = (T,H), the design of the database entails the construc-
tion of the functional dependency schema defined as a pair S = (H,F ), where
F ⊆ FD(H). Tables that are values of τ are also said to satisfy the schema S.
The identification of these functional dependencies is based on the meaning
of the attributes involved. For example, in a table schema that contains the
attributes ssn (standing for social security number) and name, it is natural
to impose the functional dependency ssn → name. Every table that satisfies
this schema will satisfy this functional dependency.

Suppose that a table satisfies the functional dependencies A → B and
B → C. Then, by a previous observation, the table will also satisfy A → C.
Thus, it is not necessary to explicitly stipulate that the table will satisfy
A→ C. This functional dependency is obtained by applying the rule

A→ B,B → C

A→ C
,

which is an instance of the transitivity rule
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X → Y, Y → Z
X → Z Rtrans,

for every X,Y,Z ∈ P(H). Here H is the set of attributes of a table. Our
previous argument shows that this rule is sound; in other words, if a table
satisfies X → Y and Y → Z, then the table satisfies X → Z.

The previous arguments allow us to identify two more sound rules, the
inclusion rule

X ⊆ Y
Y → XRinc,

and the augmentation rule

X → Y
XW → YWRaug,

for every X,Y,W ∈ P(H).
As we saw above, rules are denoted as fractions; the objects that appear in

the numerator are known as the premises of the rule; the object that appears
in the denominator is the conclusion of the rule.

The three rules introduced so far (transitivity, augmentation, and inclu-
sion) are known as Armstrong’s rules.

The previous discussion establishes the soundness of the rules Rinc, Raug,
and Rtran. This means that a table that satisfies a set F of functional de-
pendencies will satisfy any functional dependency obtained from F through
applications of these rules.

In a certain sense that will be made clear in what follows, these are all the
rules we need in order to reason about functional dependencies.

Rules are used to generate in a syntactic manner new functional dependen-
cies starting from existing sets of such dependencies. The process of producing
such new functional dependencies is known as a proof. This notion is formal-
ized in the next definition.

Definition 8.16. Let S = (H,F ) be a functional dependencies schema. A
non-null sequence of functional dependencies:

U1 → V1, . . . , Un → Vn

is an F -proof of length n if one of the following conditions is satisfied for
every i, 1 ≤ i ≤ n:
(i) Ui → Vi is one of the functional dependencies of F , or
(ii) Ui → Vi is obtained from 0, 1, or 2 predecessors in the sequence by applying

one of Armstrong’s rules.
The last dependency in the sequence Un → Vn is the target of the F -proof.

Example 8.17. Suppose that S = (H,F ) is a functional dependency schema,
where H = ABCDE and F is the set of functional dependencies
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F = {A→ C,AB → D,CD → E}.

We claim that the sequence

A→ C,AB → BC,AB → ABC,AB → D,
ABC → CD,AB → CD,CD → E,AB → E

is an F -proof of AB → E for the following reasons:
(i) A→ C belongs to F .
(ii) AB → ABC is obtained from (i) by applying Raug with W = AB.
(iii) AB → D belongs to F .
(iv) ABC → CD is obtained from (iii) by applying Raug with W = C.
(v) AB → CD is obtained from (ii) and (iv) by applying Rtran.
(vi) CD → E belongs to F .
(vii) AB → E is obtained from (v) and (vi) by applying Rtran.

The existence of an F -proof that has a functional dependency U → V as
a target is denoted as F "

ARM
U → V .

Finding an F -proof for a functional dependency can be a daunting task
if the number of attributes and functional dependencies is large. Fortunately,
there are ways of simplifying this process.

Theorem 8.18. Let S = (H,F ) be a functional dependency schema. If
F "

ARM
X → Y and F "

ARM
X → Z, then F "

ARM
X → Y Z for every

X,Y,Z ⊆ H.

Proof. Let U1 → V1, . . . , Un → Vn and U ′
1 → V ′

1 , . . . , U
′
n → V ′

m be two F -
proofs that have X → Y and X → Z as targets. Using the augmentation by
X, the first proof generates the F -proof

U1 → V1, . . . , Un → Vn = X → Y,X → XY.

On the other hand, starting from the second proof

U ′
1 → V ′

1 , . . . , U
′
n → V ′

m = X → Z,

by augmenting the last functional dependency by Y , we have the F -proof

U ′
1 → V ′

1 , . . . , U
′
n → V ′

m = X → Z,XY → Y Z

By concatenating the two newly obtained proofs and applying the transitivity
property, we have the F -proof

U1 → V1, . . . , Un → Vn,X → XY,
U ′

1 → V ′
1 , . . . , U

′
n → V ′

m,XY → Y Z,X → Y Z,

which has the desired functional dependency X → Y Z as its target. 	
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The last theorem shows that we can derive the functional dependency
X → Y Z from the functional dependencies X → Y and X → Z. This fact is
interpreted as a “derived rule” known as the additivity rule and is denoted by

X → Y,X → Z
X → Y Z Radd.

Another derived rule is introduced in the next theorem.

Theorem 8.19. If F "
ARM

X → Y Z, then F "
ARM

X → Y for every X,Y,Z ⊆
H.

Proof. Let U1 → V1, . . . , Un → Vn be an F -proof that has X → Y Z as its
target. We can add to this proof the functional dependency Y Z → Y obtained
by applying Rinc. This yields the needed F -proof

U1 → V1, . . . , Un → Vn = X → Y Z, Y Z → Y,X → Y,

where the last step was obtained by applying the transitivity rule to the
previous two steps. 	


Thus, from X → Y Z we can derive the functional dependency X → Y .
This derived rule is known as the projectivity rule and is denoted by

X → Y Z
X → Y Rproj .

Note that if F is a set of functional dependencies, F ⊆ FD(H) and X ⊆ H,
then it is always possible to find Y such that F "

ARM
X → Y . Indeed, it suffices

to take Y = X and we can always prove X → X starting from F because the
functional dependency X → X can be generated by applying Rinc.

Let X → Y1, . . . , X → Yp be the set of all functional dependencies such
that F "

ARM
X −→ Y , where X,Y ⊆ H. By repeatedly applying the additivity

rule, we have F "
ARM

X −→ Y1 · · ·Yp. The set Y1 · · ·Yp is the largest set Y

such that F "
ARM

X −→ Y . Further, we have F "
ARM

X −→ V if and only if

V ⊆ Y1 · · ·Yp. Indeed, it is clear that if F "
ARM

X −→ V , then V ⊆ Y1 · · ·Yp.

Conversely, if V ⊆ Y1 · · ·Yp, then Y1 · · ·Yp → V (by Rinc), so F "
ARM

X → V

by Rtran. Thus, the set Y1 · · ·Yp plays a special role; we will refer to it as the
closure of X under F and will denote it by clF (X).

Theorem 8.20. Let S = (H,F ) be a functional dependency schema. The
mapping clF : P(H) −→ P(H) is a closure operator on H.

Proof. We need to show that clF satisfies the conditions of Definition 4.37.
Since we have F "

ARM
X → X, it is clear that X ⊆ clF (X).
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Suppose now that X,X ′ ∈ P(H) and X ′ ⊆ X. Since F "
ARM

X → X ′ by

Rinc and F "
ARM

X ′ → clF (X ′), it follows that F "
ARM

X → clF (X ′). This

implies clF (X ′) ⊆ clF (X), so clF is monotonic.
Finally, note that we have both F "

ARM
X → clF (X) and F "

ARM
clF (X) →

clF (clF (X)), which yields F "
ARM

X → clF (clF (X)) by Rtran. This implies

clF (clF (X)) ⊆ clF (X). The converse inclusion follows from the fact that X ⊆
clF (X) and the monotonicity of clF . Thus, clF (clF (X)) = clF (X) for every
X ∈ P(H). 	


The statement that F "
ARM

X → Y has a syntactic character; it can be

shown by constructing an F -proof that has X → Y as its target. Actually, a
computation of clF (X) allows us to decide whether F "

ARM
X → Y without

constructing the F -proof, as shown in the next theorem.

Theorem 8.21. Let S = (H,F ) be a functional dependency schema. We have
F "

ARM
X → Y if and only if Y ⊆ clF (X).

Proof. If Y ⊆ clF (X), then we have F "
ARM

clF (X) → Y by a single applica-

tion of Rinc. Then, since F "
ARM

X → clF (X), (by the definition of clF (X)),

another application of Rtran yields F "
ARM

X → Y .

Conversely, if F "
ARM

X → Y , then Y ⊆ clF (X) by the definition of clF (X).
	


Now we introduce a semantic counterpart of relation "
ARM

.

Definition 8.22. Let S = (H,F ) be a functional dependency schema. The
set F logically implies the functional dependency X → Y if every table that
satisfies all functional dependencies of F also satisfies X → Y . This is denoted
by F |= X → Y .

The soundness of Armstrong’s rules means that if F "
ARM

X → Y , then

F |= X → Y . It is interesting that the reverse implication also holds. This fact
is known as the completeness of Armstrong’s axioms and will be established
next. To this end, we introduce the notion of an Armstrong table.

Definition 8.23. Let S = (H,F ) be a functional dependency schema, where
H = A1 · · ·An, and let X ∈ P(H). For each attribute A ∈ H, let uA

and vA be two distinct values from Dom(A). The Armstrong table θF,X =
(TF,X ,H, rF,X) contains a two-row sequence rF,X) = (t0, t1), where t0(A) =
uA for A ∈ H and

t1(A) =

{
uA if A ∈ clF (X),
vA if A ∈ H − clF (X).
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Note that the existence of Armstrong relations is assured by our assumption
that the domain of every attribute contains at least two values.

Lemma 8.24. Let F be a set of functional dependencies F ⊆ FD(H), H =
A1 · · ·An, and let X ∈ P(H). The Armstrong table θF,X = (TF,X ,H, rF,X)
satisfies all dependencies that can be proven from F .

Proof. Suppose that U → V is a functional dependency that can be proven
from F (which means that F "

ARM
U → V ) and that this dependency is vi-

olated by θF,X . Since θF,X contains two tuples, this is possible only if these
tuples have the same projection on U but distinct projections on V . The
definition of θF,X allows this only if U ⊆ clF (X) and V �⊆ clF (X). By the
definition of clF (X) this is possible only if F "

ARM
X → U and F �"

ARM
X → V .

This leads to a contradiction because F "
ARM

X → U and F "
ARM

U → V imply

F "
ARM

X → V (by Rtran). 	


Theorem 8.25 (Completeness of Armstrong’s Rules). Let F be a set of
functional dependencies, F ⊆ FD(H), H = A1 · · ·An, and let X,Y ∈ P(H).
If F |= X → Y , then F "

ARM
X → Y .

Proof. Suppose that F |= X → Y but F �"
ARM

X → Y , which means that

Y �⊆ clF (X). The Armstrong table θF,X = (TF,X ,H, rF,X) satisfies X → Y
because it satisfies all functional dependencies of F . Since X ⊆ clF (X), this
implies Y ⊆ clF (X), which yields a contradiction. 	


Corollary 8.26. Let S = (H,F ) be a functional dependency schema and let
X → Y be a functional dependency in FD(F ). The following three statements
are equivalent:
(i) Y ⊆ clF (X).
(ii) F "

ARM
X → Y .

(iii) F |= X → Y .

Proof. (i) is equivalent to (ii) by Theorem 8.21. We have (ii) implies (iii) by
the soundness of Armstrong’s rules and (iii) implies (ii) by the completeness
of these rules. 	


8.4 Partition Entropy

The notion of entropy is as a probabilistic concept that lies at the foundation
of information theory. Our goal is to define entropy in an algebraic setting
by introducing the notion of entropy of a partition taking advantage of the
partial order that is naturally defined on the set of partitions of a set. Actually,
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we will introduce a generalization of the notion of entropy that has the Gini
index and Shannon entropy as special cases.

Let S be a finite set and let π = {B1, . . . , Bm} be a partition of S. The
Shannon entropy of π is the number

H(π) = −
m∑

i=1

|Bi|
|S| log2

|Bi|
|S| .

The Gini index of π is the number

gini(π) = 1−
m∑

i=1

(
|Bi|
|S|

)2

.

Both numbers can be used to evaluate the uniformity of the distribution of
the elements of S in the blocks of π because both values increase with the
uniformity of the distribution of the elements of S.

Example 8.27. Let S be a set containing ten elements and let π1, π2, π3, π4 be
the four partitions shown in Figure 8.1.

� � � � � � � � � �

� �
�

� � � �
�

� �

� �
�

� � � �
�

�

�

� � � � � �
�

�

�

�

H(π1) = 2.3219

H(π2) = 2.1709

H(π3) = 2.0464

H(π4) = 1.9609

Fig. 8.1. Entropy increasing with partition uniformity.

The partition π1, which is the most uniform (each block containing two
elements), has the largest entropy. At the other end of the range, partition
π4 has a strong concentration of elements in its fourth block and the lowest
entropy. Similar results involving the Gini index are shown in Figure 8.2.

If S and T are two disjoint and nonempty sets, π ∈ PART(S) and σ ∈
PART(T ), where π = {B1, . . . , Bm}, σ = {C1, . . . , Cn}, then the partition
π + σ is the partition of S ∪ T given by
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gini(π1) = 0.80

gini(π2) = 0.79

gini(π3) = 0.72

gini(π4) = 0.68

Fig. 8.2. Gini index increasing with partition uniformity.

π + σ = {B1, . . . , Bm, C1, . . . , Cn}.

Whenever the “+” operation is defined, then it is easily seen to be associative.
In other words, if S, T, U are pairwise disjoint and nonempty sets and π ∈
PART(S), σ ∈ PART(T ), τ ∈ PART(U), then π + (σ + τ) = (π + σ) + τ .
Observe that if S and T are disjoint, then αS +αT = αS∪T . Also, ωS + ωT is
the partition {S, T} of the set S ∪ T .

If π = {B1, . . . , Bm}, σ = {C1, . . . , Cn} are partitions of two arbitrary sets
S, T , then we denote the partition {Bi×Cj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of S×T
by π × σ. Note that αS × αT = αS×T and ωS × ωT = ωS×T .

We introduce below a system of four axioms.

Definition 8.28. Let β ∈ R, β ≥ 1, and Φ : R
2
≥0 −→ R≥0 be a continuous

function such that Φ(x, y) = Φ(y, x), and Φ(x, 0) = x for x, y ∈ R≥0.
A (Φ, β)-system of axioms for a partition entropy Hβ : PART(S) −→ R≥0

consists of the following axioms:
(P1) If π, π′ ∈ PART(S) are such that π ≤ π′, then Hβ(π′) ≤ Hβ(π).
(P2) If S and T are two finite sets such that |S| ≤ |T |, then Hβ(αS) ≤

Hβ(αT ).
(P3) For all disjoint sets S and T and partitions π ∈ PART(S) and σ ∈

PART(T ) we have

Hβ(π + σ) =
(

|S|
|S|+ |T |

)β

Hβ(π) +
(

|T |
|S|+ |T |

)β

Hβ(σ) + Hβ({S, T}).

(P4) We have
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Hβ(π × σ) = Φ(Hβ(π),Hβ(σ))

for π ∈ PART(S) and σ ∈ PART(T ).

Observe that we postulate that Hβ(π) ≥ 0 for any partition π since the range
of every function Hβ is R≥0.

Lemma 8.29. For every (Φ, β)-entropy Hβ and set S, we have Hβ(ωS) = 0.

Proof. Let S and T be two disjoint sets that have the same cardinality, |S| =
|T |. Since ωS +ωT is the partition {S, T} of the set S ∪ T , by Axiom (P3) we
have

Hβ(ωS + ωT ) =
(

1
2

)β

(Hβ(ωS) + Hβ(ωT )) + Hβ({S, T}),

which implies Hβ(ωS) + Hβ(ωT ) = 0. Since Hβ(ωS) ≥ 0 and Hβ(ωT )) ≥ 0, it
follows that Hβ(ωS) = Hβ(ωT ) = 0.

Lemma 8.30. Let S and T be two disjoint sets and let π, π′ ∈ PART(S ∪ T )
be defined by π = σ + αT and π′ = σ + ωT , where σ ∈ PART(S). Then,

Hβ(π) = Hβ(π′) +
(

|T |
|S|+ |T |

)β

Hβ(αT ).

Proof. By Axiom (P3), we can write

Hβ(π) =
(

|S|
|S|+ |T |

)β

Hβ(σ)

+
(

|T |
|S|+ |T |

)β

Hβ(αT ) + Hβ({S, T})

and

Hβ(π′) =
(

|S|
|S|+ |T |

)β

Hβ(σ)

+
(

|T |
|S|+ |T |

)β

Hβ(ωT ) + Hβ({S, T})

=
(

|S|
|S|+ |T |

)β

Hβ(σ) + Hβ({S, T})

(by Lemma 8.29).

The equalities above immediately imply the equality of the lemma.

Theorem 8.31. For every (Φ, β)-entropy and partition π = {B1, . . . , Bm} ∈
PART(S), we have

Hβ(π) = Hβ(αS)−
m∑

i=1

(
|Bi|
|S|

)β

Hβ(αBi
).
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Proof. Starting from the partition π, consider the following sequence of par-
titions in PART(S):

π0 = ωB1 + ωB2 + ωB3 + · · ·+ ωBm

π1 = αB1 + ωB2 + ωB3 + · · ·+ ωBm

π2 = αB1 + αB2 + ωB3 + · · ·+ ωBm

...
πn = αB1 + αB2 + αB3 + · · ·+ αBm

.

Let σj = αB1 + · · ·+αBj
+ ωBi+2 + · · ·+ ωBm

. Then, πi = σi + ωBi+1 and
πi+1 = σi + αBi+1 ; therefore, by Lemma 8.30, we have

Hβ(πi+1) = Hβ(πi) +
(
|Bi+1|
|S|

)β

Hβ(αBi+1)

for 0 ≤ i ≤ m− 1.
A repeated application of this equality yields

Hβ(πm) = Hβ(π0) +
m−1∑
i=0

(
|Bi+1|
|S|

)β

Hβ(αBi+1).

Observe that π0 = π and πm = αS . Consequently,

Hβ(π) = Hβ(αS)−
m∑

i=1

(
|Bi|
|S|

)β

Hβ(αBi
).

Note that if S and T are two sets such that |S| = |T | > 0, then, by Axiom
(P2), we have Hβ(αS) = Hβ(αT ). Therefore, the value of Hβ(αS) depends
only on the cardinality of S, and there exists a function μ : N1 −→ R≥0 such
that Hβ(αS) = μ(|S|) for every nonempty set S. Axiom (P2) also implies that
μ is an increasing function. We will refer to μ as the kernel of the (Φ, β)-system
of axioms.

Corollary 8.32. Let Hβ be a (Φ, β)-entropy. For the kernel μ defined in ac-
cordance with Axiom (P2) and every partition π = {B1, . . . , Bm} ∈ PART(S),
we have

Hβ(π) = μ(|S|)−
m∑

i=1

(
|Bi|
|S|

)β

μ(|Bi|). (8.1)

Proof. The statement is an immediate consequence of Theorem 8.31.

Theorem 8.33. Let π = {B1, . . . , Bm} be a partition of the set S. Define
the partition π′ obtained by fusing the blocks B1 and B2 of π as π′ = {B1 ∪
B2, B3, . . . , Bm} of the same set. Then
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Hβ(π) = Hβ(π′) +
(
|B1 ∪B2|
|S|

)β

Hβ({B1, B2}).

Proof. A double application of Corollary 8.32 yields

Hβ(π′) = μ(|S|)−
(
|B1 ∪B2|
|S|

)β

μ(|B1 ∪B2|)

−
m∑

i>2

(
|Bi|
|S|

)β

μ(|Bi|)

and

Hβ({B1, B2}) = μ(|B1 ∪B2|)−
(

|B1|
|B1 ∪B2|

)β

μ(|B1|)

−
(

|B2|
|B1 ∪B2|

)β

μ(|B2|).

Substituting the expressions above in

Hβ(π′) +
(
|B1 ∪B2|
|S|

)β

Hβ({B1, B2})

we obtain Hβ(π).
Theorem 8.33 allows us to extend Axiom (P3):

Corollary 8.34. Let B1, . . . , Bm be m nonempty, disjoint sets and let πi ∈
PART(Bi) for 1 ≤ i ≤ m. We have

Hβ(π1 + · · ·+ πm) =
m∑

i=1

(
|Bi|
|S|

)β

Hβ(πi) + Hβ({B1, . . . , Bm}),

where S = B1 ∪ · · · ∪Bm.

Proof. The argument is by induction on m ≥ 2. The basis step, m = 2, is Ax-
iom (P3). Suppose that the statement holds for m, and let B1, . . . , Bm, Bm+1

bem+1 disjoint sets. Further, suppose that π1, . . . , πm, πm+1 are partitions of
these sets, respectively. Then, πm +πm+1 is a partition of the set Bm∪Bm+1.
By the inductive hypothesis, we have

Hβ(π1 + · · ·+ (πm + πm+1))

=
m−1∑
i=1

(
|Bi|
|S|

)β

Hβ(πi) +
(
|Bm|+ |Bm+1|

|S|

)β

Hβ(πm + πm+1)

+Hβ({B1, . . . , (Bm ∪Bm+1)}),

where S = B1 ∪ · · · ∪Bm ∪Bm+1.
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Axiom (P3) implies

Hβ(π1 + · · ·+ (πm + πm+1))

=
m−1∑
i=1

(
|Bi|
|S|

)β

Hβ(πi) +
(
|Bm|
|S|

)β

Hβ(πm)

+
(
|Bm+1|
|S|

)β

Hβ(πm+1) +
(
|Bm|+ |Bm+1|

|S|

)β

Hβ{Bm, Bm+1}

+Hβ({B1, . . . , (Bm ∪Bm+1)}).

Finally, an application of Theorem 8.33 gives the desired equality.

Theorem 8.35. Let μ be the kernel of a (Φ, β)-system. If a, b ∈ N1, then

μ(ab)− μ(a) · b1−β = μ(b).

Proof. Let A = {x1, . . . , xa} and B = {y1, . . . , yb} be two nonempty sets.
Observe that ωA × αB consists of b blocks of size a: A × {y1}, . . . , A × {yb}.
By Axiom (P4),

Hβ(ωA × αB)
= Φ(Hβ(ωA),Hβ(αB)) = Φ(0,Hβ(αB)) = Hβ(αB) = μ(b).

On the other hand,

Hβ(ωA × αB) = Hβ(αA×B)−
b∑

i=1

(
1
b

)β

Hβ(αA×{yi})

= μ(ab)− 1
bβ
b · μ(a),

which gives the needed equality.
An entropy is said to be non-Shannon if it is defined by a (Φ, β)-system

of axioms such that β > 1; otherwise (that is if β = 1), the entropy will be
referred to as a Shannon entropy. As we shall see, the choice of the parameter
β determines the form of the function Φ.

Initially we focus on non-Shannon entropies, that is, on (Φ, β)-entropies,
where β > 1.

Theorem 8.36. Let Hβ be a non-Shannon entropy defined by a (Φ, β)-system
of axioms and let μ be the kernel of this system of axioms.

There is a number k > 0 such that μ(a) = k · (1− a1−β) for every a ∈ N1.

Proof. Theorem 8.35 implies that

μ(ab) = μ(a) · b1−β + μ(b) = μ(b) · a1−β + μ(a)
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for every a, b ∈ N1. Consequently,

μ(a)
1− a1−β

=
μ(b)

1− b1−β
= k

for every a, b ∈ N1, which gives the desired equality. 	


Corollary 8.37. If Hβ is a non-Shannon entropy defined by a (Φ, β)-system
of axioms and π ∈ PART(S), where π = {B1, . . . , Bm}, then there exists a
constant k ∈ R such that

Hβ(π) = k

(
1−

m∑
i=1

(
|Bi|
|S|

)β
)
. (8.2)

Proof. By Corollary 8.32 and Theorem 8.36, we have

Hβ(π) = μ(|S|)−
m∑

i=1

(
|Bi|
|S|

)β

μ(|Bi|)

= k

(
1− 1

|S|β−1

)
− k

m∑
i=1

(
|Bi|
|S|

)β

·
(

1− 1
|Bi|β−1

)

= k

(
1− 1

|S|β−1

)
− k

m∑
i=1

(
|Bi|
|S|

)β

+ k
m∑

i=1

|Bi|
|S|β

= k

(
1−

m∑
i=1

(
|Bi|
|S|

)β
)
.

The last equality follows from the fact that
∑m

i=1 |Bi| = |S|.
The constant k introduced in Theorem 8.36 is given by

k = lim
a→∞

μ(a), (8.3)

and the range of values assumed by μ is [0, k].
Our axiomatization defines entropies (and therefore the kernel μ) up to

the multiplicative constant k and the Equality (8.3) expresses this constant
in terms of the limit of μ(a) when a tends to infinity.

The next theorem shows that the function Φ introduced by Definition 8.28
and used in Axiom (P4) is essentially determined by the choices made for β
and k.

Theorem 8.38. Let Hβ be the non-Shannon entropy defined by a (Φ, β)-
system and let k be as defined by Equality (8.3), where μ is the kernel of
the (Φ, β)-system of axioms.

The function Φ of Axiom (P4) is given by Φ(x, y) = x + y − 1
k · xy for

x, y ∈ R≥0.
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Proof. Let π = {B1, . . . , Bm} ∈ PART(S) and σ = {C1, . . . , Cn} ∈ PART(T )
be two partitions. Since

m∑
i=1

(
|Bi|
|S|

)β

= 1− 1
k

Hβ(π),

n∑
j=1

(
|Cj |
|T |

)β

= 1− 1
k

Hβ(σ),

we can write

Hβ(π × σ) = k

⎛
⎝1−

m∑
i=1

n∑
j=1

(
|Bi||Cj |
|S||T |

)β
⎞
⎠

= k

(
1−
(

1− 1
k

Hβ(π)
)(

1− 1
k

Hβ(σ)
))

= Hβ(π) + Hβ(σ)− 1
k

Hβ(π)Hβ(σ).

Suppose initially that β > 1. Observe that the set of rational numbers of
the form

1−
n∑

l=1

rβl ,

where rl ∈ Q, 0 ≤ rl ≤ 1 for 1 ≤ l ≤ n and
∑n

l=1 rl = 1, for some n ∈ N1, is
dense in the interval [0, 1]. Thus, Formula (8.2) shows that the set of entropy
values is dense in the interval [0, k] because the sets B1, . . . , Bm are finite but
of arbitrarily large cardinalities. Since the set of values of entropies is dense
in the interval [0, k], the continuity of Φ implies the desired form of Φ. 	


Choosing k = 1
1−21−β in Equality (8.2), we obtain the Havrda-Charvat

entropy (see [67]):

Hβ(π) =
1

1− 21−β
·
(

1−
m∑

i=1

(
|Bi|
|S|

)β
)
.

If β = 2, we obtain H2(π), which is twice the Gini index,

Hβ(π) = 2 ·
(

1−
m∑

i=1

(
|Bi|
|S|

)2
)
.

The Gini index, gini(π) = 1−
∑m

i=1

(
|Bi|
|S|

)2

, is widely used in machine learning
and data mining.

The limit case, limβ→1 Hβ(π), yields
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lim
β→1

Hβ(π) = lim
β→1

1
1− 21−β

·
(

1−
m∑

i=1

(
|Bi|
|S|

)β
)

= lim
β→1

1
21−β ln 2

·
(
−

m∑
i=1

(
|Bi|
|S|

)β

ln
|Bi|
|S|

)

= −
m∑

i=1

|Bi|
|S| log2

|Bi|
|S| ,

which is the Shannon entropy of π.
When β = 1, by Theorem 8.35, we have

μ(ab) = μ(a) + μ(b)

for a, b ∈ N1. If η : N1 −→ R is the function defined by η(a) = aμ(a) for
a ∈ N1, then η is clearly an increasing function and we have

η(ab) = abμ(ab) = bη(a) + aη(b)

for a, b ∈ N1. By Theorem D.6, there exists a constant c ∈ R such that
η(a) = ca log2 a for a ∈ N1, so μ(a) = c log2(a). Then, Equation (8.1) implies:

Hβ(π) = c ·
m∑

i=1

ai

a
log2

ai

a

for every partition π = {A1, . . . , Am} of a set A, where |Ai| = ai for 1 ≤ i ≤ m
and |A| = a. This is exactly the expression of Shannon’s entropy.

The continuous function Φ is determined as in the previous case. Indeed,
if A,B are two sets such that |A| = a and |B| = b, then we must have

c · log2 ab = Hβ(αA × αB) = Φ(c · log2 a, c · log2 b)

for any a, b ∈ N1 and any c ∈ R. The continuity of Φ implies Φ(x, y) = x+ y.
The β-entropy of αS is given by

Hβ(αS) =
1− |S|β
1− 2β

. (8.4)

The entropies previously introduced generate corresponding conditional
entropies.

Let π ∈ PART(S) and let C ⊆ S. Denote by πC the “trace” of π on C
given by

πC = {B ∩ C|B ∈ π such that B ∩ C �= ∅}.
Clearly, πC ∈ PART(C); also, if C is a block of π, then πC = ωC .

Definition 8.39. Let π, σ ∈ PART(S) and let σ = {C1, . . . , Cn}. The β-
conditional entropy of the partitions π, σ ∈ PART(S) is the function Hβ :
PART(S)2 −→ R≥0 defined by
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Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S|

)β

Hβ(πCj
).

Observe that Hβ(π|ωS) = Hβ(π) and that Hβ(ωS |π) = Hβ(π|αS) = 0 for
every partition π ∈ PART(S).

For π = {B1, . . . , Bm} and σ = {C1, . . . , Cn}, the conditional entropy can
be written explicitly as

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S|

)β m∑
i=1

1
1− 21−β

[
1−
(
|Bi ∩ Cj |
|Cj |

)β
]

=
1

1− 21−β

n∑
j=1

((
|Cj |
|S|

)β

−
m∑

i=1

(
|Bi ∩ Cj |
|S|

)β
)
. (8.5)

For the special case when π = αS , we can write

Hβ(αS |σ) =
n∑

j=1

(
|Cj |
|S|

)β

Hβ(αCj
) =

1
1− 21−β

⎛
⎝ n∑

j=1

(
|Cj |
|S|

)β

− 1
|S|β−1

⎞
⎠ .
(8.6)

Theorem 8.40. Let π and σ be two partitions of a finite set S.
We have Hβ(π|σ) = 0 if and only if σ ≤ π.

Proof. Suppose that σ = {C1, . . . , Cn}. If σ ≤ π, then πCj
= ωCj

for 1 ≤ j ≤ n
and therefore

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S|

)β

Hβ(ωCj
) = 0.

Conversely, suppose that

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S|

)β

Hβ(πCj
) = 0.

This implies Hβ(πCj
) = 0 for 1 ≤ j ≤ n, which means that πCj

= ωCj
for

1 ≤ j ≤ n by a previous remark. This means that every block Cj of σ is
included in a block of π, so σ ≤ π. 	


The next statement is a generalization of a well-known property of Shan-
non’s entropy.

Theorem 8.41. Let π and σ be two partitions of a finite set S. We have

Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ) = Hβ(σ|π) + Hβ(π),
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Proof. Suppose that π = {B1, . . . , Bm} and that σ = {C1, . . . , Cn}. Observe
that

π ∧ σ = πC1 + · · ·+ πCn
= σB1 + · · ·+ σBm

.

Therefore, by Corollary 8.34, we have

Hβ(π ∧ σ) =
n∑

j=1

(
|Cj |
|S|

)β

Hβ(πCj
) + Hβ(σ),

which implies
Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ).

The second equality has a similar proof. 	


Corollary 8.42. If Hβ(π ∧ σ) = Hβ(π), then π ≤ σ.

Proof. Since Hβ(π ∧ σ) = Hβ(π), Theorem 8.41 implies Hβ(σ|π) = 0. By
Theorem 8.40, we have π ≤ σ. 	


Lemma 8.43. Let β ≥ 1. If w1, . . . , wn are n positive numbers such that∑n
k=1 wk = 1 and a1, . . . , an ∈ [0, 1], then

1−
(

n∑
i=1

wiai

)β

−
(

n∑
i=1

wi(1− ai)

)β

≥
n∑

i=1

wβ
i

(
1− aβ

i − (1− ai)β
)
.

Proof. Let φ : [0, 1] −→ R be the function given by φ(x) = xβ + (1− x)β for
x ∈ [0, 1]. It is easy to see that φ(0) = φ(1) = 1 and that φ has a minimum
for x = 1/2, φ(1/2) = 1/21−β . Thus, we have

xβ + (1− x)β ≤ 1 (8.7)

for x ∈ [0, 1].
Inequality (8.7) implies

wi(1− aβ
i − (1− ai)β) ≥ wβ

i (1− aβ
i − (1− ai)β)

because wi ∈ [0, 1] and β > 1.
By applying Jensen’s inequality for the convex function f(x) = xβ , we

obtain the inequalities: (
n∑

i=1

wiai

)β

≤
n∑

i=1

wia
β
i ,

(
n∑

i=1

wi(1− ai)

)β

≤
n∑

i=1

wi(1− ai)β .

Thus, we can write



8.4 Partition Entropy 317

1−
(

n∑
i=1

wiai

)β

−
(

n∑
i=1

wi(1− ai)

)β

=
n∑

i=1

wi −
(

n∑
i=1

wiai

)β

−
(

n∑
i=1

wi(1− ai)

)β

≥
n∑

i=1

wi −
n∑

i=1

wia
β
i −

n∑
i=1

wi(1− ai)β

=
n∑

i=1

wi

(
1− aβ

i − (1− ai)β
)

=
n∑

i=1

wβ
i

(
1− aβ

i − (1− ai)β
)
,

which is the desired inequality. 	


Theorem 8.44. Let S be a set, π ∈ PART(S) and let C and D be two disjoint
subsets of S. For β ≥ 1, we have

(
|C ∪D|
|S|

)β

Hβ(πC∪D) ≥
(
|C|
|S|

)β

Hβ(πC) +
(
|D|
|S|

)β

Hβ(πD).

Proof. Suppose that π = {B1, . . . , Bm} is a partition of S. Define the numbers

wi =
|Bi ∩ (C ∪D)|
|C ∪D|

for 1 ≤ i ≤ m. It is clear that
∑m

i=1 wi = 1. Let

ai =
|Bi ∩ C|

|Bi ∩ (C ∪D)|

for 1 ≤ i ≤. It is immediate that 1− ai = |Bi∩D|
|Bi∩(C∪D)| .

Applying Lemma 8.43 to the numbers w1, . . . , wm and a1, . . . , am, we ob-
tain

1−
(

n∑
i=1

|Bi ∩ C|
|C ∪D|

)β

−
(

n∑
i=1

|Bi ∩D|
|C ∪D|

)β

≥
n∑

i=1

(
|Bi ∩ (C ∪D)|
|C ∪D|

)β
(

1−
(

|Bi ∩ C|
|Bi ∩ (C ∪D)|

)β

−
(

|Bi ∩D|
|Bi ∩ (C ∪D)|

)β
)
.

Since
n∑

i=1

|Bi ∩ C|
|C ∪D| =

|C|
|C ∪D| and

n∑
i=1

|Bi ∩D|
|C ∪D| =

|D|
|C ∪D| ,
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the last inequality can be written

1−
(

|C|
|C ∪D|

)β

−
(

|D|
|C ∪D|

)β

≥
n∑

i=1

(
|Bi ∩ (C ∪D)|
|C ∪D|

)β

−
n∑

i=1

(
|Bi ∩ C|
|C ∪D|

)β

−
n∑

i=1

(
|Bi ∩D|
|C ∪D|

)β

,

which is equivalent to

1−
n∑

i=1

(
|Bi ∩ (C ∪D)|
|C ∪D|

)β

≥
(

|C|
|C ∪D|

)β
(

1−
n∑

i=1

(
|Bi ∩ C|
|C|

)β
)

+
(

|D|
|C ∪D|

)β
(

1−
n∑

i=1

(
|Bi ∩D|
|D|

)β
)
,

which yields the inequality of the theorem. 	

The next result shows that the β-conditional entropy is dually monotonic

with respect to its first argument and is monotonic with respect to its second
argument.

Theorem 8.45. Let π, σ, σ′ ∈ PART(S), where S is a finite set. If σ ≤ σ′,
then Hβ(σ|π) ≥ Hβ(σ′|π) and Hβ(π|σ) ≤ Hβ(π|σ′).

Proof. Since σ ≤ σ′, we have π ∧ σ ≤ π ∧ σ′, so Hβ(π ∧ σ) ≥ Hβ(π ∧
σ′). Therefore, Hβ(σ|π)+Hβ(π)Hβ(σ′|π)+Hβ(π), which implies Hβ(σ|π) ≥
Hβ(σ′|π).

For the second part of the theorem, it suffices to prove the inequality for
partitions σ, σ′ such that σ ≺ σ′. Without restricting the generality, we may
assume that σ = {C1, . . . , Cn−2, Cn−1, Cn} and σ′ = {C1, . . . , Cn−2, Cn−1 ∪
Cn}. Thus, we can write

Hβ(π|σ′)

=
n−2∑
j=1

(
|Cj |
|S|

)β

Hβ(πCj
) +
(
|Cn−1 ∪ Cn|

|S|

)β

Hβ(πCn−1∪Cn
)

≥
(
|Cj |
|S|

)β

Hβ(πCj
) +
(
|Cn−1|
|S|

)β

Hβ(πCn−1) +
(
|Cn|
|S|

)β

Hβ(πCn
)

(by Theorem 8.44)
= H(π|σ).

	


Corollary 8.46. We have Hβ(π) ≥ Hβ(π|σ) for every π, σ ∈ PART(S).

Proof. We observed that Hβ(π) = Hβ(π|ωS). Since ωS ≥ σ, the statement
follows from the second part of Theorem 8.45. 	
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Corollary 8.47. Let ξ, θ, θ′ be three partitions of a finite set S. If θ ≥ θ′,
then

Hβ(ξ ∧ θ)−Hβ(θ) ≥ Hβ(ξ ∧ θ′)−Hβ(θ′).

Proof. By Theorem 8.41, we have

Hβ(ξ ∧ θ)−Hβ(ξ ∧ θ′) = Hβ(ξ|θ) + Hβ(θ)−Hβ(ξ|θ′)−Hβ(θ′).

The monotonicity of Hβ(|) in its second argument means that: Hβ(ξ|θ) −
Hβ(ξ|θ′) ≥ 0, so Hβ(ξ ∧ θ)−Hβ(ξ ∧ θ′) ≥ Hβ(θ)−Hβ(θ′), which implies the
desired inequality. 	


The behavior of β-conditional entropies with respect to the “addition” of
partitions is discussed in the next statement.

Theorem 8.48. Let S be a finite set and π and θ be two partitions of S,
where θ = {D1, . . . , Dh}. If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

(
|Di|
|S|

)β

Hβ(πDi
|σi).

If τ = {F1, . . . , Fk} and σ = {C1, . . . , Cn} are two partitions of S, let
πi ∈ PART(Fi) for 1 ≤ i ≤ k. Then,

Hβ(π1 + · · ·+ πk|σ) =
k∑

i=1

(
|Fi|
|S|

)β

Hβ(πi|σFi
) + Hβ(τ |σ).

Proof. Suppose that σi = {E�
i | 1 ≤ � ≤ pi}. The blocks of the partition

σ1 + · · · + σh are the sets of the collection
⋃h

i=1{E�
i | 1 ≤ � ≤ pi}. Thus, we

have

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

pi∑
�=1

(
|E�

i |
|S|

)β

Hβ(πE�
i
).

On the other hand, since (πDi
)E�

i
= πE�

i
, we have

h∑
i=1

(
|Di|
|S|

)β

Hβ(πDi
|σi) =

h∑
i=1

(
|Di|
|S|

)β pi∑
�=1

(
|E�

i |
|Di|

)β

Hβ(πE�
i
)

=
h∑

i=1

pi∑
�=1

(
|E�

i |
|S|

)β

Hβ(πE�
i
),

which gives the first equality of the theorem.
To prove the second part, observe that (π1 + · · ·+ πk)Cj

= (π1)Cj
+ · · ·+

(πk)Cj
for every block Cj of σ. Thus, we have

Hβ(π1 + · · ·+ πk|σ) =
n∑

j=1

(
|Cj |
|S|

)β

Hβ((π1)Cj
+ · · ·+ (πk)Cj

).



320 8 Applications to Databases and Data Mining

By applying Corollary 8.34 to partitions (π1)Cj
, . . . , (πk)Cj

of Cj , we can write

Hβ((π1)Cj
+ · · ·+ (πk)Cj

) =
k∑

i=1

(
|Fi ∩ Cj |
|Cj |

)β

Hβ((πi)Cj
) + Hβ(τCj

).

Thus,

Hβ(π1 + · · ·+ πk|σ)

=
n∑

j=1

k∑
i=1

(
|Fi ∩ Cj |
|S|

)β

Hβ((πi)Cj
) +

n∑
j=1

(
|Cj |
|S|

)β

Hβ(τCj
)

=
k∑

i=1

(
|Fi|
|S|

)β n∑
j=1

(
|Fi ∩ Cj |
|Fi|

)β

Hβ((πi)Fi∩Cj
) + Hβ(τ |σ)

=
k∑

i=1

(
|Fi|
|S|

)β

Hβ(πi|σFi
) + Hβ(τ |σ),

which is the desired equality. 	


Theorem 8.49. Let π, σ, τ be three partitions of the finite set S. We have

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).

Proof. By Theorem 8.41, we can write

Hβ(π|σ ∧ τ) = Hβ(π ∧ σ ∧ τ)−Hβ(σ ∧ τ)
Hβ(σ|τ) = Hβ(σ ∧ τ)−Hβ(τ).

By adding these equalities and again applying Theorem 8.41, we obtain the
equality of the theorem. 	


Corollary 8.50. Let π, σ, τ be three partitions of the finite set S. Then, we
have

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ).

Proof. By Theorem 8.49, the monotonicity of β-conditional entropy in its
second argument, and the antimonotonicity of the same in its first argument,
we can write

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|σ ∧ τ) + Hβ(σ|τ)
= Hβ(π ∧ σ|τ)
≥ Hβ(π|τ),

which is the desired inequality. 	
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Corollary 8.51. Let π and σ be two partitions of the finite set S. Then, we
have

Hβ(π ∨ σ) + Hβ(π ∧ σ) ≤ Hβ(π) + Hβ(σ).

Proof. By Corollary 8.50, we have Hβ(π|σ) ≤ Hβ(π|τ) + Hβ(τ |σ). Then, by
Theorem 8.41, we obtain

Hβ(π ∧ σ)−Hβ(σ) ≤ Hβ(π ∧ τ)−Hβ(τ) + Hβ(τ ∧ σ)−Hβ(σ),

hence
Hβ(τ) + Hβ(π ∧ σ) ≤ Hβ(π ∧ τ) + Hβ(τ ∧ σ).

Choosing τ = π ∨ σ implies immediately the inequality of the corollary. 	

The property of Hβ described in Corollary 8.51 is known as the submodu-

larity of the generalized entropy. This result generalizes the modularity of the
Gini index proven in [118] and gives an elementary proof of a result shown
in [89] concerning Shannon’s entropy.

8.5 Generalized Measures and Data Mining

The notion of a measure is important for data mining since, in a certain sense,
the support count and the support of an item sets are generalized measures.

The notion of generalized measure was introduced in [118], where general-
izations of measures of great interest to data mining are considered.

We need first to introduce four properties that apply to real-valued func-
tions defined on a lattice.

Definition 8.52. Let (L, {∧,∨}) be a lattice. A function f : L −→ R is
• submodular if f(u ∨ v) + f(u ∧ V ) ≤ f(u) + f(v),
• supramodular if f(u ∨ v) + f(u ∧ v) ≥ f(u) + f(v),
• logarithmic submodular if f(u ∨ v) · f(u ∧ v) ≤ f(u) · f(v), and
• logarithmic supramodular if f(u ∨ v) · f(u ∧ v) ≥ f(u) · f(v),
for every u, v ∈ L.

Clearly, if f is a submodular or supramodular function then af is logarithmic
submodular or supramodular, respectively, where a is a fixed positive number.

Generalized measures are real-valued functions defined on the lattice of
subsets (P(S), {∪,∩}) of a set S. The first two properties introduced in Defi-
nition 8.52 may be combined with the monotonicity or antimonotonicity prop-
erties to define four types of generalized measures.

Definition 8.53. A generalized measure or g-measure on a set S is a map-
ping m : P(S) −→ R that is either monotonic or anti-monotonic and is either
submodular or supramodular.
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Example 8.54. Let S be a finite nonempty set of nonnegative numbers, S =
{x1, x2, . . . , xn} such that x1 ≤ x2 ≤ · · · ≤ xn. Define the mapping max :
P(S) −→ R≥0 by

max(U) =

{
the largest element of U if U �= ∅,
x1 if U = ∅,

for U ∈ P(S).
Note that the definition of max is formulated to ensure that the function

is monotonic; that is, U ⊆ V implies maxU ≤ maxV .
The function max is submodular. Indeed, let U and V be two subsets of

S and let u = maxU and v = maxV . Without restricting the generality, we
may assume that u ≤ v. In this case, it is clear that max(U ∪V ) = v and that
max(U ∩ V ) ≤ maxU and max(U ∩ V ) ≤ maxV . This implies immediately
that max is submodular and therefore that max is a g-measure.

The function min is defined similarly by

min(U) =

{
the least element of U if U �= ∅,
xn if U = ∅.

The function min is antimonotonic; that is, U ⊆ V implies minV ≤ minU . If
U = ∅, then we have ∅ ⊆ V for every subset V of S and therefore minV ≤
min ∅ = xn, which is obviously true.

It is easy to show that min is a supramodular function, so it is also a
g-measure.

Let f : P(S) −→ R≥0 be a nonnegative function defined on the set of
subsets of S. The functions fneg and f co introduced in [118] are defined by

fneg(X) = f(S) + f(∅)− f(X),
f co(X) = f(S −X),

for X ∈ P(X).

Theorem 8.55. Let f : P(S) −→ R≥0 be a nonnegative function defined on
the set of subsets of S. The following statements are equivalent:
(i) f is monotonic.
(ii) fneg is antimonotonic.
(iii) fco is antimonotonic.
(iv) (fco)neg is monotonic.

Also, the following statements are equivalent:
(i) f is submodular.
(ii) fneg is supramodular.
(iii) fco is submodular.
(iv) (fco)neg is supramodular.
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We have (fneg)neg = f and (fco)co = f (the involutive property of neg
and co).

Proof. The arguments are straightforward and are left to the reader. 	

The next result (also from [118]) provides four examples of g-measures.

Theorem 8.56. Let S be a set and let B be a finite collection of subsets of
S. Consider the functions fa,supra, fm,supra, fa,sub, fm,sub defined on P(S):

fB
a,supra(X) = |{B ∈ B|X ⊆ B}|,

fB
m,supra(X) = |{B ∈ B|X̄ ⊆ B}|,
fB

a,sub(X) = |{B ∈ B|X �⊆ B}|,
fB

m,sub(X) = |{B ∈ B|X̄ �⊆ B}|,

for X ∈ P(S). Then, fB
a,supra is antimonotonic and supramodular, fB

m,supra is
monotonic and supramodular, fB

a,sub is antimonotonic and submodular, and
fB

m,sub is monotonic and submodular, so all four functions are g-measures.

Proof. Since {B ∈ B|X ∪ Y ⊆ B} ⊆ {B ∈ B|X ⊆ B}, it follows that
fB

a,supra(X ∪ Y ) ≤ fB
a,supra(X) for every X,Y ∈ P(S). Thus, fB

a,supra(X) is
antimonotonic.

Observe that

{B ∈ B|X ∩ Y ⊆ B} ⊇ {B ∈ B|X ⊆ B} ∪ {B ∈ B|X ⊆ B},
{B ∈ B|X ∪ Y ⊆ B} = {B ∈ B|X ⊆ B} ∩ {B ∈ B|X ⊆ B}.

Therefore,

fB
a,supra(X ∩ Y )
≥ |{B ∈ B|X ⊆ B} ∪ {B ∈ B|X ⊆ B}|
= |{B ∈ B|X ⊆ B}|+ |{B ∈ B|X ⊆ B}|
−|{B ∈ B|X ⊆ B} ∩ {B ∈ B|X ⊆ B}|

= |{B ∈ B|X ⊆ B}|+ |{B ∈ B|X ⊆ B}| − |{B ∈ B|X ∪ Y ⊆ B}|
= fB

a,supra(X) + fB
a,supra(Y )− fB

a,supra(X ∪ Y ),

which yields the supramodular equality.
Observe now that

fB
m,supra = (fB

a,supra)co,

fB
a,sub = (fB

a,supra)neg,

fB
a,supra = (fB

m,supra)neg.

The rest of the theorem follows immediately from Theorem 8.55. 	

We consider next two important examples of g-measures related to data-

base tables and sets of transactions, respectively. Recall that the partition
generated by the set of attributes X of a table was denoted by πX .



324 8 Applications to Databases and Data Mining

Definition 8.57. Let θ = (T,H, r) be a table and let X be a set of attributes,
X ⊆ H. The β-entropy of X, Hβ(X), is the β-entropy of the partition of the
set of tuples set(r) generated by X:

Hβ(X) = Hβ(πX).

Example 8.58. We claim that Hβ is a monotonic submodular g-measure on
the set of attributes of the table on which it is defined.

Indeed, if X ⊆ Y , we saw that πY ≤ πX , so Hβ(πX) ≤ Hβ(πY ) by the
first axiom of partition entropies. Thus, Hβ is monotonic.

To prove the submodularity, we start from the submodularity of the β-
entropy on partitions shown in Corollary 8.51. We have

Hβ(πX ∨ πY ) + Hβ(πX ∧ πY ) ≤ Hβ(πX) + Hβ(πY );

hence
Hβ(πX ∨ πY ) + Hβ(πX∪Y ) ≤ Hβ(πX) + Hβ(πY )

because πX∪Y = πX ∧ πY . Since X ∩ Y ⊆ X and X ∩ Y ⊆ Y it follows that
πX ≤ πX∩Y and πY ≤ πX∩Y , so πX ∨ πY ≤ πX∩Y . By Axiom (P1), we have
Hβ(πX ∨ πY ) ≥ Hβ(πX∩Y ), which implies

Hβ(πX∩Y ) + Hβ(πX∪Y ) ≤ Hβ(πX) + Hβ(πY ),

which is the submodularity of the g-measure Hβ .

Example 8.59. Let T be a transaction data set over a set of items I as in-
troduced in Definition 7.1. The functions suppcountT and suppT introduced
in Definition 7.3 are antimonotonic, supramodular g-measures over P(I). The
antimonotonicity of these functions was shown in Theorem 7.6.

Let K and L be two item sets of T . If k is the index of a transaction
such that either K ⊆ T (k) or L ⊆ T (k), then it is clear that K ∩ L ⊆ T (k).
Therefore, we have

suppcountT (K ∩ L) ≥ |{k | K ⊆ T (k)} ∪ {k | L ⊆ T (k)}|.

This allows us to write

suppcountT (K ∩ L)
= |{k | K ∩ L ⊆ T (k)}|
≥ |{k | K ⊆ T (k)} ∪ {k | L ⊆ T (k)}|
= |{k | K ⊆ T (k)}|+ |{k | L ⊆ T (k)}|
−|{k | K ⊆ T (k)} ∩ {k | K ⊆ T (k)}|

= suppcountT (K) + suppcountT (L)− suppcountT (K ∪ L)

for every K,L ∈ P(I), which proves that suppcountT is supramodular. The
supramodularity of suppT follows immediately.
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The definition of conditional entropy of partitions allows us to extend this
concept to attribute sets of tables.

Definition 8.60. Let θ = (T,H, r) be a table and let X and Y be two attribute
sets of this table. The β-conditional entropy of X,Y is defined by

Hβ(X|Y ) = Hβ(πX |πY ).

Properties of conditional entropies of partitions can now be easily trans-
ferred to conditional entropies of attribute sets. For example, Theorem 8.41
implies

Hβ(Y |X) = Hβ(XY )− Hβ(X).

8.6 Differential Constraints

Differential constraints have been introduced in [119]. They apply to real-
valued functions defined over the set of subsets of a set. Examples of such
functions are abundant in databases and data mining. For example, we have
introduced the entropy of attribute sets mapping sets of attributes into the
set of real numbers and the support count of sets of items mapping such sets
into natural numbers. Placing restrictions on such functions help us to better
express the semantics of data.

Definition 8.61. Let C be a collection of subsets of a set S and let f :
P(S) −→ R be a function. The C-differential of f is the function DC

f :
P(S) −→ R defined by

DC
f (X) =

∑
D⊆C

(−1)|D|f
(
X ∪

⋃
D
)

for X ∈ P(S).
The density function of f is the function df : P(S) −→ R defined by

df (X) =
∑

X⊆U⊆S

(−1)|U |−|X|f(U) (8.8)

for X ∈ P(S).

Recall that in Example 4.116 we have shown that the Möbius function of
a poset (P(S),⊆) is given by

μ(X,U) =

{
(−1)|U |−|X| if X ⊆ U,
0 otherwise,

for X,U ∈ P(S). Therefore, the density df can be written as
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df (X) =
∑

X⊆U⊆S

μ(X,U)f(U)

for X,U ∈ P(S), which implies

f(X) =
∑

X⊆U⊆S

df (U) (8.9)

by the Möbius dual inversion theorem (Theorem 4.115).
The density of f can be expressed also as a C-differential. For X ∈ P(S),

define the collection CX as CX = {{y}|y �∈ X}. Then, we can write

DCX

f (X) =
∑

D⊆CX

(−1)|D|f
(
X ∪

⋃
D
)

=
∑

D⊆S−X

(−1)|D|f(X ∪D)

=
∑

X⊆U⊆S

(−1)|U |−|X|f(U).

In the last equality, we denoted U = X ∪D. Since D is a subset of S −X, we
have immediately D = U −X, which justifies the last equality. This allows us
to conclude that df (X) = DCX

f (X) for X ∈ P(S).

Example 8.62. Let S be a finite set and let f : P(S) −→ R. If C = ∅, we
have D∅(X) = f(X). Similarly, if C is a one-set collection C = {Y }, then
DC(X) = f(X) − f(X ∪ Y ). When C = {Y,Z}, we have DC(X) = f(X) −
f(X ∪ Y )− f(X ∪ Z) + f(X ∪ Y ∪ Z) for X ∈ P(S).

Example 8.63. Let S = {a, b, c, d} and let f : P(S) −→ R be a function. For
X = {a, b}, we have CX = {{c}, {d}}. Thus, df ({a, b}) = D

{c},{d}
f ({a, b}).

Note that the collections of subsets of S included in the collection {{c}, {d}}
are ∅, {{c}}, {{d}}, and {{c}, {d}}. Therefore,

D
{{c},{d}}
f ({a, b}) = f({a, b})− f({a, b, c})− f({a, b, d}) + f({a, b, c, d}),

which equals df ({a, b}), as computed directly from Equality (8.8).

Definition 8.64. Let C be a collection of subsets of a set S. A subset W of
S is a witness set of C if W ⊆

⋃
C and X ∩W �= ∅ for every X ∈ C.

The collection of all witness sets for C is denoted by W(C).

Observe that W(∅) = {∅}.

Example 8.65. Let S = {a, b, c, d} and let C = {{b}, {c, d}} be a collection of
subsets of S. The collection of witness sets of C is
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W(C) = {{b, c}, {b, d}, {b, c, d}}.

For the collection D = {{b, c}, {b, d}}, we have

W(D) = {{b}, {b, c}, {b, d}, {c, d}, {b, c, d}}.

Definition 8.66. Let C be a collection of subsets of S and let X be a subset
of S. The decomposition of C relative to X is the collection L[X,C] of subsets
of S defined as a union of intervals by

L[X,C] =
⋃

W∈W(C)

[X,W ],

where W = S −W .

Example 8.67. The decomposition of the collection C = {{b}, {c, d}} consid-
ered in Example 8.65 relative to the set X = {a} is given by

L[X,C] = [{a}, {b, c}] ∪ [{a}, {b, d}] ∪ [{a}, {b, c, d}]
= [{a}, {a, d}] ∪ [{a}, {a, c}] ∪ [{a}, {a}]
= {{a}, {a, d}, {a, c}}.

Similarly, we can write for the collection D = {{b, c}, {b, d}}

L[X,D]
= [{a}, {b}] ∪ [{a}, {b, c}] ∪ [{a}, {b, d}] ∪ [{a}, {c, d}] ∪ [{a}, {b, c, d}]
= [{a}, {a, c, d}] ∪ [{a}, {a, d}] ∪ [{a}, {a, c}] ∪ [{a}, {a, b}] ∪ [{a}, {a}]
= {{a}, {a, c}, {a, d}, {a, c, d}, {a, b}}

Example 8.68. We have L[X, ∅] =
⋃

W∈W(∅)[X,W ] = [X,S] because W(∅) =
{∅}. Consequently, L[∅, ∅] = P(S) for every set S.

Note that if X �= ∅, then W({X}) = P(X)− {∅}. Therefore, L[X, {X}] =⋃
W∈W(C)[X,W ] = ∅ because there is no set T such that X ⊆ T ⊆W .

Theorem 8.69. Let S be a finite set, X,Y ∈ P(S), and let C be a collection
of subsets of S. We have

L[X,C] = L[X,C ∪ {Y }] ∪ L[X ∪ Y,C].

Proof. We begin the proof by showing that L[X,C ∪ {Y }] ⊆ L[X,C]. Let
U ∈ L[X,C∪{Y }]. There is a witness setW for C∪{Y } such thatX ⊆ U ⊆W .

The set W ′ = W ∩
⋃

C is a witness set for C. Indeed, we have W ′ ⊆
⋃

C,
and for every set Z ∈ C we haveW ′∩Z �= ∅. SinceW ′ ⊆W , we haveW ⊆W ′,
so X ⊆ U ⊆W ′. Therefore, U ∈ L[X,C].

Next, we show that L[X ∪ Y,C] ⊆ L[X,C]. Let V ∈ L[X ∪ Y,C], so V ∈
[X ∪ Y,W ] for some witness set of C. Since [X ∪ Y,W ] ⊆ [X,W ], the desired
conclusion follows immediately. Thus, we have shown that



328 8 Applications to Databases and Data Mining

L[X,C ∪ {Y }] ∪ L[X ∪ Y,C] ⊆ L[X,C].

To prove the converse inclusion, let U ∈ L[X,C]. There is a witness set W
of C such that X ⊆ U ⊆ W . Depending on the relative positions of the sets
U and Y , we can distinguish three cases:
(i) Y ⊆ U ;
(ii) Y �⊆ U and Y ∩W �= ∅;
(iii) Y �⊆ U and Y ∩W = ∅.
Note that the first condition of the second case is superfluous because Y ∩W �=
∅ implies Y �⊆ U .

In the first case, we have U ∈ L[X ∪ Y,C].
In Case (ii),W is a witness set for C∪{Y }, and therefore U ∈ L[X,C∪{Y }].
Finally, in the third case, defineW1 = W∪(Y −U). We haveW1 ⊆

⋃
C∪Y .

Since every member of C has a nonempty intersection withW1 and Y ∩W1 �= ∅,
it follows that W1 is a witness set of C ∪ {Y }. Note that U ⊆ W1. Therefore
U ∈ L[X,C ∪ {Y }]. 	


The connection between differentials and density functions is shown in the
next statement.

Theorem 8.70. Let S be a finite set, X ∈ P(S) and let C be a collection of
subsets of S. If f : P(S) −→ R, then

DC
f (X) =

∑
{df (U) | U ∈ L[X,C]}.

Proof. By Definition 8.61, the C-differential of f is

DC
f (X) =

∑
D⊆C

(−1)|D|f
(
X ∪

⋃
D
)

=
∑
D⊆C

(−1)|D|
∑

X∪
⋃

D⊆U⊆S

df (U),

(by Equality 8.9)

=
∑

X⊆U⊆S

df (U)
∑

D⊆{Y ∈C |Y ⊆U}
(−1)|D|

=
∑
{df (U) | X ⊆ U ⊆ S and {Y ∈ D | Y ⊆ U} = ∅}.

	

Constraints can be formulated on real-valued functions defined on collec-

tion subsets using differentials of functions or density functions. Both types
of constraints have been introduced and studied in [120, 119, 118].

Definition 8.71. Let S be a set, C a collection of subsets of S, and f : P(S) →
R a function.

The function f satisfies the differential constraint X � C if DC
f (X) = 0.

The function f satisfies the density constraint X � C if df (U) = 0 for
every U ∈ L[X,C].
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By Theorem 8.70, if f satisfies the density constraint X � C, then f
satisfies the differential constraint X � C. If the density of f takes only
nonnegative values (or only nonpositive values), then, by the same theorem,
the reverse also holds. However, in general, this is not true, as the next example
shows. Thus, differential constraints are weaker than density constraints.

Example 8.72. Let S = {a} and let f : P(S) → R be defined by f(∅) = 0
and f({a}) = 1. Observe that D∅

f (∅) = f(∅) = 0, so f satisfies the differential
constraint ∅ � ∅.

Observe that C∅ = {{a}} and C{a} = ∅. Therefore, we have

df (∅) = D
C∅
f (∅) = f(∅)− f({a}) = −1,

df ({a}) = D
C{a}
f ({a}) = f({a}) = 1.

On the other hand, L[∅, ∅] = P(S) by Example 8.68, and f fails to satisfy the
density constraint ∅ � ∅.

Example 8.73. Consider the β-entropy Hβ defined on the set of subsets of the
heading of a table θ = (T,H, r). We saw that Hβ is a monotonic, submodular
g-measure on P(H).

We claim that Hβ satisfies the differential constraint X � {Y } if and only
if the table θ satisfies the functional dependency X → Y .

By Example 8.62, Hβ satisfies the differential constraint X � {Y }, that
is, D{Y }

f (X) = 0 if and only if Hβ(X) = Hβ(X ∪ Y ). This is equivalent to
Hβ(πXY ) = Hβ(πX) or to Hβ(πX ∧ πY ) = Hβ(πX) by Corollary 8.4. This
equality implies: πX ≤ πY by Corollary 8.42, which shows that θ satisfies the
functional dependency X → Y .

The observation contained in this example generalizes the result of Sayrafi
([118]) proven for the Gini index and the result contained in [93, 87, 33] that
involves the Shannon entropy.

Note also that this shows that

Hβ(Y |X) = −D{Y }
f (X)

for X,Y ∈ P(H).

Example 8.74. Let S = {a, b, c}. To compute L[{a}, {{b}}], note that

W({{b}}) = {{b}}.

Thus, L[{a}, {{b}}] = [{a}, {a, c}] = {{a}, {a, c}}. In general, we have for
x, y, z ∈ S that are pairwise distinct

L[{x}, {{y}}] = {{x}, {x, z}}.

Consider now a function f : P(S) → R such that



330 8 Applications to Databases and Data Mining

f(X) =

{
2 if X ∈ {∅, {c}},
1 otherwise.

We have

df ({c}) = f({c})− f({a, c})− f({b, c}) + f({a, b, c}) = 1,
df ({a, b, c}) = f({a, b, c}) = 1.

For X �∈ {{c}, {a, b, c}}, we have df (X) = 0. For example,

df ({b}) = f({b})− f({a, b})− f({b, c}) + f({a, b, c}) = 0,
df ({b, c}) = f({b, c})− f({a, b, c}) = 0.

This shows that f satisfies the density constraints {a} � {{b}} and {b} �
{{c}} but fails to satisfy {c} � {{a}} because L[{c}, {{a}}] consists of {c}
and {b, c}.

Exercises and Supplements

1. Let H = A1 · · ·An be a set of n attributes. Prove that |FD(H)| = 4n and
that there exist 4n − 3n nontrivial functional dependencies in FD(H).

2. How many functional dependency schemas can be defined on a set H that
contains n attributes?

3. Consider the table
T

A B C D E
a1 b1 c1 d1 e1
a1 b1 c2 d2 e2
a1 b1 c2 d3 e2

Show several functional dependencies that this table violates.
4. Let θ = (T,H, r) be a table of a table schema (H,F ) such that r contains

no duplicate rows. Prove that the set of attributes K is a key of θ if
and only if clF (K) = H and for every proper subset L of K we have
clF (L) ⊂ clF (K). Formulate and prove a similar statement for reducts.

5. Let (S, F ) be a functional dependency schema. Prove that if A is an at-
tribute in H that does not occur on the right member of any functional
dependency, then A is a member of the core of the schema.

6. Let S = (ABCDE, {AB → D,BD → AE,C → B}) be a functional
dependency schema. Is the functional dependency ABC → DE a logical
consequence of F?

7. Let S = (A1 . . . AnB1 · · ·Bn, F ) be a table schema, where F = {Ai →
Bi, Bi → Ai | 1 ≤ i ≤ n}. Prove that any table of this schema has 2n

reducts.
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8. Let S be a finite set. Prove that for every partition π ∈ PART(S) we have
Hβ(αS |π) = Hβ(αS)−Hβ(π).

9. Let π = {B1, . . . , Bm} be a partition of the finite set S, where |S| = n. Use
Jensen’s inequality (Theorem B.19) applied to suitable convex functions
to prove the following inequalities:

a) for β > 1, 1
mβ−1 ≤

∑m
i=1

(
|Bi|
|S|

)β

;

b) logm ≥ −
∑m

i=1
|Bi|
|S| log |Bi|

|S| ;

c) me
1
m ≤

∑m
i=1 e

|Bi|
|S| .

Solution: Choose, in all cases p1 = · · · = pm = 1
m . The needed convex

functions are xβ with β > 1, x log x, and ex, respectively.
10. Use Supplement 9 to prove that if β > 1, then Hβ(π) ≤ 1−m1−β

1−21−β .
11. Prove that if K is a reduct of a table θ = (T,H, r), then Hβ(K) =

min{Hβ(L) | L ∈ P(H)}.

If L = (L, {∧,∨}) is a lattice, a mapping f : L −→ R is submodular
(supramodular) if f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y) (f(x ∨ y) + f(x ∧ y) ≥
f(x) + f(y)).

12. Let L = (L, {∧,∨}) be a lattice and let f : L −→ R be an antimonotonic
mapping. Prove that the following statements are equivalent:
a) f is submodular.
b) f(z) + f(x ∧ y) ≤ f(x ∧ z) + f(z ∧ y) for x, y, z ∈ L.
Solution: To prove that (i) implies (ii), apply the submodular inequal-

ity to x ∧ z and z ∧ y. This yields

f((x ∧ z) ∨ (z ∧ y)) + f(x ∧ y ∧ z) ≤ f(x ∧ z) + f(z ∧ y).

By the subdistributive inequality (5.6) and the anti-monotonicity of f , we
have

f((x ∧ z) ∨ (z ∧ y)) ≤ f(z ∨ (x ∧ y)) ≤ f(z).
Since f(x ∧ y) ≤ f(x ∧ y ∧ z), the desired inequality follows immediately.

The reverse implication follows immediately by replacing z by x∨y and
using the absorption properties of the lattice.

13. Let L = (L, {∧,∨}) be a lattice and let f : L −→ R be an anti-monotonic
mapping. Prove that the following statements are equivalent:
a) f is supramodular.
b) f(z) + f(x ∨ y) ≥ f(x ∨ z) + f(z ∨ y) for x, y, z ∈ L.

14. Let T : {1, . . . , n} −→ P(I) be a transaction data set on the set of items
I. Prove that if f = suppcountT , then for the density df we have df (K) =
|{i | T (i) = K}| for every K ∈ P(I).

15. Let T : {1, . . . , n} −→ P(I) be a transaction data set on the set of items
I and let C be a collection of sets of items. Prove that DC

suppcount(K) =∑
{dsuppcount(U) | U ∈ L[K,C]}.
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9

Rough Sets

9.1 Introduction

Rough sets are approximative descriptions of sets that can be achieved using
equivalences (or partitions). This fertile idea was introduced by the Polish
mathematician Z. Pawlak and has generated a large research effort in math-
ematics and computer science due to its applications.

Unless stated otherwise, all sets in this chapter are finite.

9.2 Approximation Spaces

Definition 9.1. Let S be a set. An approximation space on S is a pair (S, ρ),
where ρ is an equivalence relation defined on the set S.

If S is clear from the context, we will refer to (S, ρ) just as an approxima-
tion space.

If (S, ρ) is an approximation space defined on S and U is a subset of S,
then the ρ-degree of membership of an element x of S in U is the number

mρ(x,U) =
|U ∩ [xρ]|
|[x]ρ|

.

Clearly, we have 0 ≤ mρ(x,U) ≤ 1.

Example 9.2. Let S be the set of natural numbers {0, 1, . . . , 12} and let ρ
be the equivalence ≡5 ∩(S × S). The equivalence classes of ρ are {0, 5, 10},
{1, 6, 11}, {2, 7, 12}, {3, 8}, and {4, 9}.

If E is the subset of even members of S, then we have mρ(2, E) =
|E∩{2,7,12}|
|{2,7,12}| = 2

3 and mρ(4, E) = |E∩{4,9}|
|{4,9}| = 1

2 .

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 9, c© Springer-Verlag London Limited 2008



334 9 Rough Sets

Definition 9.3. Let (S, ρ) be an approximation space and let U be a subset
of S. The ρ-lower approximation of U is the set obtained by taking the union
of all ρ-equivalence classes included in the set U :

lapρ(U) =
⋃
{[x]ρ ∈ S/ρ | [x]ρ ⊆ U}.

The ρ-upper approximation of U is the set obtained by taking the union of
ρ-equivalence classes that have a nonempty intersection with the set U :

uapρ(U) =
⋃
{[x]ρ ∈ S/ρ | [x]ρ ∩ U �= ∅}.

The ρ-boundary of U is the set

bdρ(U) = uapρ(U)− lapρ(U).

If x ∈ lapρ(U), then x ∈ U and mρ(x,U) = 1. Thus, lapρ(U) is a strong
approximation of the set U that consists of those objects of S that can be
identified as members of U . This set is also known as the ρ-positive region of
U and denoted alternatively by POSρ(U).

On the other hand, if x ∈ uapρ(U), then x may or may not belong to U .
Thus, uapρ(U) contains those objects of S that may be members of U and we
have 0 ≤ mρ(x,U) ≤ 1. For x ∈ S − uapρ(U) we have x �∈ U . This justifies
naming the set S − uapρ(U) the ρ-negative region of U .

Note that, in general, lapρ(U) ⊆ uapρ(U) for any set U .
The equivalence ρ shall be used interchangeably with the partition πρ in

the notations introduced in Definition 9.3. For example, we can write

lapρ(U) =
⋃
{B ∈ πρ | B ⊆ U}

and
uapρ(U) =

⋃
{B ∈ πρ | B ∩ U �= ∅}.

Definition 9.4. Let (S, ρ) be an approximation space. A set U , U ⊆ S is
ρ-rough if bdρ(U) �= ∅ and is ρ-crisp otherwise.

Example 9.5. Let S be a set and ρ be an equivalence such that the correspond-
ing partition π consists of 12 blocks, B1, . . . , B12 (see Figure 9.1). For the set
U shown in this figure, we have

lapρ(U) = {B5, B12},
uapρ(U) = {B1, B2, B4, B5, B6, B7, B8, B9, B10, B12},
bdρ(U) = {B1, B2, B4, B6, B7, B8, B9, B10}.

Thus, U is a ρ-rough set.
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B9

B8

B2

B3

B4

B5

B6

B7

B10

U
B12

B11

B1

Fig. 9.1. Lower and upper approximations of set U .

The notion of a ρ-saturated set was introduced in Chapter 1. The next
statement links this notion to the notion of a ρ-crisp set.

Theorem 9.6. Let (S, ρ) be an approximation space. A subset U of S is ρ-
crisp if and only if ρ is a πρ-saturated set.

Proof. Let U be a ρ-crisp set. Since bdρ(U) = uapρ(U)−lapρ(U) = ∅, it follows
that uapρ(U) = lapρ(U). Thus, [x]ρ∩U �= ∅ implies [x]ρ ⊆ U . Clearly, if u ∈ U ,
then u ∈ [u]ρ ∩ U and therefore [u]ρ ⊆ U , which implies

⋃
u∈U [u]ρ ⊆ U . The

reverse inclusion is obvious, so
⋃

u∈U [u]ρ = U , which means that U is ρ-
saturated.

Conversely, suppose that U is ρ-saturated; that is,
⋃

u∈U [u]ρ = U . If x ∈
uapρ(U), then [x]ρ ∩U �= ∅, which means that [x]ρ ∩ [u]ρ �= ∅ for some u ∈ U .
Since two equivalence classes that have a nonempty intersection must be equal,
it follows that [x]ρ = [u]ρ ⊆ U , so x ∈ lapρ(U). 	


Theorem 9.7. The following statements hold in an approximation space
(S, ρ):
(i) lapρ(∅) = uapρ(∅) = ∅ and lapρ(S) = uapρ(S) = S,
(ii) lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ),
(iii) uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),
(iv) lapρ(U ∪ V ) ⊇ lapρ(U) ∪ lapρ(V ),
(v) uapρ(U ∩ V ) ⊆ uapρ(U) ∩ uapρ(V ),
(vi) lapρ(U c) =

(
uapρ(U)

)c and uapρ(U c) =
(
lapρ(U)

)c,
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(vii) lapρ(lapρ(U)) = uapρ(lapρ(U)) = lapρ(U), and
(viii) uapρ(uapρ(U)) = lapρ(uapρ(U)) = uapρ(U)

for every U, V ∈ P(S).

Proof. We leave the verification of these statements to the reader. 	


Corollary 9.8. Let (S, ρ) be an approximation space and let U and V be two
subsets of S. If U ⊆ V , then lapρ(U) ⊆ lapρ(V ) and uapρ(U) ⊆ uapρ(V ).

Proof. If U ⊆ V , we have U = U ∩V , so by Part (iii) of Theorem 9.7, we have
lapρ(U) = lapρ(U) ∩ lapρ(V ), which implies lapρ(U) ⊆ lapρ(V ). The second
part of this statement follows from Part (iv) of the same theorem. 	


Definition 9.9. Let (S, ρ) be an approximation space. A subset U of S is
ρ-definable if lapρ(U) �= ∅ and uapρ(U) �= S.

If U is not ρ-definable, then we say that U is ρ-undefinable. In this case,
three cases may occur:
1. If lapρ(U) = ∅ and uapρ(U) �= S, then we say that U is internally ρ-

undefinable.
2. If lapρ(U) �= ∅ and uapρ(U) = S, then U as an externally ρ-undefinable

set.
3. If lapρ(U) = ∅ and uapρ(U) = S, then U is a totally ρ-undefinable set.

Definition 9.10. Let (S, ρ) be a finite approximation space on S. The accu-
racy of the ρ-approximation of U is the number

accρ(U) =
|lapρ(U)|
|uapρ(U)| .

It is clear that 0 ≤ accρ(U) ≤ 1. If accρ(U) = 1, U is a ρ-crisp set; otherwise
(that is, if accρ(U) < 1), U is ρ-rough.

Example 9.11. Let S be the set of natural numbers {0, 1, . . . , 12} and let ρ be
the equivalence ≡5 ∩(S×S) considered in Example 9.2. For the set E of even
members of S, we have uapρ(E) = ∅ and lapρ(E) = S, so the set E is a totally
ρ-undefinable set.

On the other hand, for the subset of perfect squares in S, P = {1, 4, 9},
we have

lapρ(P ) = {4, 9},
uapρ(P ) = {1, 4, 9, 6, 11}.

Thus, the accuracy of the ρ-approximation of P is accρ(P ) = 0.4.

The notion of a ρ-positive subset of a set is extended to equivalences as
follows.
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Definition 9.12. Let S be a set, ρ and ρ′ be two equivalences on S, and
π = {B1, . . . , Bm}, σ = {C1, . . . , Cn} the partitions that correspond to ρ and
ρ′, respectively. The positive set of ρ′ relative to ρ is the subset of S defined
by

POSρ(ρ′) =
n⋃

j=1

lapρ(Cj).

Theorem 9.13. Let S be a set, and ρ and ρ′ two equivalences on S. We have
ρ ≤ ρ′ if and only if POSρ(ρ′) = S.

Proof. Let π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} be the partitions that
correspond to ρ and ρ′, respectively.

Suppose that ρ ≤ ρ′. Then, each block Cj of σ is a union of blocks of π,
so lapρ(Cj) = Cj . Therefore, we have

POSρ(ρ′) =
n⋃

j=1

lapρ(Cj) =
n⋃

j=1

Cj = S.

Conversely, suppose that POSρ(ρ′) = S, that is,
⋃n

j=1 lapρ(Cj) = S. Since
we have lapρ(Cj) ⊆ Cj for 1 ≤ j ≤ n, we claim that we must have lapρ(Cj) =
Cj for every j, 1 ≤ j ≤ n. Indeed, if we have a strict inclusion lapρ(Cj0) ⊂
Cj0 for some j0, this implies

⋃n
j=1 lapρ(Cj) ⊂

⋃n
j=1 Cj = S, which would

contradict the equality
⋃n

j=1 lapρ(Cj) = S. Therefore, we have lapρ(Cj) = Cj

for every j, which shows that each block of σ is a union of blocks of π.
Consequently, ρ ≤ ρ′. 	


9.3 Decision Systems and Decision Trees

Classifiers are algorithms that place objects in certain classes based on charac-
teristic features of those objects. Frequently classifiers are constructed starting
from a set of objects known as a training set; for each object of the training
set the class of the object is known and the classifier can be regarded as a
function that maps as well as possible the objects of a training set to their
respective classes.

It is desirable that the classifiers constructed from a training set do a
reliable job of placing objects that do not belong to the training set in their
correct classes. When the classifier works well on the training set but does
a poor job of classifying objects outside the training set, we say that the
classifier overfits the training set.

Decision systems use tables to formalize the notion of a training set. The
features of the objects are represented by the attributes of the table; a special
attribute (called a decision attribute) represents the class of the objects.
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Definition 9.14. A decision system is a pair D = (θ,D), where θ = (T,H, r)
and D is a special attribute of H called a decision attribute. The attributes of
H that are distinct from D are referred to as conditional attributes, and the
set of conditional attributes of H will be denoted by Hc.

Clearly, Hc is obtained by removing D from H.

Example 9.15. The decision system considered in this example is based on a
data set that is well-known in the machine-learning literature (see [99, 110]).
The heading H and domains of the attributes are specified below:

Attribute Domain
Outlook {sunny, overcast, rain}
Temperature {hot,mild, cool}
Humidity {normal,high}
Wind {weak, strong}

The decision attribute is PlayTennis; this attribute has the domain {yes,no}.
The sequence r consists of 14 tuples, t1, . . . , t14, shown in Table 9.1:

Table 9.1. The content of the decision system.

Outlook Temperature Humidity Wind PlayTennis
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 rain hot normal weak yes
14 rain mild high strong no

The partitions of the form πA (where A is an attribute) are

πOutlook = {{1, 2, 8, 9, 11}, {3, 7, 12}, {4, 5, 6, 10, 13, 14}},
πTemperature = {{1, 2, 3, 13}, {4, 8, 10, 11, 12, 14}, {5, 6, 7, 9}},
πHumidity = {{1, 2, 3, 4, 8, 12, 14}, {5, 6, 7, 9, 10, 11, 13}},

πWind = {{1, 3, 4, 5, 8, 9, 10, 13}, {2, 6, 7, 11, 12, 14}},
πPlayTennis = {{1, 2, 6, 8, 14}, {3, 4, 5, 7, 9, 10, 11, 12, 13}}.
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Let D = (θ,D) be a decision system, where θ = (T,H, r) and r =
(t1, . . . , tn). The decision function of D is the function δD : {1, . . . , n} −→
Dom(D) given by

δD(i) = {d ∈ DomD | (i, j) ∈ εHc and tj [D] = d},

where εHc is the indiscernibility relation defined by the set of conditional
attributes of D. Equivalently, we can write

δD(i) = {tj [D] | j ∈ [i]εHc }

for 1 ≤ i ≤ n.
If |δD(i)| = 1 for every i, 1 ≤ i ≤ n, then D is a deterministic (consistent)

decision system; otherwise, D is a nondeterministic (inconsistent) decision
system. In other words, a decision system D is consistent if the values of the
components of a tuple that correspond to the conditional attributes determine
uniquely the value of the tuple for the decision attribute.

If there exists d ∈ Dom(D) such that δD(i) = {d} for every i, 1 ≤ i ≤ n,
then D is a pure decision system.

Definition 9.16. Let D = (θ,D) be a decision system, where θ = (T,H, r)
and |r| = n. The classification generated by D is the partition πD of the set
{1, . . . , n}.

If Bd is the block of πD that corresponds to the value d of Dom(D), we
refer to Bd as the d-decision class of D.

Note that the partition πD contains a block for every element of Dom(D) that
occurs in set(r[D]).

If X is a set of attributes, we denote the functions uapεX and lapεX by X
and X, respectively.

Example 9.17. The decision classes of the decision system D of Example 9.15
are

Bno = {1, 2, 6, 8, 14},
Byes = {3, 4, 5, 7, 9, 10, 11, 12, 13}.

Definition 9.18. Let U be a set of conditional attributes of D = (θ,D), where
θ = (T,H, r) and |r| = n. The U -positive region of the decision system D is
the set

POSU (D) =
⋃
{U(Bd) | d ∈ set(r[D])}.

The tuples whose indexes occur in POSHc
(D) can be unambiguously

placed in the d-decision classes of D.
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Example 9.19. For the decision system D of Example 9.15, we have

POSOutlook(D) = {3, 7, 12},
POSTemperature(D) = POSHumidity(D) = POSWind(D) = ∅.

Thus, using the value of a single attribute, we can reach a classification deci-
sion only for the tuples t3, t7,and t12 (based on the Outlook attribute).

Next, we attempt to classify tuples using partitions generated by two at-
tributes. We have six such partitions:

πOutlook,Temperature = {{1, 2}, {3}, {4, 10, 14}, {5, 6},
{7}, {8, 11}, {9}, {12}, {13}},

πOutlook,Humidity = {{1, 2, 8}, {3, 12}, {4, 14}, {5, 6, 10, 13},
{7}, {9, 11}},

πOutlook,Wind = {{1, 8, 9}, {2, 11}, {3},
{4, 5, 10, 13}, {6, 14}, {7, 12}},

πTemperature,Humidity = {{1, 2, 3}, {4, 8, 12, 14}, {5, 6, 7, 9},
{10, 11}, {13}},

πTemperature,Wind = {{1, 3, 13}, {2}, {4, 8, 10},
{5, 9}, {6, 7}, {11, 12, 14}},

πHumidity,Wind = {{1, 3, 4, 8}, {2, 12, 14}, {5, 9, 10, 13},
{6, 7, 11}},

and their corresponding positive regions are

POSOutlook,Temperature(D) = {1, 2, 3, 7, 9, 13},
POSOutlook,Humidity(D) = {1, 2, 3, 7, 8, 9, 11, 12},

POSOutlook,Wind(D) = {3, 4, 5, 6, 7, 10, 12, 13, 14},
POSTemperature,Humidity(D) = {10, 11, 13},

POSTemperature,Wind(D) = {2, 5, 9},
POSHumidity,Wind(D) = {5, 9, 10, 13}.

There are four partitions generated by three attributes:

πOutlook,Temperature,Humidity = {{1, 2}, {3}, {4, 14}, {5, 6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}},

πOutlook,Temperature,Wind = {{1}, {2}, {3}, {4, 10}, {5}, {6},
{7}, {8}, {9}, {11}, {12}, {13}, {14}},

πOutlook,Humidity,Wind = {{1, 8}, {2}, {3}, {4}, {5, 10, 13},
{6}, {7}, {9}, {11}, {12}, {14}},

πTemperature,Humidity,Wind = {{1, 3}, {2}, {4, 8}, {5, 9},
{6, 7}, {10}, {11}, {12, 14}, {13}}.
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Their positive regions are

POSOutlook,Temperature,Humidity(D) = {1, 2, 3, 7, 8, 9, 10, 11, 12, 13},
POSOutlook,Temperature,Wind(D) = set(H),

POSOutlook,Humidity,Wind(D) = set(H),
POSTemperature,Humidity,Wind(D) = {2, 5, 9, 10, 11, 13}.

This computation shows that a classification decision can be reached for ev-
ery tuple starting from its components on the projection on either the set
Outlook, Temperature, Wind or the set Outlook, Humidity, Wind.

Finally, note that D is a deterministic system because πset(Hc) = αset(Hc).

Theorem 9.20. Let D = (θ,D) be a decision system, where θ = (T,H, r)
and |r| = n. The following statements are equivalent:
(i) D is deterministic;
(ii) πHc ≤ πD;
(iii) POSHc

(D) = {1, . . . , n}.

Proof. (i) implies (ii): Suppose that D is deterministic. Then, if two tuples u
and v in r are such that u[Hc] = v[Hc], then u[D] = v[D]. This is equivalent
to saying that πHc ≤ πD.

(ii) implies (iii): This implication follows immediately from Theorem 9.13.
(iii) implies (i): Suppose that POSHc

(D) = {1, . . . , n}, that is,⋃
{Hc(Bd) | d ∈ set(r[D])} = {1, . . . , n}. (9.1)

Note that Hc(Bd) = lapεHc (Bd) ⊆ Bd. Therefore, we have lapεHc (Bd) = Bd

for every d ∈ set(r[D]) because if the inclusion were strict for any of the sets
Bd, then Equality 9.1 would be violated. Thus, each block Bd is a union of
blocks of the partition πHc . In other words, each equivalence class of εHc is
included in a block Bd, which means that for every j ∈ [i]εHc we have tj [D] = d
and the set δD(i) contains a single element. Thus, D is deterministic. 	


Next, we discuss informally a classification algorithm that makes use of
decision systems. This algorithm is recursive and begins with the selection
of a conditional attribute (referred to as a splitting attribute) by applying
a criterion that is specific to the algorithm. The algorithm halts when it
applies to a pure decision system (or to a decision system where a minimum
percentage of tuples have the same decision value).

The splitting attribute is chosen here as one of the attributes whose pos-
itive region has the largest number of elements. This choice is known as a
splitting criterion. The table of the decision system is split into a number of
tables such that each new table is characterized by a value of the splitting
attribute. Thus, we obtain a new set of decision systems, and the algorithm
is applied recursively to the new decision systems. The process must stop be-
cause the tables become smaller with each split; its result is a tree of decision
systems known as a decision tree.
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Example 9.21. As we saw in Example 9.19, a classification decision can be
reached immediately for the tuples t3, t7, t12, which are characterized by the
condition Outlook = ’overcast’.

Define the tables

θ0 = (θ where Outlook = ’sunny’)[K],
θ1 = (θ where Outlook = ’overcast’)[K],
θ2 = (θ where Outlook = ’rain’)[K],

where
K = Temperature Humidity Wind PlayTennis

is the heading obtained by dropping the Outlook attribute and the decision
systems Di = (θi,D) for 0 ≤ i ≤ 3.

Note that the decision system D1 is pure because the tuples of θ1 belong
to the same PlayTennis-class as shown in Table 9.2.

Table 9.2. The table θ1.

Temperature Humidity Wind PlayTennis
3 hot high weak yes
7 cool normal strong yes
12 mild high strong yes

For the remaining systems

D0 = (θ0,PlayTennis) and D2 = (θ2,PlayTennis),

we have the tables shown in Tables 9.3(a) and (b).

The same process is now applied to the decision systems D0 and D2. The
positive regions are:

POSTemperature(D0) = {1, 2, 9},
POSHumidity(D0) = {1, 2, 8, 9, 11},
POSWind(D0) = ∅,
POSTemperature(D2) = {13},
POSHumidity(D2) = ∅,
POSWind(D2) = {4, 5, 10, 13, 6, 14}.

Thus, the splitting attribute for D0 is Humidity ; the splitting attribute for
D2 is Wind.

The decision system D0 yields the decision systems

D00 = (θ00, P layTennis) and D01 = (θ01, P layTennis),

where θ00 and θ01 are given by
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Table 9.3. The tables θ0 and θ2.

Temperature Humidity Wind PlayTennis
1 hot high weak no
2 hot high strong no
8 mild high weak no
9 cool normal weak yes
11 mild normal strong yes

(a)

Temperature Humidity Wind PlayTennis
4 mild high weak yes
5 cool normal weak yes
6 cool normal strong no
10 mild normal weak yes
13 hot normal weak yes
14 mild high strong no

(b)

θ00 = (θ0 where Humidity = ’high’)[K0],
θ01 = (θ0 where Humidity = ’normal’)[K0],

where
K0 = Temperature Wind PlayTennis.

The tables θ00 and θ01 are shown in Tables 9.4(a) and (b), respectively. Note
that both decision systems D00 and D01 are pure, so no further action is
needed.

Table 9.4. The tables θ00 and θ01.

Temperature Wind PlayTennis
1 hot weak no
2 hot strong no
8 mild weak no

(a)

Temperature Wind PlayTennis
9 cool weak yes
11 mild strong yes

(b)

The decision system D2 produces the decision systems

D20 = (θ20, P layTennis) and D21 = (θ21, P layTennis),

where θ20 and θ21 are given by
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θ20 = (θ0 where Wind = ’weak’)[K2]
θ21 = (θ0 where Wind = ’strong’)[K2],

where
K2 = Temperature Humidity PlayTennis.

The tables θ20 and θ21 are shown in Tables 9.5(a) and (b), respectively.

Table 9.5. The tables θ00 and θ01.

Temperature Humidity PlayTennis
4 mild high yes
5 cool normal yes
10 mild normal yes
13 hot normal yes

(a)

Temperature Humidity PlayTennis
6 cool normal no
14 mild high no

(b)

Again, both decision systems are pure, so no further splitting is necessary.
The decision tree that is obtained from this process is shown in Figure 9.2.

D00
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D20

D2

D01 D21

*
*

**

+
+
++

*
*

**

+
+
++

Outlook

sunny overcast rain

Humidity Wind

high normal weak strong

Fig. 9.2. Decision tree.
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9.4 Closure Operators and Rough Sets

In Exercise 10, the reader is asked to prove that the lower approximation
operator lapρ defined by an equivalence on a set S is an interior operator on
S and the upper approximation operator uapρ is a closure operator on the
same set. In addition, it is easy to see (Exercise 2) that

uapρ(∅) = ∅,
uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),

U ⊆ S − uapρ(S − uapρ(U)),
lapρ(S) = S,

lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ),
U ⊇ S − lapρ(S − lapρ(U)),

for every U, V ∈ P(S).
It has been shown (see [146]) that approximation spaces can be defined

starting from certain closure operators or interior operators.

Theorem 9.22. Let S be a set and let K be a closure operator on S such that
the following conditions are satisfied:
(i) K(∅) = ∅,
(ii) K(U ∪ V ) = K(U) ∪K(V ), and
(iii) U ⊆ S −K(S −K(U)),
for every U, V ∈ P(S). Then, the mapping I : P(S) −→ P(S) defined by
I(U) = S−K(S−U) for U ∈ P(S) is an interior operator on S and there exists
an approximation space (S, ρ) such that lapρ(U) = I(U) and uapρ(U) = K(U)
for every U ∈ P(S).

Proof. Define the relation ρ by

ρ = {(x, y) ∈ S × S | x ∈ K({y})}.

Denote the set {v ∈ S | u ∈ K({v})} by r(u) for u ∈ S.
Observe that we have

K({y}) = {x ∈ S | y ∈ r(x)}

for x, y ∈ S. We begin the argument by proving that ρ is an equivalence.
The reflexivity of ρ follows from x ∈ K({x}) for x ∈ S.
We claim that y �∈ K(W ) if and only if r(y) ∩ W = ∅. Since K(W ) =⋃
{K({x}) | x ∈W}, it follows that the statements

(i) y �∈ K(W ),
(ii) y �∈ K({x}) for every x ∈W ,
(iii) x �∈ r(y) for every x ∈W , and
(iv) r(y) ∩W = ∅
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are equivalent, which justifies our claim.
Property (iii) of Theorem 9.22 implies that {y} ⊆ S − K(S − K({y}));

that is, y �∈ K(S − K({y})). Therefore, by the argument of the previous
paragraph, we have r(y) ∩ (S −K({y})) = ∅, which implies r(y) ⊆ K({y}).
Thus, if x ∈ r(y), it follows that x ∈ K({y}); that is, y ∈ r(x). In terms of the
relation ρ, this means that (y, x) ∈ ρ implies (x, y) ∈ ρ, so ρ is a symmetric
relation.

To prove the transitivity of ρ, suppose that (x, y), (y, z) ∈ ρ. We have
x ∈ K({y}) and y ∈ K({z}). By the idempotency of K, we have K({y}) ⊆
K(K({z})) = K({z}), so x ∈ K({z}). Consequently, (x, z) ∈ ρ. This allows
us to conclude that ρ is indeed an equivalence. Moreover, we realize now that
r(x) is exacly the equivalence class [x]ρ for x ∈ S.

An immediate consequence of this fact is that we have x ∈ r(y) if and only
if y ∈ r(x). Therefore,

K({y}) = {x ∈ S | y ∈ r(x)} = {x ∈ S | x ∈ r(y)} = r(y),

and by the second property of K, we have

K(U) =
⋃
{r(u) | u ∈ U}

for U ∈ P(S). Consequently, we can write

uapρ(U) =
⋃
{r(x) | r(x) ∩ U �= ∅}

=
⋃
{r(u) | u ∈ U}

= K(U).

Also, we have K({z}) = r(z) for every z ∈ S.
The definition of I implies immediately that this function is an interior

operator on S that enjoys two additional properties, namely I(S) = S and
I(U ∩ V ) = I(U) ∩ I(V ).

By applying the definition of I, we have

I(U) = S −K(S − U)

= S −
⋃
{K({z}) | z ∈ S − U}

= S −
⋃
{r(z) | z ∈ S − U}

=
⋃
{r(z) | z ∈ U}

= lapρ(U).
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Exercises and Supplements

1. Let ρ1 and ρ2 be two equivalences on a set S such that ρ1 ⊆ ρ2. Prove that
lapρ1

(U) ⊇ lapρ2
(U) and lapρ1

(U) ⊆ lapρ2
(U). Conclude that bdρ1(U) ⊆

bdρ2(U) for every U ∈ P(S).
2. Let (S, ρ) be an approximation space. Prove that

a) uapρ(∅) = ∅,
b) uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),
c) U ⊆ S − uapρ(S − uapρ(U)),
d) lapρ(S) = S,
e) lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ), and
f) U ⊇ S − lapρ(S − lapρ(U))

for every U, V ∈ P(S).
3. Let (S, ρ) be an approximation space. A lower (upper) sample of a sub-

set U of S is a subset Y of S such that Y ⊆ U and uapρ(Y ) = lapρ(U)
(uapρ(Y ) = uapρ(U), respectively). A lower (upper) sample of U is mini-
mal if there no lower (upper) sample of U with fewer elements.
Prove that every nonempty lower (upper) sample Y of a set U has a
nonempty intersection with each ρ-equivalence class included in lapρ(U)
(lapρ(U), respectively). Prove that if Y is a lower (upper) minimal sample,
then its intersection with each ρ-equivalence class included in lapρ(U)
(lapρ(U), respectively) consists of exactly one element.

A generalized approximation space is a pair (S, ρ), where ρ is an arbitrary re-
lation on S. Denote the set {y ∈ S | (x, y) ∈ ρ} by ρ(x). The lower and upper
ρ-approximations of a set U ∈ P(S) generalize the corresponding notions from
approximation spaces and are defined by

lapρ(U) =
⋃
{ρ(x) | ρ(x) ⊆ U},

uapρ(U) =
⋃
{ρ(x) | ρ(x) ∩ U �= ∅},

for U ∈ P(S).

4. Let (S, ρ) be a generalized approximation space. Prove that
a) lapρ(U) = S − uapρ(S − U),
b) lapρ(S) = S,
c) lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ),
d) lapρ(U ∪ V ) ⊇ lapρ(U) ∪ lapρ(V ),
e) U ⊆ V implies lapρ(U) ⊆ lapρ(V ),
f) uapρ(U) = S − lapρ(S − U),
g) uapρ(∅) = ∅,
h) uapρ(U ∩ V ) ⊆ uapρ(U) ∩ uapρ(V ),
i) uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),
j) U ⊆ V implies uapρ(U) ⊆ uapρ(V ),
k) lapρ((S − U) ∪ V ) ⊆ (S − lapρ(U)) ∪ lapρ(V )
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for U, V ∈ P(S).
5. Let (S, ρ) be a generalized approximation space, where ρ is a tolerance

relation. Prove that
a) lapρ(∅) = ∅,
b) lapρ(U) ⊆ U ,
c) U ⊆ lapρ(uapρ(U)),
d) uapρ(S) = S,
e) U ⊆ uapρ(U), and
f) uapρ(lapρ(U)) ⊆ U

for U, V ∈ P(S).
6. Does every table have a reduct?
7. What can be said about a table θ that has a nonempty core that is a

reduct?
8. Let D = (θ,D) be a decision system. A D-reduct is a set of attributes L,
L ⊆ Hc such that εL = εD and L is minimal with this property. Prove
that every reduct of the table θ includes a D-reduct.

9. Let D = (θ,D) be a decision system. If U and V are two sets of conditional
attributes such that U ⊆ V , then prove that POSU (D) ⊇ POSV (D).

10. Let S be a set and let ρ be an equivalence on S.
a) Prove that lapρ is an interior operator on S.
b) Prove that uapρ is a closure operator on S.
c) Prove that the lapρ-open subsets of S coincide with the uapρ-closed

subsets of S.
11. Let (S,O) be a finite topological space. Prove that there exists a bijection

between the set EQS(S) of equivalences on S and the set of topologies on
S in which every open set is also closed.

Bibliographical Comments

Rough sets were introduced by Z. Pawlak (see [106]). Excellent surveys sup-
plemented by large bibliographies are [81] and [42]. The notions of lower and
upper samples discussed in Exercise 3 are introduced in [19]. Various gener-
alizations of the notion of approximation space are presented in [146].
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Dissimilarities, Metrics, and Ultrametrics

10.1 Introduction

The notion of a metric was introduced in mathematics by the French math-
ematician Maurice René Fréchet in [53] as an abstraction of the notion of
distance between two points. In this chapter, we explore the notion of metric
and the related notion of metric space, as well as a number of generalizations
and specializations of these notions.

Clustering and classification, two central data mining activities, require
the evaluation of degrees of dissimilarity between data objects. This task is
accomplished using the notion of dissimilarity and a variety of specializations
of this notion, such as metrics, tree metrics, and ultrametrics. These notions
are introduced in Section 10.2.

Substantial attention is paid to ultrametrics due to their importance for
clustering algorithms. Various modalities for generating ultrametrics are dis-
cussed, starting with hierarchies on sets, equidistant trees, and chains of par-
titions (or equivalences).

Metrics on several quite distinct data types are discussed: vectors in R
n,

subsets of finite sets, partitions of finite sets, and sequences. The chapter
concludes with a section dedicated to the application of elementary properties
of metrics to searching in metric spaces. Further applications of metrics are
presented in subsequent chapters.

10.2 Classes of Dissimilarities

Dissimilarities are functions that allow us to evaluate the extent to which data
objects are different.

Definition 10.1. A dissimilarity on a set S is a function d : S2 −→ R≥0

satisfying the following conditions:
(DISS1) d(x, x) = 0 for all x ∈ S;

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 10, c© Springer-Verlag London Limited 2008
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(DISS2) d(x, y) = d(y, x) for all x, y ∈ S.
The pair (S, d) is a dissimilarity space. A trivial example of a dissimilarity

space is the pair (∅, d∅), where d∅ is the empty function on ∅ × ∅.

The set of dissimilarities defined on a set S is denoted by DS .
Additional properties may be satisfied by dissimilarities. A nonexhaustive

list is given next.
1. d(x, y) = 0 implies d(x, z) = d(y, z) for every x, y, z ∈ S (evenness).
2. d(x, y) = 0 implies x = y for every x, y (definiteness).
3. d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z (triangular inequality).
4. d(x, y) ≤ max{d(x, z), d(z, y)} for every x, y, z (the ultrametric inequality).

5. d(x, y)+d(u, v) ≤ max{d(x, u)+d(y, v), d(x, v)+d(y, u)} for every x, y, u, v
(Buneman’s inequality, also known as the four-point condition).
If d : S2 −→ R is a function that satisfies the properties (DISS1), (DISS2),

and the triangular inequality, then the values of d are nonnegative numbers.
Indeed, by taking x = y in the triangular inequality, we have

0 = d(x, x) ≤ d(x, z) + d(z, x) = 2d(x, z),

for every z ∈ S.
Later in this chapter, we explore various connections that exist among

these properties. As an example, we can show the following statement.

Theorem 10.2. Both the triangular inequality and definiteness imply even-
ness.

Proof. Suppose that d is a dissimilarity that satisfies the triangular inequality,
and let x, y ∈ S be such that d(x, y) = 0. By the triangular inequality, we
have both d(x, z) ≤ d(x, y)+d(y, z) = d(y, z) and d(y, z) ≤ d(y, x)+d(x, z) =
d(x, z) because d(y, x) = d(x, y) = 0. Thus, d(x, z) = d(y, z) for every z ∈ S.

We leave it to the reader to prove the second part of the statement. 	

We denote the set of definite dissimilarities on a set S by D′

S . Further
notations will be introduced shortly for other types of dissimilarities.

Definition 10.3. A dissimilarity d ∈ DS is
1. a metric if it satisfies the definiteness property and the triangular inequal-

ity,
2. a tree metric if it satisfies the definiteness property and Buneman’s in-

equality, and
3. an ultrametric if it satisfies the definiteness property and the ultrametric

inequality.
The set of metrics on a set S is denoted by MS. The sets of tree metrics

and ultrametrics on a set S are denoted by TS and US, respectively.
If d is a metric or an ultrametric on a set S, then (S, d) is a metric space

or an ultrametric space, respectively.
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The pair (∅, d∅) mentioned before is a trivial example of metric space.
If d is a metric defined on a set S and x, y ∈ S, we refer to the number

d(x, y) as the d-distance between x and y or simply the distance between x
and y whenever d is clearly understood from context.

Thus, a function d : S2 −→ R≥0 is a metric if it has the following proper-
ties:
(M1) d(x, y) = 0 if and only if x = y for x, y ∈ S;
(M2) d(x, y) = d(y, x) for x, y ∈ S;
(M3) d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ S.

If property (M1) is replaced by the weaker requirement that d(x, x) = 0
for x ∈ S, then we refer to d as a semimetric on S. Thus, if d is a semimetric
d(x, y) = 0 does not necessarily imply x = y and we can have for two distinct
elements x, y of S, d(x, y) = 0.

Example 10.4. Let S be a nonempty set. Define the mapping d : S2 −→ R≥0

by

d(u, v) =

{
1 if u �= v,

0 otherwise,

for x, y ∈ S. It is easy to see that d satisfies the definiteness property. To
prove that d satisfies the triangular inequality, we need to show that

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ S. This is clearly the case if x = y. Suppose that x �= y, so
d(x, y) = 1. Then, for every z ∈ S, we have at least one of the inequalities
x �= z or z �= y, so at least one of the numbers d(x, z) or d(z, y) equals 1.
Thus d satisfies the triangular inequality. The metric d introduced here is the
discrete metric on S.

Example 10.5. Consider the mapping d : (Seqn(S))2 −→ R≥0 defined by

d(p,q) = |{i | 0 ≤ i ≤ n− 1 and p(i) �= q(i)}|

for all sequences p,q of length n on the set S.
Clearly, d is a dissimilarity that is both even and definite. Moreover, it

satisfies the triangular inequality. Indeed, let p,q, r be three sequences of
length n on the set S. If p(i) �= q(i), then r(i) must be distinct from at least
one of p(i) and q(i). Therefore,

{i | 0 ≤ i ≤ n− 1 and p(i) �= q(i)}
⊆ {i | 0 ≤ i ≤ n− 1 and p(i) �= r(i)} ∪ {i | 0 ≤ i ≤ n− 1 and r(i) �= q(i)},

which implies the triangular inequality.

A function d : S2 −→ R≥0 is an ultrametric if it has the following proper-
ties:
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(U1) d(x, y) = 0 if and only if x = y for x, y ∈ S;
(U2) d(x, y) = d(y, x) for x, y ∈ S;
(U3) d(x, y) ≤ max{d(x, z), d(z, y)} for x, y, z ∈ S.

As we did for metrics, if property (U1) is replaced by the weaker require-
ment that d(x, x) = 0 for x ∈ S, then d is a quasi-ultrametric on S.

Example 10.6. Let π = {B,C} be a two-set partition of a nonempty set S.
Define the mapping d : S2 −→ R≥0 by

d(x, y) =

{
0 if {x, y} ⊆ B or {x, y} ⊆ C
1 otherwise,

for x, y ∈ S.
We claim that d is a quasi-ultrametric. Indeed, it is clear that d(x, x) = 0

for every x ∈ S and d(x, y) = d(y, x) for x, y ∈ S. Now let x, y, z be three
arbitrary elements in S. If d(x, y) = 1, then x and y belong to two distinct
blocks of the partition π, say to B and C, respectively. If z ∈ B, then d(x, z) =
0 and d(z, y) = 1; similarly, if z ∈ C, then d(x, z) = 1 and d(z, y) = 0. In
either case, the ultrametric inequality is satisfied and we conclude that d is a
quasi-ultrametric.

Theorem 10.7. . Let a0, a1, a2 ∈ R be three numbers. If ai ≤ max{aj , ak}
for every permutation (i, j, k) of the set {0, 1, 2}, then two of the numbers are
equal and the third is not larger than the two others.

Proof. Suppose that ai is the least of the numbers a0, a1, a2 and aj , ak are the
remaining numbers. Since aj ≤ max{ai, ak} = ak and ak ≤ max{ai, aj} = aj ,
it follows that aj = ak ≥ ai. 	


A simple and interesting property of triangles in ultrametric spaces is given
next.

Corollary 10.8. Let (S, d) be an ultrametric space. For every x, y, z ∈ S, two
of the numbers d(x, y), d(x, z), d(y, z) are equal and the third is not larger than
the two other equal numbers.

Proof. Since d satisfies the ultrametric inequality, the statement follows im-
mediately from Theorem 10.7. 	


Corollary 10.8 can be paraphrased by saying that in an ultrametric space
any triangle is isosceles and the side that is not equal to the two others cannot
be longer than these.

In this chapter, we frequently use the notion of a sphere.

Definition 10.9. Let (S, d) be a metric space. The closed sphere centered in
x ∈ S of radius r is the set

Bd(x, r) = {y ∈ S|d(x, y) ≤ r}.
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The open sphere centered in x ∈ S of radius r is the set

Cd(x, r) = {y ∈ S|d(x, y) < r}.

Definition 10.10. Let (S, d) be a metric space. The diameter of a subset U of
S is the number diamS,d(U) = sup{d(x, y) | x, y ∈ U}. The set U is bounded
if diamS,d(U) is finite.

The diameter of the metric space (S, d) is the number

diamS,d = sup{d(x, y) | x, y ∈ S}.

If the metric space is clear from the context, then we denote the diameter of
a subset U just by diam(U).

If (S, d) is a finite metric space, then diamS,d = max{d(x, y) | x, y ∈ S}.

A dissimilarity d : S × S −→ R̂≥0 can be extended to the set of subsets of
S by defining d(U, V ) as

d(U, V ) = inf{d(u, v) | u ∈ Uand v ∈ V }

for U, V ∈ P(S). The resulting extension is also a dissimilarity. However, even
if d is a metric, then its extension is not, in general, a metric on P(S) because
it does not satisfy the triangular inequality. Instead, we can show that for
every U, V,W we have

d(U,W ) ≤ d(U, V ) + diam(V ) + d(V,W ).

Indeed, by the definition of d(U, V ) and d(V,W ), for every ε > 0, there exist
u ∈ U , v, v′ ∈ V , and w ∈W such that

d(U, V ) ≤ d(u, v) ≤ d(U, V ) + ε
2 ,

d(V,W ) ≤ d(v′, w) ≤ d(V,W ) + ε
2 .

By the triangular axiom, we have

d(u,w) ≤ d(u, v) + d(v, v′) + d(v′, w).

Hence,
d(u,w) ≤ d(U, V ) + diam(V ) + d(V,W ) + ε,

which implies

d(U,W ) ≤ d(U, V ) + diam(V ) + d(V,W ) + ε

for every ε > 0. This yields the needed inequality.

Definition 10.11. Let (S, d) be a metric space. The sets U, V ∈ P(S) are
separate if d(U, V ) > 0.
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We denote the number d({u}, V ) = inf{d(u, v) | v ∈ V } by d(u, V ). It is
clear that u ∈ V implies d(u, V ) = 0. Further properties of this functions are
discussed in Theorem 11.16 on page 427.

Let d be a dissimilarity and let S(x, y) be the set of all nonnull sequences
s = (s1, . . . , sn) ∈ Seq(S) such that s1 = x and sn = y. The d-amplitude of s
is the number ampd(s) = max{d(si, si+1) | 1 ≤ i ≤ n− 1}.

If d is an ultrametric, we saw that d(x, y) ≤ ampd(s) for any nonnull
sequence s = (s1, . . . , sn) such that s1 = x and sn = y. Therefore, we have

d(x, y) ≤ min{ampd(s) | s ∈ S(x, y)},

where S(x, y) is the set of sequences of S that start with x and end with y.
Since (x, y) ∈ S(x, y), we have the equality

d(x, y) = min{ampd(s) | s ∈ S(x, y)}.

Dissimilarities defined on finite sets can be represented by matrices. If
S = {x1, . . . , xn} is a finite set and d : S × S −→ R≥0 is a dissimilarity,
let Md ∈ (R≥0)n×n be the matrix defined by Mij = d(xi, xj) for 1 ≤ i, j ≤
n. Clearly, all main diagonal elements of Md are 0 and the matrix M is
symmetric.

Example 10.12. Let S be the set {x1, x2, x3, x4}. The discrete metric on S is
represented by the 4× 4-matrix

Md =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ .

If x1, x2, x3 ∈ R are three real numbers the matrix that represents the distance
e(xi, xj) = |xi − xj | measured on the real line is

Me =

⎛
⎝ 0 |x1 − x2| |x1 − x3|
|x1 − x2| 0 |x2 − x3|
|x1 − x3| |x2 − x3| 0

⎞
⎠ .

Next we introduce the notion of extended dissimilarity by allowing ∞ as
a value of a dissimilarity.

Definition 10.13. Let S be a set. An extended dissimilarity on S is a func-
tion d : S2 −→ R̂≥0 that satisfies the conditions (DISS1) and (DISS2) of
Definition 10.1.

The pair (S, d) is an extended dissimilarity space.

The notions of extended metric and extended ultrametric are defined start-
ing from the notion of extended dissimilarity using the same process as in the
definitions of metrics and ultrametrics.
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10.3 Tree Metrics

The distance d between two vertices of a connected graph G = (V,E) in-
troduced in Definition 3.12 is a metric on the set of vertices V . Recall that
d(x, y) = m if m is the length of the shortest path that connects x and y.

We have d(x, y) = 0 if and only if x = y. The symmetry of d is obvious.
If p is a shortest path that connects x to z and q is a shortest path that
connects z to y, then pq is a path of length d(x, z) + d(z, y) that connects x
to y. Therefore, d(x, y) ≤ d(x, z) + d(z, y).

The notion of distance between the vertices of a connected graph can be
generalized to weighted graphs as follows. Let (G, w) be a weighted graph
where G = (V,E), and let w : E −→ R≥0 be a positive weight. Define dw(x, y)
as

dw(x, y) = min{w(p) | p is a path joining x to y}
for x, y ∈ V . We leave to reader to prove that dw satisfies the conditions (M1)
- (M3) using an argument that is similar to the one given above.

If (T, w) is a weighted tree the metric dw is referred to as a tree metric.
Since T is a tree, for any two vertices u, v ∈ V there is a unique simple path
p = (v0, . . . , vn) joining u = v0 to v = vn. In this case,

dw(u, v) =
n−1∑
i=0

w(vi, vi+1).

Moreover, if t = vk is a vertex on the path p, then

dw(u, t) + dw(t, v) = dw(u, v), (10.1)

a property known as the additivity of dw.
We already know that dw is a metric for arbitrary connected graphs. For

trees, we have the additional property given in the next statement.

Theorem 10.14. If (T, w) is a weighted tree, then dw satisfies Buneman’s
inequality

dw(x, y) + dw(u, v) ≤ max{dw(x, u) + dw(y, v), dw(x, v) + dw(y, u)}

for every four vertices x, y, u, v of the tree T.

Proof. Let x, y, u, v be four vertices in T. If x = u and y = v, the inequality
reduces to an obvious equality. Therefore, we may assume that at least one of
the pairs (x, u) and (y, v) consists of distinct vertices.

Suppose that x = u. In this case, the inequality amounts to

dw(x, y) + dw(x, v) ≤ max{dw(y, v), dw(x, v) + dw(y, x)},

which is obviously satisfied. Thus, we may assume that we have both x �= u
and y �= v. Since T is a tree, there exists a simple path p that joins x to y and
a simple path q that joins u to v.
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Two cases may occur, depending on whether p and q have common edges.
Suppose initially that there are no common vertices between p and q. Let

s be a vertex on the path p and t be a vertex on q such that dw(s, t) is the
minimal distance between a vertex located on the path p and one located on
q; here dw(s, t) is the sum of the weights of the edges of the simple path r
that joins s to t.

The path r has no other vertices in common with p and q except s and t,
respectively (see Figure 10.1). We have

dw(x, u) = dw(x, s) + dw(s, t) + dw(t, u),
dw(y, v) = dw(y, s) + dw(s, t) + dw(t, v),
dw(x, v) = dw(x, s) + dw(s, t) + dw(t, v),
dw(y, u) = dw(y, s) + dw(s, t) + dw(t, u).

Thus, dw(x, u)+dw(y, v) = dw(x, v)+dw(y, u) = dw(x, s)+dw(s, t)+dw(t, u)+
dw(y, s) + dw(s, t) + dw(t, v) = dw(x, y) + dw(u, v) + 2dw(s, t), which shows
that Buneman’s inequality is satisfied.

�

�

�

�

�

�
x

s

y

u

t

v

Fig. 10.1. Paths that have no common vertices.

If p and q have some vertices in common, the configuration of the graph
is as shown in Figure 10.2. In this case, we have

dw(x, y) = dw(x, t) + dw(t, s) + dw(s, y),
dw(u, v) = dw(u, t) + dw(t, s) + dw(s, v),
dw(x, u) = dw(x, t) + dw(t, u),
dw(y, v) = dw(y, s) + dw(s, v),
dw(x, v) = dw(x, t) + dw(t, s) + dw(s, v),
dw(y, u) = dw(y, s) + dw(s, t) + dw(t, u),

which implies
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Fig. 10.2. Paths that share vertices.

dw(x, y) + dw(u, v) = dw(x, t) + 2dw(t, s) + dw(s, y) + dw(u, t) + dw(s, v),
dw(x, u) + dw(y, v) = dw(x, t) + dw(t, u) + dw(y, s) + dw(s, v),
dw(x, v) + dw(y, u) = dw(x, t) + 2dw(t, s) + dw(s, v) + dw(y, s) + dw(t, u).

Thus, Buneman’s inequality is satisfied in this case, too, because

dw(x, y) + dw(u, v) = dw(x, v) + d(y, u) ≥ dw(x, u) + dw(y, v).

	

By Theorem 10.7, Buneman’s inequality is equivalent to saying that of the

three sums d(x, y) + d(u, v), d(x, u) + d(y, v), and d(x, v) + d(y, u), two are
equal and the third is no less than the two others.

Next, we examine the relationships that exist between metrics, tree met-
rics, and ultrametrics.

Theorem 10.15. Every tree metric is a metric, and every ultrametric is a
tree metric.

Proof. Let S be a nonempty set and let d be a tree metric on S, that is,
a dissimilarity that satisfies the inequality d(x, y) + d(u, v) ≤ max{d(x, u) +
d(y, v), d(x, v) + d(y, u)} for every x, y, u, v ∈ S. Choosing v = u, we obtain
d(x, y) ≤ max{d(x, u) + d(y, u), d(x, u) + d(y, u)} = d(x, u) + d(u, y) for every
x, y, u, which shows that d satisfies the triangular inequality.

Suppose now that d is an ultrametric. We need to show that

d(x, y) + d(u, v) ≤ max{d(x, u) + d(y, v), d(x, v) + d(y, v)}

for x, y, u, v ∈ S. Several cases are possible depending on which of the elements
u, v is the closest to x and y, as the next table shows:
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Case Closest to Implications
x y

1 u u d(x, v) = d(u, v), d(y, v) = d(u, v)
2 u v d(x, v) = d(u, v), d(y, u) = d(u, v)
3 v u d(x, u) = d(u, v), d(y, v) = d(u, v)
4 v v d(x, u) = d(u, v), d(y, u) = d(u, v)

We discuss here only the first two cases; the remaining cases are similar and
are left to the reader.

In the first case, by Corollary 10.8, we have d(x, u) ≤ d(x, v) = d(u, v) and
d(y, u) ≤ d(y, v) = d(u, v). This allows us to write

max{d(x, u) + d(y, v), d(x, v) + d(y, v)}
= max{d(x, u) + d(u, v), d(u, v) + d(y, v)}
= max{d(x, u), d(y, v)}+ d(u, v)
≥ max{d(x, u), d(u, y)}+ d(u, v)

(because u is closer to y than v)
≥ d(x, y) + d(u, v)

(since d is an ultrametric),

which concludes the argument for the first case.
For the second case, by the same theorem mentioned above, we have

d(x, u) ≤ d(x, v) = d(u, v) and d(y, v) ≤ d(y, u) = d(u, v). This implies that

d(x, u) + d(y, v) ≤ d(x, v) + d(y, v) = 2d(u, v).

Thus, it remains to show only that d(x, y) ≤ d(u, v). Observe that we have
d(x, u) ≤ d(u, v) = d(u, y). Therefore, in the triangle x, y, u, we have d(x, y) =
d(u, y) = d(u, v), which concludes the argument in the second case. 	


Theorem 10.15 implies that for every set S, US ⊆ TS ⊆MS .
As shown in [24], Buneman’s inequality is also a sufficient condition for a

graph to be a tree in the following sense.

Theorem 10.16. A graph G = (V,E) is a tree if and only if it is connected,
contains no triangles, and its graph distance satisfies Buneman’s inequality.

Proof. By our previous discussions, the conditions are clearly necessary. We
show here that they are sufficient.

Let p be a cycle of minimal length �. Since G contains no triangles, it
follows that � ≥ 4. Therefore, � can be written as � = 4q + r, where q ≥ 1
and 0 ≤ r ≤ 3. Since p is a minimal circuit, the distance between its end
points is given by the least number of edges of the circuit that separate the
points. Therefore, we can select vertices x, u, y, v (in this order) on the cycle
such that the distances d(x, u), d(u, y), d(y, v), d(v, x) are all either q or q + 1
and
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d(x, u) + d(u, y) + d(y, v) + d(v, x) = 4q + r.

Then, 2q ≤ d(x, y) ≤ 2q + 2 and 2q ≤ d(u, v) ≤ 2q + 2, so 4q ≤ d(x, y) +
d(u, v) ≤ 4q + 4, which prevents d from satisfying the inequality d(x, y) +
d(u, v) ≤ max{d(x, u) + d(y, v), d(x, v) + d(y, u)}. This condition shows that
G is acyclic, so it is a tree. 	


In data mining applied in biology, particularly in reconstruction of phylo-
genies, it is important to determine the conditions that allow the construction
of a weighted tree (T, w) starting from a metric space (S, d) such that the tree
metric induced by (T, w) coincides with d when restricted to the set S.

Example 10.17. Let S = {a, b, c} be a three-element set and let d be a distance
defined on S. Suppose that (a, b) are the closest points in S, that is, d(a, b) ≤
d(a, c) and d(a, b) ≤ d(b, c).

We shall seek to determine a weighted tree (T, w) such that the restric-
tion of the metric induced by the tree to the set S coincides with d. To this
end, consider the weighted tree shown in Figure 10.3. The distances between
vertices can be expressed as

d(a, b) = m+ n,
d(a, c) = m+ p+ q,
d(b, c) = n+ p+ q.

It is easy to see that

p+ q =
d(a, c) + d(b, c)− d(a, b)

2
.

A substitution in the last two equalities yields

m =
d(a, c)− d(b, c) + d(a, b)

2
≥ 0,

n =
d(b, c)− d(a, c) + d(a, b)

2
≥ 0,

which determines the weights of the edges that end in a and b, respectively.
For the remaining two edges, one can choose p and q as two arbitrary positive
numbers whose sum equals d(a,c)+d(b,c)−d(a,b)

2 .

Theorem 10.18. Starting from a tree metric d on a nonempty set S, there
exists a weighted tree (T, w) whose set of vertices contains S and such that
the metric induced by this weighted tree on S coincides with d.

Proof. The argument is by induction on n = |S|. The basis step, n = 3, is
immediate.

Suppose that the statement holds for sets with fewer than n elements, and
let S be a set with |S| = n. Define a function f : S3 −→ R as f(x, y, z) =
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Fig. 10.3. Weighted tree.

d(x, z) + d(y, z) − d(x, y). Let (p, q, r) ∈ S3 be a triple such that f(p, q, r) is
maximum. If x ∈ S − {p, q}, we have f(x, q, r) ≤ f(p, q, r) and f(p, x, r) ≤
f(p, q, r). These inequalities are easily seen to be equivalent to

d(x, r) + d(p, q) ≤ d(x, q) + d(p, r),
d(x, r) + d(p, q) ≤ d(x, p) + d(q, r),

respectively. Using Buneman’s inequality, we obtain

d(x, q) + d(p, r) = d(x, p) + d(q, r). (10.2)

Similarly, for any other y ∈ S − {p, q}, we have

d(y, q) + d(p, r) = d(y, p) + d(q, r),

so
d(x, q) + d(y, p) = d(x, p) + d(y, q).

Consider now a new object t, t �∈ S. The distances from t to the objects of S
are defined by

d(t, p) =
d(p, q) + d(p, r)− d(q, r)

2
,

and
d(t, x) = d(x, p)− d(t, p), (10.3)

where x �= p.
For x �= p, we can write

d(t, x) = d(x, p)− d(t, p)

= d(x, p)− d(p, q) + d(p, r)− d(q, r)
2

(by the definition of d(t, p))

= d(x, p)− d(p, q) + d(p, x)− d(q, x)
2

(by Equality (10.2))

=
d(p, x)− d(p, q) + d(q, x)

2
≥ 0.
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Choosing x = q in Equality (10.3), we have

d(t, q) = d(q, p)− d(t, p)

= d(p, q)− d(p, q) + d(p, r)− d(q, r)
2

=
d(p, q)− d(p, r) + d(q, r)

2
≥ 0,

which shows that the distances of the form d(t, ·) are all nonnegative.
Also, we can write for x ∈ S − {p, q}

d(q, t) + d(t, x) =
d(p, q)− d(p, r) + d(q, r)

2
+
d(p, x)− d(p, q) + d(q, x)

2

=
d(p, q)− d(p, x) + d(q, x)

2
+
d(p, x)− d(p, q) + d(q, x)

2
(by Equality (10.2))

= d(q, x).

It is not difficult to verify that the expansion of d to S ∪ {t} using the values
defined above satisfies Buneman’s inequality.

Consider the metric space ((S − {p, q}) ∪ {t}, d) defined over a set with
n − 1 elements. By inductive hypothesis, there exists a weighted tree (T, w)
such that the metric induced on (S − {p, q}) ∪ {t} coincides with d. Adding
two edges (t, p) and (t, q) having the weights d(t, p) and d(t, q), we obtain a
tree that generates the distance d on the set S. 	


A class of weighted trees that is useful in clustering algorithms and in
phylogenetics is introduced next.

Definition 10.19. An equidistant tree is a triple (T, w, v0), where (T, v0) is
a rooted tree and w is a weighting function defined on the set of edges of T

such that dw(v0, v) is the same for every leaf of the rooted tree (T, v0).

In an equidistant tree (T, w; v0), for every vertex u there is a number k such
that dw(u, t) = k for every leaf that is joined to v0 by a path that passes
through u. In other words, the equidistant property is inherited by subtrees.

Example 10.20. The tree shown in Figure 10.4 is an equidistant tree. The
distance dw from the root to each of its four leaves is equal to 8.

Theorem 10.21. A function d : S × S −→ R is an ultrametric if and only if
there exists an equidistant tree (T, w; v0) having S as its set of leaves and d is
the restriction of the tree distance dw to S.

Proof. To prove that the condition is necessary, let (T, w; v0) be an equidistant
tree and let x, y, z ∈ L be three leaves of the tree. Suppose that u is the
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Fig. 10.4. An equidistant tree.

common ancestor of x and y located on the shortest path that joins x to y.
Then, dw(x, y) = 2dw(u, x) = 2dw(u, y).

Let v be the common ancestor of y and z located on the shortest path
that joins y to z. Since both u and v are ancestors of y, they are located on
the path that joins v0 to y. Two cases may occur:

Case 1 occurs when dw(v0, v) ≤ dw(v0, u) (Figure 10.5(a)).
Case 2 occurs when dw(v0, v) > dw(v0, u) (Figure 10.5(b)).

� �
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(a) (b)

Fig. 10.5. Two equidistant trees.

In the first case, we have d(u, x) = d(u, y) and d(v, z) = d(v, u)+d(u, x) =
d(v, u) + d(u, y) because (T, w, v0) is equidistant. Therefore,

dw(x, y) = 2dw(x, u),
dw(y, z) = 2dw(u, v) + 2dw(u, y),
dw(x, z) = 2dw(u, v) + 2dw(u, x).
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Since dw(u, y) = dw(u, x), the ultrametric inequality

dw(x, y) ≤ max{dw(x, z), dw(z, y)}

follows immediately. The second case is similar and is left to the reader.
Conversely, let d : S×S −→ R be an ultrametric, where S = {s1, . . . , sn}.

We prove by induction of n = |S| that an equidistant tree can be constructed
that satisfies the requirements of the theorem.

For n = 2, the simple tree shown in Figure 10.6(a), where w(x0, s1) =
w(x0, s2) = d(s1,s2)

2 satisfies the requirements of the theorem. For n = 3,
suppose that d(s1, s2) ≤ d(s1, s3) = d(s2, s3). The tree shown in Figure 10.6(b)
is the desired tree for the ultrametric because d(s1, s3)− d(s1, s2) ≥ 0.
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Fig. 10.6. Small equidistant weighted trees.

Suppose now that n ≥ 4. Let si, sj be a pair of elements of S such that the
distance d(si, sj) is minimal. By the ultrametric property, we have d(sk, si) =
d(sk, sj) ≥ d(si, sj) for every k ∈ {1, . . . , n} − {i, j}.

Define S′ = S − {si, sj} ∪ {s}, and let d′ : S′ × S′ −→ R be the mapping
given by

d′(sk, sl) = d(sk, sl) if sk, sl ∈ S
and d′(sk, s) = d(sk, si) = d(sk, sj). It is easy to see that d′ is an ultrametric
on the smaller set S′, so, by inductive hypothesis, there exists an equidistant
weighted tree (T′, w′; v0) that induces d′ on the set of its leaves S′.

Let z be the direct ancestor of s in the tree T′ and let sm be a neighbor of
s. The weighted rooted tree (T, w; v0) is obtained from (T′, w′; v0) by trans-
forming s into an interior node that has the leaves si and sj as immediate
descendants, as shown in Figure 10.7. To make the new tree T be equidistant,
we keep all weights of the edges of T′ in the new tree T except the weight of
the edge (z, s), which is defined now as

w(z, s) =
d(sm, si)− d(si, sj)

2
.

We also define the weight of the edges (s, si) and (s, sj) as
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Fig. 10.7. Constructing (T, w; v0) starting from (T′, w′; v0).

w(s, si) = w(s, sj) =
d(si, sj)

2
.

These definitions imply that T is an equidistant tree because

d′(sm, z) =
d(sm, si)

2
(because of the definition of d)

= d′(z, s)
(since T′ is equidistant),

d(z, si) = w(z, s) + w(s, si) =
d(sm, si)− d(si, sj)

2
+
d(si, sj

2
=
d(sm, si)

2
.

and d(z, zm) = d′(z, sm). 	


10.4 Ultrametric Spaces

In Section 10.2, we saw that ultrametrics represent a strengthening of the
notion of a metric, where the triangular inequality is replaced by a stronger
requirement.

Theorem 10.22. Let B(x, r) be a closed sphere in the ultrametric space
(S, d). If z ∈ B(x, d), then B(x, r) = B(z, r). In other words, in an ultra-
metric space, a closed sphere has all its points as centers.

Proof. Suppose that z ∈ B(x, r), so d(x, z) ≤ r. We saw that two of the
numbers d(x, z), d(z, y), d(x, y) are equal and the third is less than the equal
numbers for any y ∈ S.
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Let y ∈ B(z, r). Since d(y, x) ≤ max{d(y, z), d(z, x)} ≤ r, we have y ∈
B(x, r). Conversely, if y ∈ B(x, r), we have d(y, z) ≤ max d(d(y, x), d(x, z) ≤
r, hence y ∈ B(z, r). 	


Corollary 10.23. If two closed spheres B(x, r) and B(y, r′) of an ultrametric
space have a point in common, then one of the closed spheres is included in
the other.

Proof. The statement follows directly from Theorem 10.22. 	

Theorem 10.22 implies that the entire space S equals the closed sphere

B(x, diamS,d) for any point x ∈ S.

Ultrametrics, Partitions, and Equivalences

We present now the link between ultrametrics defined on a finite set S and
chains of equivalence relations on S (or chains of partitions on S). The next
statement gives a method of constructing ultrametrics starting from chains of
equivalence relations.

Theorem 10.24. Let S be a finite set and let d : S×S −→ R≥0 be a function
whose range is Ran(f) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if
and only if x = y. Define the relations ηri

= {(x, y) ∈ S × S | d(x, y) ≤ ri}
for 1 ≤ i ≤ m.

The function d is an ultrametric on S if and only if the sequence of re-
lations ηr1 , . . . , ηrm

is an increasing sequence of equivalences on S such that
ηr1 = ιS and ηrm

= θS.

Proof. Suppose that d is an ultrametric on S. We have (x, x) ∈ ηri
because

d(x, x) = 0, so all relations ηri
are reflexive. Also, it is clear that the symmetry

of d implies (x, y) ∈ ηri
if and only if (y, x) ∈ ηri

, so these relations are
symmetric.

The ultrametric inequality is essential for proving the transitivity of the
relations ηri

. If (x, y), (y, z) ∈ ηri
, then d(x, y) ≤ ri and d(y, z) ≤ ri, which

implies d(x, z) ≤ max{d(x, y), d(y, z)} ≤ ri. Thus, (x, z) ∈ ηri
, which shows

that every relation ηri
is transitive and therefore an equivalence.

It is straightforward to see that ηr1 ≤ ηr2 ≤ · · · ≤ ηrm
; that is, this

sequence of relations is indeed a chain of equivalences.
Conversely, suppose that ηr1 , . . . , ηrm

is an increasing sequence of equiva-
lences on S such that ηr1 = ιS and ηrm

= θS , where ηri
= {(x, y) ∈ S × S |

d(x, y) ≤ ri} for 1 ≤ i ≤ m and r1 = 0.
Note that d(x, y) = 0 is equivalent to (x, y) ∈ ηr1 = ιS , that is, to x = y.
We claim that

d(x, y) = min{r | (x, y) ∈ ηr}. (10.4)

Indeed, since ηrm
= θS , it is clear that there is an equivalence ηri

such that
(x, y) ∈ ηri

. If (x, y) ∈ ηri
, the definition of ηri

implies d(x, y) ≤ ri, so
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d(x, y) ≤ min{r | (x, y) ∈ ηr}. This inequality can be easily seen to become an
equality since (x, y) ∈ ηd(x,y). This implies immediately that d is symmetric.

To prove that d satisfies the ultrametric inequality, let x, y, z be three
members of the set S. Let p = max{d(x, z), d(z, y)}. Since (x, z) ∈ ηd(x,z) ⊆ ηp

and (z, y) ∈ ηd(z,y) ⊆ ηp, it follows that (x, y) ∈ ηp, due to the transitivity
of the equivalence ηp. Thus, d(x, y) ≤ p = max{d(x, z), d(z, y)}, which proves
the triangular inequality for d. 	


Of course, Theorem 10.24 can be formulated in terms of partitions.

Theorem 10.25. Let S be a finite set and let d : S×S −→ R≥0 be a function
whose range is Ran(f) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if
and only if x = y. For u ∈ S and r ∈ R≥0, define the set Du,r = {x ∈ S |
d(u, x) ≤ r}.

Define the collection of sets πri
= {D(u, ri) | u ∈ S} for 1 ≤ i ≤ m.

The function d is an ultrametric on S if and only if the sequence of col-
lections πr1 , . . . , πrm

is an increasing sequence of partitions on S such that
πr1 = αS and πrm

= ωS.

Proof. The argument is entirely similar to the proof of Theorem 10.24 and is
omitted. 	


Hierarchies and Ultrametrics

Definition 10.26. Let S be a set. A hierarchy on the set S is a collection of
sets H ⊆ P(S) that satisfies the following conditions:
(i) the members of H are nonempty sets;
(ii) S ∈ H;
(iii) for every x ∈ S, we have {x} ∈ H;
(iv) if H,H ′ ∈ H and H ∩H ′ �= ∅, then we have either H ⊆ H ′ or H ′ ⊆ H.

A standard technique for constructing a hierarchy on a set S starts with
a rooted tree (T, v0) whose nodes are labeled by subsets of the set S. Let V
be the set of vertices of the tree T. The function μ : V −→ P(S), which gives
the label μ(v) of each node v ∈ V , is defined as follows:
(i) The tree T has |S| leaves, and each leaf v is labeled by a distinct singleton

μ(v) = {x} for x ∈ S.
(ii) If an interior vertex v of the tree has the descendants v1, v2, . . . , vn, then

μ(v) =
⋃n

i=1 μ(vi).
The set of labels HT of the rooted tree (T, v0) forms a hierarchy on S.

Indeed, note that each singleton {x} is a label of a leaf. An easy argument by
induction on the height of the tree shows that every vertex is labeled by the
set of labels of the leaves that descend from that vertex. Therefore, the root
v0 of the tree is labeled by S.

Suppose that H,H ′ are labels of the nodes u, v of T, respectively. If H ∩
H ′ �= ∅, then the vertices u, v have a common descendant. In a tree, this can
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take place only if u is a descendant of v or v is a descendant of u; that is, only
if H ⊆ H ′, or H ′ ⊆ H, respectively. This gives the desired conclusion.

Example 10.27. Let S = {s, t, u, v, w, x, y} and let T be a tree whose vertices
are labeled as shown in Figure 10.8. It is easy to verify that the family of
subsets of S that label the nodes of T,

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w, x}, {s, t, u, v}, {w, x, y}, {s, t, u, v, w, x, y}}

is a hierarchy on the set S.

� � � � � � �

{s} {t} {u} {v} {w} {x} {y}

� �

-
-
--.

.
.. �

�
���

�
��

�

�
�
�

�

�

������
/

/
/{w, x}

{w, x, y}

{s, t, u}

{s, t, u, y}

{s, t, u, y, w, x, y}

Fig. 10.8. Tree labeled by subsets of S.

Chains of partitions defined on a set generate hierarchies, as we show next.

Theorem 10.28. Let S be a set and let C = (π1, π2, . . . , πn) be an increasing
chain of partitions (PART(S),≤) such that π1 = αS and πn = ωS. Then,
the collection HC =

⋃n
i=1 πi that consists of the blocks of all partitions in the

chain is a hierarchy on S.

Proof. The blocks of any of the partitions are nonempty sets, so HC satisfies
the first condition of Definition 10.26.

We have S ∈ HC because S is the unique block of πn = ωS . Also, since all
singletons {x} are blocks of αS = π1, it follows that HC satisfies the second
and the third conditions of Definition 10.26. Finally, let H and H ′ be two
sets of HC such that H ∩H ′ �= ∅. Because of this condition, it is clear that
these two sets cannot be blocks of the same partition. Thus, there exist two
partitions πi and πj in the chain such that H ∈ πi and H ′ ∈ πj . Suppose that
i < j. Since every block of πj is a union of blocks of πi, H ′ is a union of blocks
of πi and H ∩H ′ �= ∅ means that H is one of these blocks. Thus, H ⊆ H ′. If
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j > i, we obtain the reverse inclusion. This allows us to conclude that HC is
indeed a hierarchy. 	


Theorem 10.28 can be stated in terms of chains of equivalences; we give
the following alternative formulation for convenience.

Theorem 10.29. Let S be a finite set and let (ρ1, . . . , ρn) be a chain of equiv-
alence relations on S such that ρ1 = ιS and ρn = θS. Then, the collection of
blocks of the equivalence relations ρr (that is, the set

⋃
1≤r≤n S/ρr) is a hier-

archy on S.

Proof. The proof is a mere restatement of the proof of Theorem 10.28. 	

Define the relation “≺” on a hierarchy H on S by H ≺ K if H,K ∈ H,

H ⊂ K, and there is no set L ∈ H such that H ⊂ L ⊂ K.

Lemma 10.30. Let H be a hierarchy on a finite set S and let L ∈ H. The
collection PL = {H ∈ H | H ≺ L} is a partition of the set L.

Proof. We claim that L =
⋃

PL. Indeed, it is clear that
⋃

PL ⊆ L.
Conversely, suppose that z ∈ L but z �∈

⋃
PL. Since {z} ∈ H and there is

no K ∈ PL such that z ∈ K, it follows that {z} ∈ PL, which contradicts the
assumption that z �∈

⋃
PL. This means that L =

⋃
PL.

Let K0,K1 ∈ PL be two distinct sets. These sets are disjoint since other-
wise we would have either K0 ⊂ K1 or K1 ⊂ K0, and this would contradict
the definition of PL. 	


Theorem 10.31. Let H be a hierarchy on a set S. The graph of the relation
≺ on H is a tree whose root is S; its leaves are the singletons {x} for every
x ∈ S.

Proof. Since ≺ is an antisymmetric relation on H, it is clear that the graph
(H,≺) is acyclic. Moreover, for each set K ∈ H, there is a unique path that
joins K to S, so the graph is indeed a rooted tree. 	


Definition 10.32. Let H be a hierarchy on a set S. A grading function for
H is a function h : H −→ R that satisfies the following conditions:
(i) h({x}) = 0 for every x ∈ S, and
(ii) if H,K ∈ H and H ⊂ K, then h(H) < h(K).

If h is a grading function for a hierarchy H, the pair (H, h) is a graded
hierarchy.

Example 10.33. For the hierarchy H defined in Example 10.27 on the set S =
{s, t, u, v, w, x, y}, the function h : H −→ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,
h({s, t, u}) = 3, h({w, x}) = 4, h({s, t, u, v}) = 5, h({w, x, y}) = 6,
h({s, t, u, v, w, x, y}) = 7,

is a grading function and the pair (H, h) is a graded hierarchy on S.
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Theorem 10.28 can be extended to graded hierarchies.

Theorem 10.34. Let S be a finite set and let C = (π1, π2, . . . , πn) be an
increasing chain of partitions (PART(S),≤) such that π1 = αS and πn = ωS.

Consider a function f : {1, . . . , n} −→ R≥0 such that f(1) = 0. The
function h : HC −→ R≥0 given by

h(K) = f (min{j | K ∈ πj})

is a grading function for the hierarchy HC .

Proof. Since {x} ∈ π1 = αS , it follows that h({x}) = 0, so h satisfies the first
condition of Definition 10.32.

Suppose that H,K ∈ HC and H ⊂ K. If � = min{j | H ∈ πj} it is
impossible for K to be a block of a partition that precedes π�. Therefore,
� < min{j | K ∈ πj}, so h(H) < h(K), and (HC , h) is indeed a graded
hierarchy. 	


A graded hierarchy defines an ultrametric, as shown next.

Theorem 10.35. Let (H, h) be a graded hierarchy on a finite set S. Define
the function d : S2 −→ R as

d(x, y) = min{h(U) | U ∈ H and {x, y} ⊆ U}

for x, y ∈ S. The mapping d is an ultrametric on S.

Proof. Observe that for every x, y ∈ S there exists a set H ∈ H such that
{x, y} ⊆ H because S ∈ H.

It is immediate that d(x, x) = 0. Conversely, suppose that d(x, y) = 0.
Then, there exists H ∈ H such that {x, y} ⊆ H and h(H) = 0. If x �= y,
then {x} ⊂ H, hence 0 = h({x}) < h(H), which contradicts the fact that
h(H) = 0. Thus, x = y.

The symmetry of d is immediate.
To prove the ultrametric inequality, let x, y, z ∈ S, and suppose that

d(x, y) = p, d(x, z) = q, and d(z, y) = r. There exist H,K,L ∈ H such
that {x, y} ⊆ H, h(H) = p, {x, z} ⊆ K, h(K) = q, and {z, y} ⊆ L, h(L) = r.
Since K ∩ L �= ∅ (because both sets contain z), we have either K ⊆ L or
L ⊆ K, so K ∪ L equals either K or L and, in either case, K ∪ L ∈ H. Since
{x, y} ⊆ K ∪ L, it follows that

d(x, y) ≤ h(K ∪ L) = max{h(K),H(L)} = max{d(x, z), d(z, y)},

which is the ultrametric inequality. 	

We refer to the ultrametric d whose existence is shown in Theorem 10.35

as the ultrametric generated by the graded hierarchy (H, h).
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Example 10.36. The values of the ultrametric generated by the graded hierar-
chy (H, h) on the set S introduced in Example 10.33 are given in the following
table:

d s t u v w x y
s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0

The hierarchy introduced in Theorem 10.29 that is associated with an
ultrametric space can be naturally equipped with a grading function, as shown
next.

Theorem 10.37. Let (S, d) be a finite ultrametric space. There exists a graded
hierarchy (H, h) on S such that d is the ultrametric associated to (H, h).

Proof. Let H be the collection of equivalence classes of the equivalences ηr =
{(x, y) ∈ S2 | d(x, y) ≤ r} defined by the ultrametric d on the finite set S,
where the index r takes its values in the range Rd of the ultrametric d. Define
h(E) = min{r ∈ Rd | E ∈ S/ηr} for every equivalence class E.

It is clear that h({x}) = 0 because {x} is an η0-equivalence class for every
x ∈ S.

Let [x]t be the equivalence class of x relative to the equivalence ηt.
Suppose that E and E′ belong to the hierarchy and E ⊂ E′. We have

E = [x]r and E′ = [x]s for some x ∈ X. Since E is strictly included in E′,
there exists z ∈ E′ − E such that d(x, z) ≤ s and d(x, z) > r. This implies
r < s. Therefore,

h(E) = min{r ∈ Rd | E ∈ S/ηr} ≤ min{s ∈ Rd | E′ ∈ S/ηs} = h(E′),

which proves that (H, h) is a graded hierarchy.
The ultrametric e generated by the graded hierarchy (H, h) is given by

e(x, y) = min{h(B) | B ∈ H and {x, y} ⊆ B}
= min{r | (x, y) ∈ ηr}
= min{r | d(x, y) ≤ r}
= d(x, y),

for x, y ∈ S; in other words, we have e = d. 	


Example 10.38. Starting from the ultrametric on the set S = {s, t, u, v, w, x, y}
defined by the table given in Example 10.36, we obtain the following quotient
sets:
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Values of r S/ηr

[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w, x}, {y}
[5, 6) {s, t, u, v}, {w, x}, {y}
[6, 7) {s, t, u, v}, {w, x, y}
[7,∞) {s, t, u, v, w, x, y}

We shall draw the tree of a graded hierarchy (H, h) using a special rep-
resentation known as a dendrogram. In a dendrogram, an interior vertex K
of the tree is represented by a horizontal line drawn at the height h(K). For
example, the dendrogram of the graded hierarchy of Example 10.33 is shown
in Figure 10.9.

As we saw in Theorem 10.35, the value d(x, y) of the ultrametric d gen-
erated by a hierarchy H is the smallest height of a set of a hierarchy that
contains both x and y. This allows us to “read” the value of the ultrametric
generated by H directly from the dendrogram of the hierarchy.

� � � � � � �

�

s t u v w x y

1

2

3

4

5

6

7

Fig. 10.9. Dendrogram of graded hierarchy of Example 10.33.

Example 10.39. For the graded hierarchy of Example 10.33, the ultrametric
extracted from Figure 10.9 is clearly the same as the one that was obtained
in Example 10.36.

The Poset of Ultrametrics

Let S be a set. Recall that we denoted the set of dissimilarities by DS . Define
a partial order ≤ on DS by d ≤ d′ if d(x, y) ≤ d′(x, y) for every x, y ∈ S. It is
easy to verify that (DS ,≤) is a poset.

The set US of ultrametrics on S is a subset of DS .

Theorem 10.40. Let d be a dissimilarity on a set S and let Ud be the set of
ultrametrics
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Ud = {e ∈ US | e ≤ d}.
The set Ud has a largest element in the poset (DS ,≤).

Proof. The set Ud is nonempty because the zero dissimilarity d0 given by
d0(x, y) = 0 for every x, y ∈ S is an ultrametric and d0 ≤ d.

Since the set {e(x, y) | e ∈ Ud} has d(x, y) as an upper bound, it is possible
to define the mapping e1 : S2 −→ R≥0 as

e1(x, y) = sup{e(x, y) | e ∈ Ud}

for x, y ∈ S. It is clear that e ≤ e1 for every ultrametric e. We claim that e1
is an ultrametric on S.

We prove only that e1 satisfies the ultrametric inequality. Suppose that
there exist x, y, z ∈ S such that e1 violates the ultrametric inequality; that is,

max{e1(x, z), e1(z, y)} < e1(x, y).

This is equivalent to

sup{e(x, y) | e ∈ Ud}
> max{sup{e(x, z) | e ∈ Ud}, sup{e(z, y) | e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x, y) > sup{e(x, z) | e ∈ Ud},
ê(x, y) > sup{e(z, y) | e ∈ Ud}.

In particular, ê(x, y) > ê(x, z) and ê(x, y) > ê(z, y), which contradicts the
fact that ê is an ultrametric. 	


The ultrametric defined by Theorem 10.40 is known as the maximal sub-
dominant ultrametric for the dissimilarity d.

The situation is not symmetric with respect to the infimum of a set of
ultrametrics because, in general, the infimum of a set of ultrametrics is not
necessarily an ultrametric.

For example, consider a three-element set S = {x, y, z}, four distinct non-
negative numbers a, b, c, d such that a > b > c > d and the ultrametrics d and
d′ defined by the triangles shown in Figures 10.10(a) and (b), respectively.
The dissimilarity d0 defined by d0(u, v) = min{d(u, v), d′(u, v)} for u, v ∈ S is
given by

d0(x, y) = b, d0(y, z) = d, and d0(x, z) = c,

and d0 is clearly not an ultrametric because the triangle xyz is not isosceles.
In what follows, we give an algorithm for computing the maximal subdom-

inant ultrametric for a dissimilarity defined on a finite set S.
We will define inductively an increasing sequence of partitions π1 ≺

π2 ≺ · · · and a sequence of dissimilarities d1, d2, . . . on the sets of blocks
of π1, π2, . . ., respectively.
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Fig. 10.10. Two ultrametrics on the set {x, y, z}.

For the initial phase, π1 = αS and d1({x}, {y}) = d(x, y) for x, y ∈ S.
Suppose that di is defined on πi. If B,C ∈ πi is a pair of blocks such that

di(B,C) has the smallest value, define the partition πi+1 by

πi+1 = (πi − {B,C}) ∪ {B ∪ C}.

In other words, to obtain πi+1, we replace two of the closest blocks B and C,
of πi (in terms of di) with new block B∪C. Clearly, πi ≺ πi+1 in PART(S) for
i ≥ 1. Note that the collection of blocks of the partitions πi forms a hierarchy
Hd on the set S. The dissimilarity di+1 is given by

di+1(U, V ) = min{d(x, y) | x ∈ U, y ∈ V } (10.5)

for U, V ∈ πi+1.
We introduce a grading function hd on the hierarchy defined by this chain

of partitions starting from the dissimilarity d. The definition is done for the
blocks of the partitions πi by induction on i.

For i = 1 the blocks of the partition π1 are singletons; in this case we
define hd({x}) = 0 for x ∈ S.

Suppose that hd is defined on the blocks of πi, and let D be the block of
πi+1 that is generated by fusing the blocks B and C of πi. All other blocks of
πi+1 coincide with the blocks of πi. The value of the function hd for the new
block D is given by

hd(D) = min{d(x, y) | x ∈ B, y ∈ C}.

It is clear that hd satisfies the first condition of Definition 10.32.
For a set U of Hd, define

pU = min{i | U ∈ πi} and qU = max{i | U ∈ πi}.
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To verify the second condition of Definition 10.32, let H,K ∈ Hd such that
H ⊂ K. It is clear that qH ≤ pK . The construction of the sequence of parti-
tions implies that there are H0,H1 ∈ πpH−1 and K0,K1 ∈ πpK−1 such that
H = H0 ∪H1 and K = K0 ∪K1. Therefore,

hd(H) = min{d(x, y) | x ∈ H0, y ∈ H1},
hd(K) = min{d(x, y) | x ∈ K0, y ∈ K1}.

Since H0 and H1 were fused (to produce the partition πpH
) before K0 and K1

were (to produce the partition πpK
), it follows that hd(H) < hd(K).

By Theorem 10.35, the graded hierarchy (Hd, hd) defines an ultrametric;
we denote this ultrametric by e and will prove that e is the maximal subdom-
inant ultrametric for d. Recall that e is given by

e(x, y) = min{hd(W ) | {x, y} ⊆W}

and that hd(W ) is the least value of d(u, v) such that u ∈ U, v ∈ V ifW ∈ πpW

is obtained by fusing the blocks U and V of πpW −1. The definition of e(x, y)
implies that we have neither {x, y} ⊆ U nor {x, y} ⊆ V . Thus, we have either
x ∈ U and y ∈ V or x ∈ V and y ∈ U . Thus, e(x, y) ≤ d(x, y).

We now prove that:

e(x, y) = min{ampd(s) | s ∈ S(x, y)}

for x, y ∈ S.
Let D be the minimal set in Hd that includes {x, y}. Then, D = B ∪ C,

where B and C are two disjoint sets of Hd such that x ∈ B and y ∈ C. If s is
a sequence included in D, then there are two consecutive components of s, sk
and sk+1, such that sk ∈ B and sk+1 ∈ C. This implies

e(x, y) = min{d(u, v) | u ∈ B, v ∈ C}
≤ d(sk, sk+1)
≤ ampd(s).

If s is not included in D, let sq and sq+1 be two consecutive components of
s such that sq ∈ D and sq+1 �∈ D. Let E be the smallest set of Hd that
includes {sq, sq+1}. We have D ⊆ E (because sk ∈ D ∩ E) and therefore
hd(D) ≤ hd(E). If E is obtained as the union of two disjoint sets E′ and E′′

of Hd such that sk ∈ E′ and sk+1 ∈ E′′, we have D ⊆ E′. Consequently,

hd(E) = min{d(u, v) | u ∈ E′, v ∈ E′′} ≤ d(sk, sk+1),

which implies

e(x, y) = hd(D) ≤ hd(E) ≤ d(sk, sk+1) ≤ ampd(s).

Therefore, we conclude that e(x, y) ≤ ampd(s) for every s ∈ S(x, y).



10.5 Metrics on R
n 377

We now show that there is a sequence w ∈ S(x, y) such that e(x, y) ≥
ampd(w), which implies the equality e(x, y) = ampd(w). To this end, we prove
that for every D ∈ πk ⊆ Hd there exists w ∈ S(x, y) such that ampd(w) ≤
hd(D). The argument is by induction on k.

For k = 1, the statement obviously holds. Suppose that it holds for
1, . . . , k − 1, and let D ∈ πk. The set D belongs to πk−1 or D is obtained
by fusing the blocks B,C of πk−1. In the first case, the statement holds by
inductive hypothesis. The second case has several subcases:
(i) If {x, y} ⊆ B, then by the inductive hypothesis, there exists a sequence

u ∈ S(x, y) such that ampd(u) ≤ hd(B) ≤ hd(D) = e(x, y).
(ii) The case {x, y} ⊆ C is similar to the first case.
(iii) If x ∈ B and y ∈ C, there exist u, v ∈ D such that d(u, v) = hd(D).

By the inductive hypothesis, there is a sequence u ∈ S(x, u) such
that ampd(u) ≤ hd(B) and there is a sequence v ∈ S(v, y) such that
ampd(v) ≤ hd(C). This allows us to consider the sequence w obtained
by concatenating the sequences u, (u, v),v; clearly, w ∈ S(x, y) and
ampd(w) = max{ampd(u), d(u, v), ampd(v)} ≤ hd(D).
To complete the argument, we need to show that if e′ is another ultrametric

such that e(x, y) ≤ e′(x, y) ≤ d(x, y), then e(x, y) = e′(x, y) for every x, y ∈ S.
By the previous argument, there exists a sequence s = (s0, . . . , sn) ∈ S(x, y)
such that ampd(s) = e(x, y). Since e′(x, y) ≤ d(x, y) for every x, y ∈ S, it
follows that e′(x, y) ≤ ampd(s) = e(x, y). Thus, e(x, y) = e′(x, y) for every
x, y ∈ S, which means that e = e′. This concludes our argument.

10.5 Metrics on R
n

Data sets often consist of n-dimensional vectors having real number compo-
nents. Dissimilarities between these vectors can be evaluated by using one
of the metrics that we present in this section. We begin with two technical
results.

Lemma 10.41. Let p, q ∈ R − {0, 1} such that 1
p + 1

q = 1. Then we have
p > 1 if and only if q > 1. Furthermore, one of the numbers p, q belongs to
the interval (0, 1) if and only if the other number is negative.

Proof. We leave to the reader the simple proof of this statement. 	


Lemma 10.42. Let p, q ∈ R−{0, 1} be two numbers such that 1
p + 1

q = 1 and
p > 1. Then, for every a, b ∈ R≥0, we have

ab ≤ ap

p
+
bq

q
,

where the equality holds if and only if a = b−
1

1−p .



378 10 Dissimilarities, Metrics, and Ultrametrics

Proof. By Lemma 10.41, we have q > 1. Consider the function f(x) = xp

p +
1
q − x for x ≥ 0. We have f ′(x) = xp−1− 1, so the minimum is achieved when
x = 1 and f(1) = 0. Thus,

f
(
ab−

1
p−1

)
≥ f(1) = 0,

which amounts to
apb−

p
p−1

p
+

1
q
− ab− 1

p−1 ≥ 0.

By multiplying both sides of this inequality by b
p

p−1 , we obtain the desired
inequality. 	


Observe that if 1
p + 1

q = 1 and p < 1, then q < 0. In this case, we have the
reverse inequality

ab ≥ ap

p
+
bq

q
. (10.6)

which can be shown by observing that the function f has a maximum in x = 1.
The same inequality holds when q < 1 and therefore p < 0.

Theorem 10.43 (The Hölder Inequality). Let a1, . . . , an and b1, . . . , bn be
2n nonnegative numbers, and let p and q be two numbers such that 1

p + 1
q = 1

and p > 1. We have

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

) 1
p

·
(

n∑
i=1

bqi

) 1
q

.

Proof. Define the numbers

xi =
ai

(
∑n

i=1 a
p
i )

1
p

and yi =
bi

(
∑n

i=1 b
q
i )

1
q

for 1 ≤ i ≤ n. Lemma 10.42 applied to xi, yi yields

aibi

(
∑n

i=1 a
p
i )

1
p (
∑n

i=1 b
q
i )

1
q

≤ 1
p

ap
i∑n

i=1 a
p
i

+
1
q

bpi∑n
i=1 b

p
i

.

Adding these inequalities, we obtain

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

) 1
p
(

n∑
i=1

bqi

) 1
q

because 1
p + 1

q = 1. 	

The nonnegativity of the numbers a1, . . . , an, b1, . . . , bn can be relaxed by

using absolute values. Indeed, we can easily prove the following variant of
Theorem 10.43.
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Theorem 10.44. Let a1, . . . , an and b1, . . . , bn be 2n numbers and let p and
q be two numbers such that 1

p + 1
q = 1 and p > 1. We have

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|p
) 1

p

·
(

n∑
i=1

|bi|q
) 1

q

.

Proof. By Theorem 10.43, we have

n∑
i=1

|ai||bi| ≤
(

n∑
i=1

|ai|p
) 1

p

·
(

n∑
i=1

|bi|q
) 1

q

.

The needed equality follows from the fact that∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
n∑

i=1

|ai||bi|.

	


Corollary 10.45 (The Cauchy Inequality). Let a1, . . . , an and b1, . . . , bn
be 2n numbers. We have∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

|ai|2 ·

√√√√ n∑
i=1

|bi|2.

Proof. The inequality follows immediately from Theorem 10.44 by taking p =
q = 2. 	


Theorem 10.46 (Minkowski’s Inequality). Let a1, . . . , an and b1, . . . , bn
be 2n nonnegative numbers. If p ≥ 1, we have

(
n∑

i=1

(ai + bi)p

) 1
p

≤
(

n∑
i=1

ap
i

) 1
p

+

(
n∑

i=1

bpi

) 1
p

.

If p < 1, the inequality sign is reversed.

Proof. For p = 1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

n∑
i=1

(ai + bi)p =
n∑

i=1

ai(ai + bi)p−1 +
n∑

i=1

bi(ai + bi)p−1.

By Hölder’s inequality for p, q such that p > 1 and 1
p + 1

q = 1, we have
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n∑
i=1

ai(ai + bi)p−1 ≤
(

n∑
i=1

ap
i

) 1
p
(

n∑
i=1

(ai + bi)(p−1)q

) 1
q

=

(
n∑

i=1

ap
i

) 1
p
(

n∑
i=1

(ai + bi)p

) 1
q

.

Similarly, we can write

n∑
i=1

bi(ai + bi)p−1 ≤
(

n∑
i=1

bpi

) 1
p
(

n∑
i=1

(ai + bi)p

) 1
q

.

Adding the last two inequalities yields

n∑
i=1

(ai + bi)p ≤

⎛
⎝
(

n∑
i=1

ap
i

) 1
p

+

(
n∑

i=1

bpi

) 1
p

⎞
⎠
(

n∑
i=1

(ai + bi)p

) 1
q

,

which is equivalent to the desired inequality(
n∑

i=1

(ai + bi)p

) 1
p

≤
(

n∑
i=1

ap
i

) 1
p

+

(
n∑

i=1

bpi

) 1
p

.

	


Corollary 10.47. For p ≥ 1, the function νp : R
n −→ R≥0 defined by

νp(x1, . . . , xn) =

(
n∑

i=1

|xi|p
) 1

p

,

where x = (x1, . . . , xn) ∈ R
n, is a norm on the linear space (Rn,+, ·).

Proof. We must prove that νp satisfies the conditions of Definition 2.47. The
argument for the first two parts of this definition are immediate and are left
to the reader.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n. Minkowski’s inequality ap-

plied to the nonnegative numbers ai = |xi| and bi = |yi| amounts to(
n∑

i=1

(|xi|+ |yi|)p

) 1
p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

.

Since |xi + yi| ≤ |xi|+ |yi| for every i, we have(
n∑

i=1

(|xi + yi|)p

) 1
p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

,

that is, νp(x + y) ≤ νp(x) + νp(y). Thus, νp is a norm on R
n. 	
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Example 10.48. Consider the mappings ν1, ν∞ : R
n −→ R given by

ν1(x) = |x1|+ |x2|+ · · ·+ |xn|,
ν∞(x) = max{|x1|, |x2|, . . . , |xn|},

for every x = (x1, . . . , xn) ∈ R
n. Both ν1 and ν∞ are norms on R

n. However,
neither ν1 nor ν∞ are generated by an inner product on R

n (see Exercise 19).

We will frequently use the alternative notation ‖ x ‖p for νp(x).
A special metric on R

n is the function ν∞ : R
n −→ R≥0 given by

ν∞(x) = max{|xi| | 1 ≤ i ≤ n} (10.7)

for x = (x1, . . . , xn) ∈ R
n.

ν∞ clearly satisfies the first two conditions of Definition 2.47. To prove
that it satisfies the third condition, we start from the inequality

|xi + yi| ≤ |xi|+ |yi| ≤ ν∞(x) + ν∞(y)

for every i, 1 ≤ i ≤ n. This in turn implies

ν∞(x + y) = max{|xi + yi| | 1 ≤ i ≤ n} ≤ ν∞(x) + ν∞(y),

which gives the desired inequality.
This norm can be regarded as a limit case of the norms νp. Indeed, let

x ∈ R
n and let M = max{|xi| | 1 ≤ i ≤ n} = |x�1 | = · · · = |x�k

| for some
�1, . . . , �k, where 1 ≤ �1, . . . , �k ≤ n. Here x�1 , . . . , x�k

are the components of
x that have the maximal absolute value and k ≥ 1. We can write

lim
p→∞

νp(x) = lim
p→∞

M

(
n∑

i=1

(
|xi|
M

)p
) 1

p

= lim
p→∞

M(k)
1
p = M,

which justifies the notation ν∞.
The following statement holds for every linear space and therefore for the

linear space (Rn,+, ·).
Theorem 10.49. Each norm ν : L −→ R≥0 on a metric space (L,+, ·) gen-
erates a metric on the set L defined by dν(x,y) =‖ x− y ‖ for x,y ∈ L.

Proof. Note that, by the first property of norms from Definition 2.47, if
dν(x,y) =‖ x− y ‖= 0, it follows that x− y = 0; that is, x = y.

The symmetry of dν is obvious and so we need to verify only the triangular
axiom. Let x,y, z ∈ L. Applying the third property of Definition 2.47, we have

ν(x− z) = ν(x− y + y− z) ≤ ν(x− y) + ν(y− z)

or, equivalently, dν(x, z) ≤ dν(x,y) + dν(y, z), for every x,y, z ∈ L, which
concludes the argument. 	
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We refer to dν as the metric induced by the norm ν on the linear space
(L,+, ·).

For p ≥ 1, then dp denotes the metric dνp
induced by the norm νp on the

linear space (Rn,+, ·) known as the Minkowski metric on R
n.

If p = 2, we have the Euclidean metric on R
n given by

d2(x,y) =

√√√√ n∑
i=1

|xi − yi|2 =

√√√√ n∑
i=1

(xi − yi)2.

For p = 1, we have

d1(x,y) =
n∑

i=1

|xi − yi|.

These metrics can be seen in Figure 10.11 for the special case of R
2. If

x = (x0, x1) and y = (y0, y1), then d2(x,y) is the length of the hypotenuse of
the right triangle and d1(x,y) is the sum of the lengths of the two legs of the
triangle.

�

�

x = (x0, x1)

y = (y0, y1)

(y0, x1)

Fig. 10.11. The distances d1(x,y) and d2(x,y).

Theorem 10.51 to follow allows us to compare the norms νp (and the met-
rics of the form dp) that were introduced on R

n. We begin with a preliminary
result.

Lemma 10.50. Let a1, . . . , an be n positive numbers. If p and q are two pos-
itive numbers such that p ≤ q, then

(ap
1 + · · ·+ ap

n)
1
p ≥ (aq

1 + · · ·+ aq
n)

1
q .

Proof. Let f : R
>0 −→ R be the function defined by
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f(r) = (ar
1 + · · ·+ ar

n)
1
r .

Since

ln f(r) =
ln (ar

1 + · · ·+ ar
n)

r
,

it follows that

f ′(r)
f(r)

= − 1
r2

(ar
1 + · · ·+ ar

n) +
1
r
· a

r
1 ln a1 + · · ·+ ar

n ln ar

ar
1 + · · ·+ ar

n

.

To prove that f ′(r) < 0, it suffices to show that

ar
1 ln a1 + · · ·+ ar

n ln ar

ar
1 + · · ·+ ar

n

≤ ln (ar
1 + · · ·+ ar

n)
r

.

This last inequality is easily seen to be equivalent to

n∑
i=1

ar
i

ar
1 + · · ·+ ar

n

ln
ar

i

ar
1 + · · ·+ ar

n

≤ 0,

which holds because
ar

i

ar
1 + · · ·+ ar

n

≤ 1

for 1 ≤ i ≤ n. 	


Theorem 10.51. Let p and q be two positive numbers such that p ≤ q. For
every u ∈ R

n, we have ‖ u ‖p≥‖ u ‖q.

Proof. This statement follows immediately from Lemma 10.50. 	


Corollary 10.52. Let p, q be two positive numbers such that p ≤ q. For every
x,y ∈ R

n, we have dp(x,y) ≥ dq(x,y).

Proof. This statement follows immediately from Theorem 10.51. 	


Theorem 10.53. Let p ≥ 1. For every x ∈ R
n we have

‖ x ‖∞≤‖ x ‖p≤ n ‖ x ‖∞ .

Proof. The first inequality is an immediate consequence of Theorem 10.51.
The second inequality follows by observing that

‖ x ‖p=

(
n∑

i=1

|xi|p
) 1

p

≤ n max
1≤i≤n

|xi| = n ‖ x ‖∞ .
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Corollary 10.54. Let p and q be two numbers such that p, q ≥ 1. There exist
two constants c, d ∈ R>0 such that

c ‖ x ‖q≤‖ x ‖p≤ d ‖ x ‖q

for x ∈ R
n.

Proof. Since ‖ x ‖∞≤‖ x ‖p and ‖ x ‖q≤ n ‖ x ‖∞, it follows that ‖ x ‖q≤
n ‖ x ‖p. Exchanging the roles of p and q, we have ‖ x ‖p≤ n ‖ x ‖q, so

1
n
‖ x ‖q≤‖ x ‖p≤ n ‖ x ‖q

for every x ∈ R
n. 	


Corollary 10.55. For every x,y ∈ R
n and p ≥ 1, we have d∞(x,y) ≤

dp(x,y) ≤ nd∞(x,y). Further, for p, q > 1, there exist c, d ∈ R>0 such that

cdq(x,y) ≤ dp(x,y) ≤ cdq(x,y)

for x,y ∈ R
n.

Proof. This follows from Theorem 10.53 and from Corollary 10.55. 	

Corollary 10.52 implies that if p ≤ q, then the closed sphere Bdp

(x, r) is
included in the closed sphere Bdq

(x, r). For example, we have

Bd1(0, 1) ⊆ Bd2(0, 1) ⊆ Bd∞(0, 1).

In Figures 10.12 (a) - (c) we represent the closed spheres Bd1(0, 1), Bd2(0, 1),
and Bd∞(0, 1).

� � �

� � �
�

�
�
��

�
�

�

�


�

(a) (b) (c)

Fig. 10.12. Spheres Bdp(0, 1) for p = 1, 2,∞.

An useful consequence of Theorem 10.43 is the following statement:

Theorem 10.56. Let x1, . . . , xm and y1, . . . , ym be 2m nonnegative numbers
such that

∑m
i=1 xi =

∑m
i=1 yi = 1 and let p and q be two positive numbers such

that 1
p + 1

q = 1. We have
m∑

j=1

x
1
p

j y
1
q

j ≤ 1.
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Proof. The Hölder inequality applied to x
1
p

1 , . . . , x
1
p
m and y

1
q

1 , . . . , y
1
q
m yields the

needed inequality
m∑

j=1

x
1
p

j y
1
q

j ≤
m∑

j=1

xj

m∑
j=1

yj = 1

	

Theorem 10.56 allows the formulation of a generalization of the Hölder

Inequality.

Theorem 10.57. Let A be an n×m matrix, A = (aij), having positive entries
such that

∑m
j=1 aij = 1 for 1 ≤ i ≤ n. If p = (p1, . . . , pn) is an n-tuple of

positive numbers such that
∑n

i=1 pi = 1, then

m∑
j=1

n∏
i=1

api

ij ≤ 1.

Proof. The argument is by induction on n ≥ 2. The basis case, n = 2 follows
immediately from Theorem 10.56 by choosing p = 1

p1
, q = 1

p2
, xj = a1j , and

yj = a2j for 1 ≤ j ≤ m.
Suppose that the statement holds for n, let A be an (n + 1) ×m-matrix

having positive entries such that
∑m

j=1 aij = 1 for 1 ≤ i ≤ n + 1, and let
p = (p1, . . . , pn, pn+1) be such that p1 + · · ·+ pn + pn+1 = 1.

It is easy to see that

m∑
j=1

n+1∏
i=1

api

ij ≤
m∑

j=1

ap1
1ja

pn−1
n−1 j(anj + an+1 j)pn+pn+1 .

By applying the inductive hypothesis, we have

m∑
j=1

n+1∏
i=1

api

ij ≤ 1.

	

A more general form of Theorem 10.57 is given next.

Theorem 10.58. Let A be an n × m matrix, A = (aij), having positive
entries. If p = (p1, . . . , pn) is an n-tuple of positive numbers such that∑n

i=1 pi = 1, then
m∑

j=1

n∏
i=1

api

ij ≤
n∏

i=1

⎛
⎝ m∑

j=1

aij

⎞
⎠

pi

.

Proof. Let B = (bij) be the matrix defined by

bij =
aij∑m

j=1 aij
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for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since
∑m

j=1 bij = 1, we can apply Theorem 10.57
to this matrix. Thus, we can write

m∑
j=1

n∏
i=1

bpi

ij =
m∑

j=1

n∏
i=1

(
aij∑m

j=1 aij

)pi

=
m∑

j=1

n∏
i=1

api

ij(∑m
j=1 aij

)pi

=

∑m
j=1

∏n
i=1 a

pi

ij∏n
i=1

(∑m
j=1 aij

)pi
≤ 1.

	

We now give a generalization of Minkowski’s inequality (Theorem 10.46).

First, we need a preliminary result.

Lemma 10.59. If a1, . . . , an and b1, . . . , bn are positive numbers and r < 0,
then

n∑
i=1

ar
i b

1−r
i ≥

(
n∑

i=1

ai

)r

·
(

n∑
i=1

bi

)1−r

.

Proof. Let c1, . . . , cn, d1, . . . , dn be 2n positive numbers such that
∑n

i=1 ci =∑n
i=1 di = 1. Inequality (10.6) applied to the numbers a = c

1
p

i and b = di
1
q

yields:

c
1
p

i d
1
q

i ≥
ci
p

+
di

q
.

Summing these inequalities produces the inequality

n∑
i=1

c
1
p

i d
1
q

i ≥ 1,

or
n∑

i=1

cri d
1−r
i ≥ 1,

where r = 1
p < 0. Choosing ci = ai∑n

i=1 ai
and di = bi∑n

i=1 bi
, we obtain the

desired inequality. 	


Theorem 10.60. Let A be an n × m matrix, A = (aij), having positive
entries, and let p and q be two numbers such that p > q and p �= 0, q �= 0. We
have ⎛

⎝ m∑
j=1

(
n∑

i=1

ap
ij

) q
p

⎞
⎠

1
q

≥

⎛
⎜⎝ n∑

i=1

⎛
⎝ m∑

j=1

aq
ij

⎞
⎠

p
q

⎞
⎟⎠

1
p

.
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Proof. Define

E =

⎛
⎝ m∑

j=1

(
n∑

i=1

ap
ij

) q
p

⎞
⎠

1
q

,

F =

⎛
⎜⎝ n∑

i=1

⎛
⎝ m∑

j=1

aq
ij

⎞
⎠

p
q

⎞
⎟⎠

1
p

,

and ui =
∑m

j=1 a
q
ij for 1 ≤ i ≤ n.

There are three distinct cases to consider related to the position of 0
relative to p and q.

Suppose initially that p > q > 0. We have

F p =
∑n

i=1 u
p
q

i =
∑n

i=1 uiu
p
q −1

i

=
∑n

i=1

∑m
j=1 a

q
iju

p
q −1

i =
∑m

j=1

∑n
i=1 a

q
iju

p
q −1

i .

By applying the Hölder inequality, we have

n∑
i=1

aq
iju

p
q −1

i ≤
(

n∑
i=1

(aq
ij)

p
q

) q
p

·
(

n∑
i=1

(u
p
q −1

i )
p

p−q

)1− q
p

(10.8)

=

(
n∑

i=1

ap
ij

) q
p

·
(

n∑
i=1

u
p
q

i

)1− q
p

,

which implies F p ≤ EqF p−q. This, in turn, gives F q ≤ Eq, which implies the
generalized Minkowski inequality.

Suppose now that 0 > p > q, so 0 < −p < −q. Applying the generalized
Minkowski inequality to the positive numbers bij = 1

aij
gives the inequality

⎛
⎝ m∑

j=1

(
n∑

i=1

b−q
ij

) p
q

⎞
⎠

− 1
p

≥

⎛
⎜⎝ n∑

i=1

⎛
⎝ m∑

j=1

b−p
ij

⎞
⎠

q
p

⎞
⎟⎠

− 1
q

,

which is equivalent to

⎛
⎝ m∑

j=1

(
n∑

i=1

aq
ij

) p
q

⎞
⎠

− 1
p

≥

⎛
⎜⎝ n∑

i=1

⎛
⎝ m∑

j=1

ap
ij

⎞
⎠

q
p

⎞
⎟⎠

− 1
q

.

A last transformation gives
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⎛
⎝ m∑

j=1

(
n∑

i=1

aq
ij

) p
q

⎞
⎠

1
p

≤

⎛
⎜⎝ n∑

i=1

⎛
⎝ m∑

j=1

ap
ij

⎞
⎠

q
p

⎞
⎟⎠

1
q

,

which is the inequality to be proven.
Finally, suppose that p > 0 > q. Since q

p < 0, Inequality (10.9) is replaced
by the opposite inequality through the application of Lemma 10.59:

n∑
i=1

aq
iju

p
q −1

i ≥
(

n∑
i=1

ap
ij

) q
p

·
(

n∑
i=1

u
p
q

i

)1− q
p

.

This leads to F p ≥ EqF p−q or F q ≥ Eq. Since q < 0, this implies F ≤ E. 	


10.6 Metrics on Collections of Sets

Dissimilarities between subsets of finite sets have an intrinsic interest for data
mining, where comparisons between sets of objects are frequent. Also, metrics
defined on subsets can be transferred to metrics between binary sequences us-
ing the characteristic sequences of the subsets and thus become an instrument
for studying binary data.

A very simple metric on P(S), the set of subsets of a finite set S is given
in the next theorem.

Theorem 10.61. Let S be a finite set. The mapping δ : (P(S))2 −→ R≥0

defined by δ(X,Y ) = |X ⊕ Y | is a metric on P(S).

Proof. The function δ is clearly symmetric and we have δ(X,Y ) = 0 if and
only if X = Y . Therefore, we need to prove only the triangular inequality

|X ⊕ Y | ≤ |X ⊕ Z|+ |Z ⊕ Y |

for every X,Y,Z ∈ P(S).
Since X ⊕ Y = (X ⊕Z)⊕ (Z ⊕ Y ), we have |X ⊕ Y | ≤ |X ⊕Z|+ |Z ⊕ Y |,

which is precisely the triangular inequality for δ. 	

For U, V ∈ P(S), we have 0 ≤ δ(U, V ) ≤ |S|, where δ(U, V ) = |S| if and

only if V = S − U .

Lemma 10.62. Let d : S × S −→ R≥0 be a metric and let u ∈ S be an
element of the set S. Define the Steinhaus transform of d as the mapping
du : S × S −→ R≥0 given by

du(x, y) =

{
0 if x = y = u

d(x,y)
d(x,y)+d(x,u)+d(u,y) otherwise.

Then, du is a metric on S.
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Proof. It is easy to see that du is symmetric and, further, that du(x, y) = 0 if
and only if x = y.

To prove the triangular inequality, observe that a ≤ a′ implies

a

a+ k
≤ a′

a′ + k
, (10.9)

which holds for every positive numbers a, a′, k. Then, we have

du(x, y) =
d(x, y)

d(x, y) + d(x, u) + d(u, y)

≤ d(x, z) + d(z, y)
d(x, z) + d(z, y) + d(x, u) + d(u, y)
(by Inequality (10.9))

=
d(x, z)

d(x, z) + d(z, y) + d(x, u) + d(u, y)

+
d(z, y)

d(x, z) + d(z, y) + d(x, u) + d(u, y)

≤ d(x, z)
d(x, z) + d(z, y) + d(z, u)

+
d(z, y)

d(z, y) + d(z, u) + d(u, y)
= du(x, z) + du(z, y),

which is the desired triangular inequality. 	


Theorem 10.63. Let S be a finite set. The function d : P(S)2 −→ R≥0

defined by

d(X,Y ) =
|X ⊕ Y |
|X ∪ Y |

for X,Y ∈ P(S) is a metric on P(S).

Proof. It is clear that d is symmetric and that d(X,Y ) = 0 if and only if X =
Y . So, we need to prove only the triangular inequality. The mapping δ defined
by δ(X,Y ) = |X ⊕ Y | is a metric on P(X), as we proved in Theorem 10.61.
By Lemma 10.62, the mapping δ∅ is also a metric on P(S). We have

δ∅(X,Y ) =
|X ⊕ Y |

|X ⊕ Y |+ |X ⊕ ∅|+ |∅ ⊕ Y | .

Since X ⊕ ∅ = X, ∅ ⊕ Y = Y , we have

|X ⊕ Y |+ |X ⊕ ∅|+ |∅ ⊕ Y | = |X ⊕ Y |+ |X|+ |Y | = 2|X ∪ Y |,

which means that 2δ∅(X,Y ) = d(X,Y ) for every X,Y ∈ P(S). This implies
that d is indeed a metric. 	
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Theorem 10.64. Let S be a finite set. The function d : P(S)2 −→ R≥0

defined by

d(X,Y ) =
|X ⊕ Y |

|S| − |X ∩ Y |
for X,Y ∈ P(S) is a metric on P(S).

Proof. We only prove that d satisfies the triangular axiom. The argument
begins, as in Theorem 10.63, with the metric δ. Again, by Lemma 10.62, the
mapping δS is also a metric on P(S). We have

δS(X,Y ) =
|X ⊕ Y |

|X ⊕ Y |+ |X ⊕ S|+ |S ⊕ Y |

=
|X ⊕ Y |

|X ⊕ Y |+ |S −X|+ |S − Y |

=
|X ⊕ Y |

|X ⊕ Y |+ |S −X|+ |S − Y |

=
|X ⊕ Y |

2(|S| − |X ∩ Y |)

because |X ⊕ Y | + |S − X| + |S − Y | = 2(|S| − |X ∩ Y |), as the reader can
easily verify. Therefore, d(X,Y ) = 2δS(X,Y ), which proves that d is indeed
a metric. 	


A general mechanism for defining a metric on P(S), where S is a finite set,
|S| = n, can be introduced starting with two functions:
1. a weight function w : S −→ R≥0 such that

∑
{w(x) | x ∈ S} = 1 and

2. an injective function ϕ : P(S) −→ (S −→ R).
The metric defined by the pair (w,ϕ) is the function dw,ϕ : P(S)2 −→ R≥0

defined by

dw,ϕ(X,Y ) =

(∑
s∈S

w(s)|ϕ(X)(s)− ϕ(Y )(s)|q
) 1

q

for X,Y ∈ P(S).
The function w is extended to P(S) by

w(T ) =
∑
{w(x) | x ∈ T}.

Clearly, w(∅) = 0 and w(S) = 1. Also, if P and Q are two disjoint subsets, we
have w(P ∪Q) = w(P ) + w(Q).

We refer to both w and its extension to P(S) as weight functions.
The value ϕ(T ) of the function ϕ is itself a function ϕ(T ) : S −→ R, and

each subset T of S defines such a distinct function. These notions are used in
the next theorem.
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Theorem 10.65. Let S be a set, w : S −→ R≥0 be a weight function, and
ϕ : P(S) −→ (S −→ R) be an injective function.

If w(x) > 0 for every x ∈ S, then the mapping dw,ϕ : (P(S))2 −→ R

defined by

dw,ϕ(U, V ) =

(∑
x∈S

w(x)|ϕ(U)(x)− ϕ(V )(x)|p
) 1

p

(10.10)

for U, V ∈ P(S) is a metric on P(S).

Proof. It is clear that dw,ϕ(U,U) = 0. If dw,ϕ(U, V ) = 0, then ϕ(U)(x) =
ϕ(V )(x) because w(x) > 0, for every x ∈ S. Thus, ϕ(U) = ϕ(V ), which
implies U = V due to the injectivity of ϕ.

The symmetry of dw,ϕ is immediate.
To prove the triangular inequality, we apply Minkowski’s inequality. Sup-

pose that S = {x0, . . . , xn−1}, and let U, V,W ∈ P(S). Define the numbers

ai = (w(xi))
1
pϕU (xi),

bi = (w(xi))
1
pϕV (xi),

ci = (w(xi))
1
pϕW (xi),

for 0 ≤ i ≤ n− 1. Then, by Minkowski’s inequality, we have

(
n−1∑
i=0

|ai − bi|p
) 1

p

≤
(

n−1∑
i=0

|ai − ci|p
) 1

p

+

(
n−1∑
i=0

|ci − bi|p
) 1

p

,

which amounts to the triangular inequality dw,ϕ(U, V ) ≤ dw,ϕ(U,W ) +
dw,ϕ(W,V ). Thus, we may conclude that dw,ϕ is indeed a metric on P(S).
	


Example 10.66. Let w : S −→ [0, 1] be a positive weight function. Define the
function ϕ by

ϕ(U)(x) =

{
1√

w(U)
if x ∈ U,

0 otherwise.

It is easy to see that ϕ(U) = ϕ(V ) if and only if U = V , so ϕ is an injective
function.

Choosing p = 2, the metric defined in Theorem 10.65 becomes

d2w,ϕ(U, V ) =

(∑
x∈S

w(x)|ϕ(U)(x)− ϕ(V )(x)|2
) 1

2

.

Suppose initially that neither U nor V are empty. Several cases need to be
considered:
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1. If x ∈ U ∩ V , then

|ϕ(U)(x)− ϕ(V )(x)|2 =
1

w(U)
+

1
w(V )

− 2√
w(U)w(V )

.

The total contribution of these elements of S is

w(U ∩ V )

(
1

w(U)
+

1
w(V )

− 2√
w(U)w(V )

)
.

If x ∈ U − V , then

|ϕ(U)(x)− ϕ(V )(x)|2 =
1

w(U)

and the total contribution is w(U − V ) 1
w(U) .

2. When x ∈ V − U , then

|ϕ(U)(x)− ϕ(V )(x)|2 =
1

w(V )

and the total contribution is w(V − U) 1
w(V ) .

3. Finally, if x �∈ U ∪ V , then |ϕ(U)(x)− ϕ(V )(x)|2 = 0.
Thus, we can write

d2w,ϕ(U, V ) = w(U ∩ V )

(
1

w(U)
+

1
w(V )

− 2√
w(U)w(V )

)

+w(U − V )
1

w(U)
+ w(V − U)

1
w(V )

=
w(U ∩ V ) + w(U − V )

w(U)
+
w(U ∩ V ) + w(V − U)

w(V )

− 2w(U ∩ V )√
w(U)w(V )

= 2

(
1− w(U ∩ V )√

w(U)w(V )

)
,

where we used the fact that w(U ∩ V ) + w(U − V ) = w(U) and w(U ∩ V ) +
w(V − U) = w(V ). Thus,

dw,ϕ(U, V ) =

√√√√2

(
1− w(U ∩ V )√

w(U)w(V )

)
.

If U �= ∅ and V = ∅, then it is immediate that dw,ϕ(U, ∅) = 1. Of course,
dw,ϕ(∅, ∅) = 0.
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Thus, the mapping dw,ϕ defined by

dw,ϕ(U, V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if U = V = ∅,
1 if U �= ∅ and V = ∅,
1 if U = ∅ and V �= ∅,√

2
(

1− w(U∩V )√
w(U)w(V )

)
if U �= ∅ and V �= ∅,

for U, V ∈ P(S) is a metric, which is known as the Ocḧıai metric on P(S).

Example 10.67. Using the same notation as in Example 10.66 for a positive
weight function w : S −→ [0, 1], define the function ϕ by

ϕ(U)(x) =

{
1

w(U) if x ∈ U,
0 otherwise.

It is easy to see that ϕ is an injective function.
Suppose that p = 2 in Equality (10.10). If U �= ∅ and V �= ∅, we have the

following cases:
1. If x ∈ U ∩ V , then

|ϕ(U)(x)− ϕ(V )(x)|2 =
1

w(U)2
+

1
w(V )2

− 2
w(U)w(V )

.

The total contribution of these elements of S is

w(U ∩ V )
(

1
w(U)2

+
1

w(V )2
− 2
w(U)w(V )

)
.

If x ∈ U − V , then

|ϕ(U)(x)− ϕ(V )(x)|2 =
1

w(U)2

and the total contribution is w(U − V ) 1
w(U)2 .

2. When x ∈ V − U , then

|ϕ(U)(x)− ϕ(V )(x)|2 =
1

w(V )2

and the total contribution is w(V − U) 1
w(V )2 .

3. Finally, if x �∈ U ∪ V , then |ϕ(U)(x)− ϕ(V )(x)|2 = 0.
Summing up these contributions, we can write

d2w,ϕ(U, V ) =
1

w(U)
+

1
w(V )

− 2
w(U ∩ V )
w(U)w(V )

=
w(U) + w(V )− 2w(U ∩ V )

w(U)w(V )

=
w(U ⊕ V )
w(U)w(V )

.
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If V = ∅, dw,ϕ(U, ∅) =
√

1
w(U) ; similarly, dw,ϕ(∅, V ) =

√
1

w(V ) .
We proved that the mapping dw,ϕ defined by

dw,ϕ(U, V ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
w(U⊕V )

w(U)w(V ) if U �= ∅ and V �= ∅,√
1

w(U) if U �= ∅ and V = ∅,√
1

w(V ) if U = ∅ and V �= ∅,
0 if U = V = ∅,

for U, V ∈ P(S), is a metric on P(S) known as the χ2 metric.

10.7 Metrics on Partitions

Metrics on sets of partitions of finite sets are useful in data mining because
attributes induce partitions on the sets of tuples of tabular data. Thus, they
help us determine interesting relationships between attributes and to use these
relationships for classification, feature selection, and other applications. Also,
exclusive clusterings can be regarded as partitions of the set of clustered ob-
jects, and partition metrics can be used for evaluating clusterings, a point of
view presented in [97].

Let S be a finite set and let π and σ be two partitions of S. The equivalence
relations ρπ and ρσ are subsets of S×S that allow us a simple way of defining
a metric between π and σ as the relative size of the symmetric difference
between the sets of pairs ρπ and ρσ,

δ(π, σ) =
1
|S|2 |ρπ ⊕ ρσ| =

1
|S|2| (|ρπ|+ |ρσ| − 2|ρπ ∩ ρσ|) . (10.11)

If π = {B1, . . . , Bm} and σ = {C1, . . . , Cn}, then there are
∑m

i=1 |Bi|2 pairs in
ρπ,
∑n

j=1 |Cj |2 pairs in ρσ, and
∑n

i=1

∑n
j=1 |Bi ∩Cj |2 pairs in ρπ ∩ ρσ. Thus,

we have

δ(π, σ) =
1
|S|2

⎛
⎝ m∑

i=1

|Bi|2 +
n∑

j=1

|Cj |2 − 2
n∑

i=1

n∑
j=1

|Bi ∩ Cj |2
⎞
⎠ . (10.12)

The same metric can be linked to a special case of a more general metric
related to the notion of partition entropy.

We can now show a central result.

Theorem 10.68. For every β ≥ 1 the mapping dβ : PART(S)2 −→ R≥0

defined by
dβ(π, σ) = Hβ(π|σ) + Hβ(σ|π)

for π, σ ∈ PART(S) is a metric on PART(S).
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Proof. A double application of Corollary 8.50 yields

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ),
Hβ(σ|π) + Hβ(τ |σ) ≥ Hβ(τ |π).

Adding these inequalities gives

dβ(π, σ) + dβ(σ, τ) ≥ dβ(π, τ),

which is the triangular inequality for dβ .
The symmetry of dβ is obvious, and it is clear that dβ(π, π) = 0 for every

π ∈ PART(S).
Suppose now that dβ(π, σ) = 0. Since the values of β-conditional entropies

are nonnegative, this implies Hβ(π|σ) = Hβ(σ|π) = 0. By Theorem 8.40, we
have both σ ≤ π and π ≤ σ, so π = σ. Thus, dβ is a metric on PART(S). 	


An explicit expression of the metric between two partitions can now be
obtained using the values of conditional entropies given by Equality (8.5),

dβ(π, σ)

=
1

(1− 21−β)|S|β

⎛
⎝ m∑

i=1

|Bi|β +
n∑

j=1

|Cj |β − 2 ·
m∑

i=1

n∑
j=1

|Bi ∩ Cj |β
⎞
⎠ ,

where π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} are two partitions from
PART(S).

In the special case β = 2, we have

d2(π, σ)

=
2
|S|2

⎛
⎝ m∑

i=1

|Bi|2 +
n∑

j=1

|Cj |2 −
m∑

i=1

n∑
j=1

2|Bi ∩ Cj |2
⎞
⎠ ,

which implies d2(π, σ) = 2δ(π, σ), where δ is the distance introduced by using
the symmetric difference in Equality (10.12).

It is clear that dβ(π, ωS) = Hβ(π) and dβ(π, αS) = H(αS |π). Another
useful form of dβ can be obtained by applying Theorem 8.41. Since Hβ(π|σ) =
Hβ(π ∧ σ)−Hβ(σ) and Hβ(σ|π) = Hβ(π ∧ σ)−Hβ(σ), we have

dβ(π, σ) = 2Hβ(π ∧ σ)−Hβ(π)−Hβ(σ), (10.13)

for π, σ ∈ PART(S).
The behavior of the metric dβ with respect to partition addition is dis-

cussed in the next statement.

Theorem 10.69. Let S be a finite set and π and θ be two partitions of S,
where θ = {D1, . . . , Dh}. If σi ∈ PART(Di) for 1 ≤ i ≤ h, then we have
σ1 + · · ·+ σh ≤ θ and
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dβ(π, σ1 + · · ·+ σh) =
h∑

i=1

(
|Di|
|S|

)β

dβ(πDi
, σi) + Hβ(θ|π).

Proof. This statement follows directly from Theorem 8.48. 	


Theorem 10.70. Let σ and θ be two partitions in PART(S) such that

θ = {D1, . . . , Dh}

and σ ≤ θ. Then, we have

dβ(θ, σ) =
h∑

i=1

(
|Di|
|S|

)β

dβ(ωDi
, σDi

).

Proof. In Theorem 10.69, take π = θ and σi = σDi
for 1 ≤ i ≤ h. Then, it is

clear that σ = σ1 + · · ·+ σh and we have

dβ(θ, σ) =
h∑

i=1

(
|Di|
|S|

)β

dβ(ωDi
, σDi

)

because θDi
= ωDi

for 1 ≤ i ≤ h. 	

The next theorem generalizes a result from [97].

Theorem 10.71. In the metric space (PART(S), dβ), we have that
(i) if σ ≤ π, then dβ(π, σ) = Hβ(σ)−Hβ(π),
(ii) dβ(αS , σ) + dβ(σ, ωS) = dβ(αS , ωS), and
(iii) dβ(π, π ∧ σ) + dβ(π ∧ σ, σ) = dβ(π, σ)
for all partitions π, σ ∈ PART(S).

Furthermore, we have dβ(ωT , αT ) = 1−|T |1−β

1−21−β for every subset T of S.

Proof. The first three statements of the theorem follow immediately from
Equality (10.13); the last part is an application of the definition of dβ . 	


A generalization of a result obtained in [97] is contained in the next state-
ment, which gives an axiomatization of the metric dβ .

Theorem 10.72. Let d : PART(S)2 −→ R≥0 be a function that satisfies the
following conditions:
(D1) d is symmetric; that is, d(π, σ) = d(σ, π).
(D2) d(αS , σ) + d(σ, ωS) = d(αS , ωS).
(D3) d(π, σ) = d(π, π ∧ σ) + d(π ∧ σ, σ).
(D4) if σ, θ ∈ PART(S) such that θ = {D1, . . . , Dh} and σ ≤ θ, then we have

d(θ, σ) =
h∑

i=1

(
|Di|
|S|

)β

d(ωDi
, σDi

).

(D5) d(ωT , αT ) = 1−|T |1−β

1−21−β for every T ⊆ S.
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Then, d = dβ.

Proof. Choosing σ = αS in axiom (D4) and using (D5), we can write

d(αS , θ) =
h∑

i=1

(
|Di|
|S|

)β

d(ωDi
, αDi

)

=
h∑

i=1

(
|Di|
|S|

)β 1− |Di|1−β

1− 21−β

=
∑h

i=1 |Di|β − |S|
(1− 21−β)|S|β .

From Axioms (D2) and (D5) it follows that

d(θ, ωS) = d(αS , ωS)− d(αS , θ)

=
1− |S|1−β

1− 21−β
−
∑h

i=1 |Di|β − |S|
(1− 21−β)|S|β

=
|S|β −

∑h
i=1 |Di|β

(1− 21−β)|S|β .

Now let π, σ ∈ PART(S), where π = {B1, . . . , Bm} and σ = {C1, . . . , Cn}.
Since π ∧ σ ≤ π and σBi

= {C1 ∩ Bi, . . . , Cn ∩ Bi}, an application of Axiom
(D4) yields:

d(π, π ∧ σ) =
m∑

i=1

(
|Bi|
|S|

)β

d(ωBi
, (π ∧ σ)Bi

)

=
m∑

i=1

(
|Bi|
|S|

)β

d(ωBi
, σBi

)

=
m∑

i=1

(
|Bi|
|S|

)β |Bi|β −
∑n

j=1 |Bi ∩ Cj |β

(1− 21−β)|Bi|β

=
1

(1− 21−β)|S|β

⎛
⎝ m∑

i=1

|Bi|β −
n∑

j=1

n∑
i=1

|Bi ∩ Cj |β
⎞
⎠

because (π ∧ σ)Bi
= σBi

. 	

By Axiom (D1), we obtain the similar equality

d(π ∧ σ, σ) =
1

(1− 21−β)|S|β

⎛
⎝ m∑

i=1

|Bi|β −
n∑

j=1

n∑
i=1

|Bi ∩ Cj |β
⎞
⎠ ,

which, by Axiom (D3), implies:
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d(π, σ) =
1

(1− 21−β)|S|β

⎛
⎝ m∑

i=1

|Bi|β +
n∑

j=1

|Cj |β − 2
n∑

j=1

n∑
i=1

|Bi ∩ Cj |β
⎞
⎠ ;

that is, d(π, σ) = dβ(π, σ). 	


10.8 Metrics on Sequences

Sequences are the objects of many data mining activities (text mining, bio-
logical applications) that require evaluation of the degree to which they are
different from each other. For a fixed n, we can easily define a metric on the
set Seqn(S) as

d(x,y) = |{i | 0 ≤ i ≤ n− 1, xi �= yi},

for every x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) in Seqn(S). This is a
rather rudimentary distance known as the Hamming distance on Seqn(S).
If we need to compare sequences of unequal length, we can use an extended
metric d′ defined by

d′(x,y) =

{
|{i | 0 ≤ i ≤ |x| − 1, xi �= yi} if |x| = |y|,
∞ if |x| �= |y|.

The Hamming distance is not very useful in this context due to its inability to
measure anything but the degree of coincidence between symbols that occur in
similar position. A much more useful tool is Levenshtein’s distance, introduced
in [88], using certain operations on sequences.

Recall that we introduced the notion of replacement of an occurrence (y, i)
in a sequence x in Definition 1.94 on page 28.

Definition 10.73. Let S be a set and let x ∈ Seq(S). The insertion of s ∈ S
in x at position i yields the sequence

is,i(x) = replace (x, (λλλ, i), s),

where 0 ≤ i ≤ |x|.
The deletion of the symbol located at position i yields the sequence:

di(x) = replace (x, (x(i), i),λλλ),

where 0 ≤ i ≤ |x| − 1.
The substitution of s ∈ S at position i by s′ produces the sequence

ss,i,s′(x) = replace (x, (s, i), s′),

where 0 ≤ i ≤ |x| − 1.
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In Definition 10.73, we introduced three types of partial functions on the
set of sequences Seq(S), is,i, di, and ss,i,s′ , called insertion, deletion, and sub-
stitution, respectively. There partial functions are collectively referred to as
editing functions. Observe that, in order to have x ∈ Dom(di), we must have
|x| ≥ i.

Definition 10.74. An edit transcript is a sequence (f0, f1, . . . , fk−1) of edit
operations.

Example 10.75. Let S be the set of small letters of the Latin alphabet, S =
{a, b, . . . , z}, and let x = (m, i, c, k, e, y), y = (m, o, u, s, e). The following
sequence of operations transforms x into y:

Step Sequence Operation
0 (m, i, c, k, e, y) si,1,o

1 (m, o, c, k, e, y) sc,2,u

2 (m, o, u, k, e, y) d3

3 (m, o, u, e, y) d3

4 (m, o, u, y) is,3

5 (m, o, u, s, y) sy,4,e

6 (m, o, u, s, e)

The sequence
(si,1,o, sc,2,u, d3, d3, is,3, sy,4,e)

is an edit transcript of length 6.

If (f0, f1, . . . , fk−1) is an edit transcript that transforms a sequence x into
a sequence y, then we have the sequences z0, z1, . . . , zk such that z0 = x,
zi ∈ Dom(fi), and fi(zi) = zi+1 for 0 ≤ ik− 1 and zk = y. Moreover, we can
write

y = fk−1(· · · f1(f0(x)) · · · ).

Theorem 10.76. Let � : Seq(S)× Seq(S) −→ R≥0 be a function defined by
�(x,y) = n if n is the length of the shortest edit transcript needed to transform
x into y. The function � is a metric on Seq(S).

Proof. It is clear that �(x,x) = 0 and that �(x,y) = �(y,x) for every x,y ∈
Seq(S). Observe that the triangular inequality is also satisfied because the
sequence of operations that transform x into y followed by the sequence of
operations that transform y into z will transform x into z. Since the smallest
such number of transformations is �(x, z), it follows that

�(x, z) ≤ �(x,y) + �(y, z).

This allows us to conclude that � is a metric on Seq(S). 	
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We refer to � as the Levenshtein distance between x and y.
Recall that we introduced on page 27 the notation xi,j for the infix

(xi, . . . , xj) of a sequence x = (x0, . . . , xn−1).
Let x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1) be two sequences and

lij(x,y) be the length of a shortest edit transcript needed to transform x0,i

y0,j for −1 ≤ i ≤ |x| and −1 ≤ j ≤ |y|. In other words,

lij = �(x0,i, y0,j) (10.14)

for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1, where n = |x| and m = |y|.
When i = −1, we have x0,−1 = λλλ; similarly, when j = −1, y0,−1 = λλλ.

Therefore, l−1,j = j since we need to insert j elements of S into λλλ to obtain
y0,j−1 and li,−1 = i for similar reasons.

To obtain an inductive expression of lij , we distinguish two cases. If xi =
yj , then li,j = li−1,j−1; otherwise (that is, if xi �= yi) we need to choose the
edit transcript of minimal length among the following edit transcripts:
(i) the shortest edit transcript that transforms x0,i into y0,j−1 followed by

ixi,j ;
(ii) the shortest edit transcript that transforms x0,i−1 into y0,j followed by

di;
(iii) the shortest edit transcript that transforms x0,i−1 into y0,j−1 followed by

substitution sxi,i,yj
if xi �= yj .

Therefore,

lij = min{li−1,j + 1, li,j−1 + 1, li−1,j−1 + δ(i, j)}, (10.15)

where

δ(i, j) =

{
0 if xi = yj

1 otherwise.

The numbers lij can be computed using a bidimensional (m + 1) × (n + 1)
array L. The rows of the array are numbered from −1 to |x| − 1, while the
columns are numbered from −1 to |y| − 1. The component Lij of L consists
of a pair of the form (lij , Aij), where Aij is a subset of the set {↑,←,↖}.

Initially, the first row of L is L−1,j = (l−1,j , {←}) for −1 ≤ j ≤ |y| − 1;
the first column of L is Li,−1 = (li,−1, ↑) for −1 ≤ i ≤ |x| − 1.

For each of the numbers li−1,j + 1, li,j−1 + 1, or li−1,j−1 + δ(i, j) that
equals lij , we include in Aij the symbols ↑, →, or ↖, respectively, pointing
to the surrounding cells that help define lij . This will allow us to extract an
edit transcript by following the points backward from Lm−1,n−1 to the cell
L−1,−1. Each symbol ← denotes an insertion of yj into the current string,
each symbol ↑ as a deletion of xi from the current string, and each diagonal
edge as a match between xi and yj or as a substitution of xi by yj .

Example 10.77. Consider the sequences x = (a, b, a, b, c, a, b, a, c) and y =
(a, b, c, a, a, c).
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a b c a a c
-1 0 1 2 3 4 5

-1 0 ←0 ←0 ←0 ←0 ←0 ←0
a 0 ↑0 ↖0 ←↖1 ←↖2 ↖2 ←↖3 ←4
b 1 ↑1 ↑↖1 ↖1 ←↖2 ←↑↖3 ↖3 ←↖4
a 2 ↑2 ↖1 ←↑↖2 ↖2 ↖2 ←↖3 ←↖4
b 3 ↑3 ↑2 ↖1 ↑↖3 ↑↖3 ↖3 ↑↖4
c 4 ↑4 ↑3 ↑2 ↖1 ↑↖4 ↑↖4 ↖3
a 5 ↑5 ↑↖4 ↑3 ↑2 ↖1 ←2 ←3
b 6 ↑6 ↑5 ↑↖4 ↑3 ↑2 ↖2 ←↖3
a 7 ↑7 ↑↖6 ↑5 ↑4 ↑↖3 ↑↖3 ↖3
c 8 ↑8 ↑7 ↑6 ↑↖5 ↑4 ↑↖4 ↖3

The content of L8,5 shows that �(x,y) = 3. Following the path

L8,5 L7,4 L6,3 L5,3 L4,2 L3,1 L2,0 L1,0 L0,0

↖3 ↑↖3 ↑2 ↖1 ↖1 ↖1 ↑1 ↑0 0

that leads from L8,5 to L0,0, we obtain the following edit transcript:

Step Sequence Operation Remark
0 (a, b, a, b, c, a, b, a, c) match x8 = y5 = c
1 (a, b, a, b, c, a, b, a, c) match x7 = y4 = a
2 (a, b, a, b, c, a, a, c) d6

3 (a, b, a, b, c, a, a, c) match x5 = y3 = a
4 (a, b, a, b, c, a, a, c) match x4 = y2 = c
5 (a, b, a, b, c, a, a, c) match x3 = y1 = b
6 (a, b, a, b, c, a, a, c) match x2 = y0 = a
7 (a, a, b, c, a, a, c) d1

8 (a, b, c, a, a, c) d0

The notion of an edit distance can be generalized by introducing costs for
the edit functions.

Definition 10.78. A cost scheme is a triple (ci, cd, cs) ∈ R̂≥0, where the
components ci, cd, and cs are referred to as the costs of an insertion, deletion,
and substitution, respectively.

The cost of an edit transcript t = (f0, f1, . . . , fk−1) according to the cost
scheme (ci, cd, cs) is nici + ndcd + nscs, where ni, nd, and ns are the number
of insertions, deletions, and substitutions that occur in t.

When ci = cd = cs = 1, the cost of t equals the length of t, and finding the
Levenshtein distance between two strings x,y can now be seen as determining
the length of the shortest editing transcript that transforms x into y using
the cost schema (1, 1, 1). It is interesting to remark that, for any cost schema,
the minimal cost of a transcript that transforms x into y remains an extended
metric on Seq(S). This can be shown using an argument that is similar to
the one we used in Theorem 10.76.
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Note that a substitution can always be replaced by a deletion followed
by an insertion. Therefore, for a cost scheme (1, 1,∞), the edit transcript of
minimal cost will include only insertions and deletions. Similarly, if cs = 1
and ci = cd = ∞, then the edit transcript will contain only substitutions if
the two sequences have equal lengths and the distance between strings will be
reduced to the Hamming distance.

The recurrence (10.15) that allowed us to compute the length of the short-
est edit transcript is now replaced by a recurrence that allows us to compute
the least cost Cij of transforming the prefix x0,i into y0,j :

Cij = min{Ci−1,j + ci, li,j−1 + cd, li−1,j−1 + δ(i, j)cs}. (10.16)

The computation of the edit distance using the cost scheme (ci, cd, cs) now
proceeds in a tabular manner similar to the one used for computing the length
of the shortest edit transcript.

10.9 Searches in Metric Spaces

Searches that seek to identify objects that reside in the proximity of other ob-
jects are especially important in data mining, where the keys or the ranges of
objects of interest are usually unknown. This type of search is also significant
for multimedia databases, where classical, exact searches are often meaning-
less. For example, querying an image database to find images that contain
a sunrise is usually done by providing an example image and then, identify-
ing those images that are similar to the example. The natural framework for
executing such searches is provided by metric spaces or, more generally, by
dissimilarity spaces [27], and we will examine the usefulness of metric proper-
ties for efficient searching algorithms. We show how various metric properties
benefit the design of searching algorithms.

Starting from a finite collection of members of S, T ⊆ S, and a query
object q, we consider two types of searching problems:
(i) range queries that seek to compute the set B(q, r) ∩ T , for some positive

number r, and
(ii) k-nearest-neighbor queries that seek to compute a set Nk such that Nk ⊆

T , |Nk| = k and for every x ∈ Nk and y ∈ T−Nk, we have d(x, q) ≤ d(y, q).
In the case of k-nearest-neighbor queries the set Nk is not uniquely iden-

tified because of the ties that may exist. For k = 1, we obtain the nearest-
neighbor queries.

The triangular inequality that is satisfied by every metric plays an es-
sential role in reducing the amount of computation required by proximity
queries. Suppose that we select an element p of S (referred to as a pivot) and
we compute prior to executing any proximity searches the set of distances
{d(p, x) | x ∈ S}. If we need to compute a range query B(q, r) ∩ T , then by
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the triangular inequality, we have d(q, x) ≥ |d(p, q) − d(p, x)|. Since the dis-
tances d(p, q) and d(p, x) have been already computed, we can exclude from
the search all elements x such that |d(p, q)− d(p, x)| > r.

The triangular inequality also ensures that the results of the search are
plausible. Indeed, it is expected that if both x and y are in the proximity of
q, then a certain degree of similarity exists between x and y. This is ensured
by the triangular inequality that requires d(x, y) ≤ d(x, q) + d(q, y).

To execute any of these searches, we need to examine the entire collection
of objects C unless specialized data structures called indexes are prepared in
advance.

One of the earliest types of indexes is the Burkhard-Keller tree (see [25]),
which can be used for metric spaces where the distance is discrete; that is,
the range of the distance function is limited to a finite set. To simplify our
presentation, we assume that Ran(d) = {0, 1, . . . , k}, where k ∈ N.

Algorithm 10.79 (Construction of the Burkhard-Keller Tree)
Input: a collection of elements C of a metric space (S, d), where

Ran(d) = {0, 1, . . . , k}.
Output: a tree TC whose nodes are labeled by objects of C.
Method:
if |C| = 1, return a single-vertex tree whose root is labeled p;
else

select randomly an object p ∈ C to serve as root of TC ;
partition C into the sets C1, . . . , Ck defined by
Ci = {o ∈ C | d(o, p) = i} for 1 ≤ i ≤ k;

construct the trees corresponding to Cl0 , . . . , Clm−1 , which are
the nonempty sets among C1, . . . , Ck;
connect the trees TCl0

, . . . ,TClm−1
to p;

return TC

Example 10.80. Consider the collection of points {o1, . . . , o16} in R
2 shown

in Figure 10.13. Starting from their Euclidean distance d2(oi, oj), we con-
struct the discrete distance d as in Exercise 17), namely, we define d(oi, oj) =
&d2(oi, oj)' for 1 ≤ i, j ≤ 16.

The Manhattan distances d1(oi, oj) are given by the following matrix and
we shall use this distance to construct the Burkhard-Keller tree.

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6
1 0 1 2 2 1 2 3 3 3 3 4 4 3 4 5
2 1 0 1 3 2 1 2 4 3 2 3 5 4 3 4
3 2 1 0 4 3 2 1 9 4 3 2 6 5 4 3
1 2 3 4 0 1 2 3 1 2 3 4 2 3 4 5
2 1 2 3 1 0 1 2 2 1 2 3 3 2 3 4
3 2 1 2 2 1 0 1 3 2 1 2 4 3 2 3
4 2 2 1 3 2 1 0 4 3 2 1 5 4 3 2
2 3 4 5 1 2 3 4 0 1 2 3 1 2 3 4
3 2 3 4 2 1 2 3 1 0 1 2 2 1 2 3
4 3 2 3 3 2 1 2 2 1 0 1 3 2 1 2
5 4 3 2 4 3 2 1 3 2 1 0 4 3 2 1
3 4 5 6 2 3 4 5 1 2 3 4 0 1 2 3
4 3 4 5 3 2 3 4 2 1 2 3 1 0 1 2
5 4 3 4 4 3 2 3 3 2 1 2 2 1 0 1
6 5 4 3 5 4 3 2 4 3 2 1 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Fig. 10.13. Set of 16 points in R
2.

We begin by selecting o6 as the first pivot. Then, we create trees for the sets

C1 = {o2, o5, o7, o10},
C2 = {o1, o3, o8, o11, o14},
C3 = {o4, o12, o13, o15},
C4 = {o16}.

Choose o7, o8, and o13 as pivots for the sets C1, C2, and C3, respectively. Note
that TC4 is completed because it consists of one vertex. Assuming certain
choices of pivots, the construction results in a tree shown in Figure 10.14.
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Fig. 10.14. Burkhard-Keller tree.
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Burkhard-Keller trees can be used for range queries that seek to compute
sets of the form Oq,r,C = B(q, r) ∩ C, where d is a discrete metric. In other
words, we seek to locate all objects o of C such that d(q, o) ≤ r.

By Exercise 1 we have |d(p, o)− d(p, q)| ≤ d(q, o) ≤ r, where p is the pivot
that labels the root of the tree. This implies d(p, q)− r ≤ d(p, o) ≤ d(p, q)+ r,
so we need to visit recursively the trees TCi

where d(p, q)−r ≤ i ≤ d(p, q)+r.

Algorithm 10.81 (Searching for Burkhard-Keller Trees)
Input: a collection of elements C of a metric space (S, d),

a query object q and a radius r;
Output: the set O(q, r, C) = B(q, r) ∩ C;
Method:

O(q, r, C) = ∅;
if d(p, q) ≤ r then O(q, r, C) = O(q, r, C) ∪ {p};
compute I = {i | 1 ≤ i ≤ k, d(p, q)− r ≤ i ≤ d(p, q) + r};
compute

⋃
i∈I O(q, r, Ci);

O(q, r, C) = O(q, r, C) ∪
⋃

i∈I O(q, r, Ci);
return O(q, r, C)

Example 10.82. To solve the query B(o11, 1)∩C, where C is the collection of
objects introduced in Example 10.80, we begin by observing that d(o11, o6) =
2, so the pivot itself does not belong to O(o11, 1, C). The set I in this case is
I = {1, 2, 3}.

We need to execute three recursive calls, namely Oo11,1,C1 , Oo11,1,C2 , and
Oo11,1,C3 .

For the set C1 having the pivot o7, we have o7 ∈ O(o11, 1, C1) because
d(o7, o11) = 1. Thus, O(o11, 1, C1) is initialized to {o7} and the search proceeds
with the set C1,2, which consists of the objects o5, o2, o10 located at distance
2 from the pivot o7.

Since d(o5, o11) = 3, o5 does not belong to the result. The set C1,2,2 consists
of {o2, o10}. Choosing o2 as the pivot, we can exclude it from the result because
d(o2, o11) = 3. Finally, the set C1,2,2,2 consists of {o10} and d(o10, o11) = 1.
Thus,

O(o11, 1, C1,2,2,2) = O(o11, 1, C1,2,2) = O(o11, 1, C1,2) = {o10},

so O(o11, 1, C1) = {o7, o10}.
Similarly, we have O(o11, 1, C2) = o11 and O(o11, 1, C3) = {o12, o15}. The

result of the query is Oo11,1,C = {o7, o10, o11, o12, o15}.

Orchard’s algorithm [101] aims to solve the nearest-neighbor problem and
proceeds as follows.

Algorithm 10.83 (Orchard’s Algorithm)
Input: a finite metric space (S, d) and a query q ∈ S.
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Output: the member of S that is closest to the query q.
Method: for each w ∈ S establish a list Lw of elements of S

in increasing order of their distance to w;
(preprocessing phase)

select an initial candidate c;
repeat

compute d(c, q);
scan Lc until a site s closer to q is found;
c = s;

until (Lc is completely traversed or
s is found in Lc such that d(c, s) > 2d(c, q));
return c

Since Lc lists all elements of the space in increasing order of their distance
to c, observe that if the scanning of a list Lc is completed without finding
an element that is closer to q, then it is clear that p is one of the elements
that is closest to q and the algorithm halts. Let s be the first element in the
current list Lc such that d(c, s) > 2d(c, q) (if such elements exist at all). Then,
none of the previous elements on the list is closer to q than s since otherwise
we would not have reached s in Lc. By Exercise 5, (with k = 2) we have
d(q, s) > d(c, q), so c is still the closest element to q on this list. If z is an
element of Lc situated past s, it follows that d(z, c) ≥ d(s, c) because Lc is
arranged in increasing order of the distances to c, so d(c, z) > 2d(c, q), which
ensures that z is more distant from q than c. So, in all cases where c is closest
to q, the algorithm works correctly.

The preprocessing phase requires an amount of space that grows as Θ(n2)
with n, and this limits the usefulness of the algorithm to rather small sets of
objects.

An alternative algorithm known as the annulus algorithm, proposed in [69],
allows reduction of the volume of preprocessing space to Θ(n).

Suppose that the finite metric space (S, d) consists of n objects. The pre-
processing phase consists of selecting a pivot o and constructing a list of
objects L = (o1, o2, . . . , on) such that d(o, o1) ≤ d(o, o2) ≤ · · · ≤ d(o, on).
Without loss of generality, we may assume that o = o1.

Suppose that u is closer to the query q than v; that is, d(q, u) ≤ d(q, v).
Then we have

|d(u, o− d(q, o)| ≤ d(u, q) ≤ d(q, v)
by Exercise 1, which implies

d(q, o)− d(q, v) ≤ d(u, o) ≤ d(q, p) + d(q, v).

Thus, u is located in an annulus centered in o that contains the query point q
and is delimited by two spheres,B(o, d(q, o)−d(q, v)) andB(o, d(q, p)+d(q, v)).
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Algorithm 10.84 (Annulus algorithm)
Input: a finite metric space (S, d) and a query q ∈ S.
Output: the member of S that is closest to the query q.
Method: select a pivot object o;

establish a list L of elements of S
in increasing order of their distances to o;
(preprocessing phase)

select an initial candidate v;
compute the set of Uv that consists of those u such that
d(q, o)− d(q, v) ≤ d(u, o) ≤ d(q, p) + d(q, v);

scan Uv for an object w closer to q;
if such a vector exists then

replace v by w, recompute Uv and resume scan;
otherwise, output v

The advantage of the annulus algorithm over Orchard’s algorithm consists
of the linear amount of space required for the preprocessing phase. Imple-
mentations of these algorithms and performance issues are discussed in detail
in [149].

A general algorithm for the nearest-neighbor search in dissimilarity spaces
was formulated in [50]. The algorithm uses the notion of basis for a subset of
a dissimilarity space.

Definition 10.85. Let (S, d) be a dissimilarity space and let (α, β) be a pair
of numbers such that α ≥ β > 0. A basis at level (α, β) for a subset H, H ⊆ S
is a finite set of points {z1, . . . , zk} ⊆ S if for any x, y ∈ H we have

αd(x, y) ≥ max{|d(x, zi)− d(y, zi)| | 1 ≤ i ≤ k} ≥ βd(x, y).

A dissimilarity space is k-dimensional if there exist α, β, and k depending only
on (S, d) such that for any bounded subset H of S, there are k points of S
that form a basis at level (α, β) for H.

Example 10.86. Consider the metric space (Rn, d2), and let H be a bounded
subset of R

n. A basis at level (1, 0.5) for H can be formed by the n + 1 ver-
tices of a sufficiently large n-dimensional simplex Sn that contains H. Indeed,
observe that d2(x,y) ≥ |d2(x, zi)− d2(y, zi)| for 1 ≤ i ≤ n+ 1 by Exercise 1,
which shows that the first condition of Definition 10.85 is satisfied.

On the other hand, if the n + 1 points of the n-dimensional simplex are
located at sufficient distances from the points of the set H, then there exists
at least one vertex zi such that |d2(u, zi) − d2(v, zi)| ≥ 0.5d2(u,v); that is,
max{|d2(u, zi) − d2(v, zi)| | 1 ≤ i ≤ k} ≥ 0.5d(u,v). Indeed, let hi be the
distance from zi to the line determined by u and v, and let wi be the projec-
tion of zi on this line (see Figure 10.15). We discuss here only the case where
wi is located outside the segment (u,v). Let ki = min{d2(u,wi), d2(v,wi)}.

To satisfy the condition
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Fig. 10.15. Point of the basis for a set H in R
n.

|d2(u, zi)− d2(v, zi)| ≥
�

2

or the equivalent equality∣∣∣∣
√
h2

i + (�+ ki)2 −
√
h2

i + k2
i

∣∣∣∣ ≥ �

2
,

it suffices to have
�+ 2ki ≥

√
h2

i + (�+ ki)2.

This inequality is satisfied if ki ≥ 1
3

(√
�+ 4h2

i − �
)
. Thus, if zi is chosen

appropriately, the set z1, . . . , zn, zn+1 is a (1, 0.5) basis for H.

Algorithm 10.87 (Faragó-Linder-Lugosi Algorithm)
Input: a collection H = {x1, . . . , xn} of a dissimilarity space (S, d);

an (α, β)-basis z1, . . . , zk for H, and a query x ∈ S;
Output: the member of H that is closest to the query x;
Method: compute and store all dissimilarities d(xi, zj) for

1 ≤ i ≤ n and 1 ≤ j ≤ k (preprocessing phase);
I = {x1, . . . , xn};
γ(xi) = max1≤j≤k |d(xi, zj)− d(x, zj)| for 1 ≤ i ≤ n;
t0 = min1≤i≤n γ(xi);
delete all points xi from I such that γ(xi) > α

β t0;
find the nearest neighbor of x in the remaining part of I by

exhaustive search and output xnn = arg min1≤i≤n γ(xi).



10.9 Searches in Metric Spaces 409

If a tie occurs in the last step of the algorithm, then an arbitrary element
is chosen among the remaining elements of I that minimize γ(xi).

The first phase of the algorithm is designated as the preprocessing phase
because it is independent of the query x and can be executed only once for
the data set H and its base. Its time requirement is O(nk).

To prove the correctness of the algorithm, we need to show that if an
element of H is deleted from I, then it is never the nearest neighbor xnn of
x. Suppose that the nearest neighbor xnn were removed. This would imply
γ(xnn) > α

β t0 or, equivalently,

1
α
γ(xnn) >

1
β

min
1≤i≤n

γ(xi).

Since {z1, . . . , zk} is a basis for the set H, we have

d(x, xnn) ≥ 1
α

max
1≤j≤k

|d(x, zj)− d(xnn, zj)| ≥
1
α
γ(xnn)

and
1
β

min
1≤i≤n

γ(xi) ≥ min
1≤i≤n

d(x, xi),

which implies d(x, xnn) > min1≤i≤n d(x, xi). This contradicts the definition
of xnn, so it is indeed impossible to remove xnn. Thus, in the worst case, the
algorithm performs n dissimilarity calculations.

Next, we present a unifying model of searching in metric spaces introduced
in [27] that fits several algorithms used for proximity searches. The model
relates equivalence relations (or partitions) to indexing schemes.

Definition 10.88. The index defined by the equivalence ρ on the set S is the
surjection Iρ : S −→ S/ρ defined by Iρ(x) = [x], where [x] is the equivalence
class of x in the quotient set S/ρ.

A general searching strategy can be applied in the presence of an index
and involves two phases:
(i) identify the equivalence classes that contain the answers to the search,

and
(ii) exhaustively search the equivalence classes identified in the first phase.
The cost of the first phase is the internal complexity of the search, while the
cost of the second phase is the external complexity.

If ρ1, ρ2 ∈ EQS(S) and ρ1 ≤ ρ2, then |S/ρ1| ≥ |S/ρ2|. Therefore, the
internal complexity of the search involving Iρ1 is larger than the internal
complexity of the search involving Iρ2 since we have to search more classes,
while the external complexity of the search involving Iρ1 is smaller than the
external complexity of the search involving Iρ2 since the classes that need to
be exhaustively searched form a smaller set.

Let (S, d) be a metric space and let ρ be an equivalence on the set S. The
metric d generates a mapping δd,ρ : (S/ρ)2 −→ R≥0 on the quotient set S/ρ,
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where δd,ρ([x], [y]) = inf{d(u, v) | u ∈ [x] and v ∈ [y]}. We will refer to δd,ρ as
the pseudo-distance generated by d and ρ. It is clear that δd,ρ([x], [y]) ≤ d(x, y),
for x, y ∈ S, but δd,ρ is not a metric because if fails to satisfy the triangular
inequality in general.

If a range query B(q, r) ∩ T = {y ∈ T | d(q, y) ≤ r} must be executed we
can transfer this query on the quotient set S/ρ (which is typically a smaller set
than S) as the range query B([q], r) ∩ {[t] | t ∈ T}. Note that if y ∈ B(q, r),
then d(q, y) ≤ r, so δd,ρ([q], [y]) ≤ d(q, y) ≤ r. This setting allows us to reduce
the search of the entire set T to the search of the set of equivalence classes
{[y] | y ∈ T, δd,ρ([q], [y]) ≤ r}.

Since δd,ρ is not a metric, it is not possible to reduce the internal complexity
of the algorithm. In such cases, a solution is to determine a metric e on the
quotient set S/ρ such that e([x], [y]) ≤ δd,ρ([x], [y]) for every [x], [y] ∈ S/ρ. If
this is feasible, then we can search the quotient space for classes [y] such that
e([q], [y]) ≤ r using the properties of the metric e.

Let ρ1, ρ2 ∈ EQS(S) be two equivalences on S such that ρ1 ≤ ρ2. Denote
by [z]i the equivalence class of z relative to the equivalence ρi for i = 1, 2.

If ρ1 ≤ ρ2, then [z]1 ⊆ [z]2 for every z ∈ S and therefore

δd,ρ1([x]1, [y]1) = inf{d(u, v) | u ∈ [x]1 and v ∈ [y]1}
≥ inf{d(u, v) | u ∈ [x]2 and v ∈ [y]2}
= δd,ρ2([x]2, [y]2).

Thus, δd,ρ1([x]1, [y]1) ≥ δd,ρ2([x]2, [y]2) for every x, y ∈ S, and this implies

{[y]1 | δd,ρ1([q], [y]) ≤ r} ⊆ {[y]2 | δd,ρ2([q], [y]) ≤ r},

confirming that the external complexity of the indexing algorithm based on
ρ2 is greater than the same complexity for the indexing algorithm based on
ρ1.

Example 10.89. Let (S, d) be a metric space, p ∈ S, and let r be a sequence of
positive real numbers r = (r0, r1, . . . , rn−1) such that r0 < r1 < . . . < rn−1.
Define the collection of sets E = {E0, E1, . . . , En} by E0 = {x ∈ S | d(p, x) <
r0}, Ei = {x ∈ S | ri−1 ≤ d(p, x) < ri} for 1 ≤ i ≤ n − 1, and En = {x ∈
S | rn−1 ≤ d(p, x)}. The subcollection of E that consists of nonempty sets is
a partition of S denoted by πr. Denote the corresponding equivalence relation
by ρr.

If Ei �= ∅, then Ei is an equivalence class of ρr that can be imagined as a
circular ring around p. Then, if i < j and Ei and Ej are equivalence classes,
we have δd,ρ(Ei, Ej) > rj−1 − ri.

Example 10.90. Let (S, d) be a metric space and p be a member of S. Define
the equivalence

ρp = {(x, y) ∈ S × S | d(p, x) = d(p, y)}.
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We have δd,ρ([x], [y]) = |d(p, x) − d(p, y)|. It is easy to see that the pseudo-
distance δd,ρ is actually a distance on the quotient set S/ρ.

Exercises and Supplements

1. Let (S, d) be a metric space. Prove that d(x, y) ≥ |d(x, z)− d(y, z)| for all
x, y, z ∈ S.

2. Let (S,E) be a measurable space and let m : E −→ R̂≥0 be a measure.
Prove that the dm defined by dm(U, V ) = m(U ⊕V ) is a semimetric on E.

3. Let B = {x1, . . . , xn} be a finite subset of a metric space (S, d). Prove
that

(n− 1)
n∑

i=1

d(x, xi) ≥
∑
{d(xi, xj) | 1 ≤ i < j ≤ n}

for every x ∈ S.
Explain why this inequality can be seen as a generalization of the trian-
gular inequality.

4. Let (S, d) be a metric space and let T be a finite subset of S. Define the
mapping DT : S2 −→ R≥0 by

DT (x, y) = max{|d(t, x)− d(t, y)| | t ∈ P}

for x, y ∈ S.
a) Prove that DT is a semimetric on S and that d(x, y) ≥ DT (x, y) for
x, y ∈ S.

b) Prove that if T ⊆ T ′, then DT (x, y) ≤ DT ′(x, y) for every x, y ∈ S.
5. Let (S, d) be a metric space and let p, q, x ∈ S. Prove that d(p, x) >
kd(p, q) for some k > 1, then d(q, x) > (k − 1)d(p, q).

6. Let (S, d) be a metric space and let x, y ∈ S. Prove that if r is a positive
number and y ∈ Cd(x, r

2 ), then Cd(x, r
2 ) ⊆ Cd(y, r).

7. Let (S, d) be a metric space and p ∈ S. Define the function du : S2 −→ R≥0

by

du(x, y) =

{
0 if x = y,

d(x, u) + d(u, y) otherwise,

for x, y ∈ S. Prove that d is a metric on S.
8. Let f : L −→ R≥0 be a real-valued, nonnegative function, where L =

(L, {∧,∨}) is a lattice. Define the mapping d : L2 −→ R≥0 as d(x, y) =
2f(x ∧ y)− f(x)− f(y) for x, y ∈ L. Prove that d is a semimetric on L if
and only if f is anti-monotonic and submodular.
Hint: Use Supplement 12 of Chapter 8.

9. Let f : L −→ R≥0 be a real-valued, nonnegative function, where L =
(L, {∧,∨}) is a lattice. Define the mapping d : L2 −→ R≥0 as d(x, y) =
f(x) + f(y)− 2f(x ∨ y) for x, y ∈ L. Prove that d is a semimetric on L if
and only if f is anti-monotonic and supramodular.
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10. Let T : {1, . . . , n} −→ P(I) be a transaction data set over a set of items
I. Prove that the mapping d : (P(I))2 −→ R≥0 defined by d(H,K) =
suppcount(H)+suppcount(K)−2suppcountT (HK) for K,H ⊆ I is a semi-
metric on the collection of item sets.

11. Let d : S × S −→ R≥0 be a metric on a set S and let k be a number
k ∈ R≥0. Prove that the function e : S × S −→ R≥0 defined by ε(x, y) =
min{d(x, y), k} is a metric on S.

12. Let S be a set and e : P(S)2 −→ R≥0 be the function defined by e(X,Y ) =
|X − Y | for X,Y ∈ P(S). Prove that e satisfies the triangular axiom but
fails to be a dissimilarity.

13. Let S be a set and e : S2 −→ R be a function such that
• e(x, y) = 0 if and only if x = y for x, y ∈ S,
• e(x, y) = e(y, x) for x, y ∈ S, and
• e(x, y) ≤ e(x, z) + e(z, y)
for x, y, z ∈ S. Prove that e(x, y) ≥ 0 for x, y ∈ S.

14. Let S be a set and f : S2 −→ R be a function such that
• f(x, y) = 0 if and only if x = y for x, y ∈ S;
• f(x, y) = f(y, x) for x, y ∈ S;
• f(x, y) ≥ f(x, z) + f(z, y) for x, y, z ∈ S.
Note that the triangular inequality was replaced with its inverse. Prove
that the set S contains at most one element.

15. Let d : S2 −→ R be a function such that d(x, y) = 0 if and only if x = y
and d(x, y) ≤ d(x, z)+ d(y, z) (note the modification of the triangular ax-
iom), for x, y, z ∈ S. Prove that d is a metric, that is, prove that d(x, y) ≥ 0
and d(x, y) = d(y, x) for all x, y ∈ S.

16. Let f : R≥0 −→ R≥0 be a function that satisfies the following conditions:
a) f(x) = 0 if and only if x = 0.
b) f is monotonic on R≥0; that is, x ≤ y implies f(x) ≤ f(y) for x, y ∈

R≥0.
c) f is subadditive on R≥0; that is, f(x+y) ≤ f(x)+f(y) for x, y ∈ R≥0.

a) Prove that if d is a metric on a set S, then fd is also a metric on S.
b) Prove that if d is a metric on S, the

√
d and d

1+d are also metrics on
S. What can be said about d2?

17. Let d : S × S −→ R≥0 be a metric on the set S. Prove that the function
e : S × S −→ R≥0 defined by e(x, y) = &d(x, y)' for x, y ∈ S is also be a
metric on the set S. Also, prove that if the ceiling function is replaced by
the floor function, then this statement is no longer valid. Note that e is a
discretized version of the metric d.

18. Let S be a set and let c : S2 −→ [0, 1] be a function such that c(x, y) +
c(y, x) = 1 and c(x, y) ≤ c(x, t) + c(t, y) for every x, y, t ∈ S.
a) Prove that the relation ρc = {(x, y) ∈ S2 | c(x, y) = 1} is a strict

partial order on S.
b) Let “<” be a strict partial order on a set S. Define the function
e : S2 −→ {0, 1

2} by
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e(x, y) =

⎧⎪⎨
⎪⎩

1 if x < y,
1
2 if x, y are incomparable
0 if y < x,

for x, y ∈ S. Prove that e(x, y) + e(y, x) = 1 and c(x, y) ≤ c(x, t) +
c(t, y) for every x, y, t ∈ S.

19. A function F : R ≥ 0 −→ R is convex if for every s, t ∈ R≥0 and a ∈ [0, 1]
we have F (as+ (1− a)t) ≤ aF (s) + (1− 1)F (t).
a) Prove that if F (0) = 0 and F is monotonic and convex, then F is

subadditive.
b) Prove that if f is a metric on the set S, then the function given by

d′(x, y) = 1− e−kd(x,y),

where k is a positive constant and x, y ∈ S, is also a metric on S. This
metric is known as the Schoenberg transform of d (see [37]).

Solution: By applying the convexity of F to the interval [0, x+y] with
a = x

x+y , we have

F (a · 0 + (1− a)(x+ y)) ≤ aF (0) + (1− a)F (x+ y),

we have F (y) ≤ y
x+yF (x + y). Similarly, we can show that F (x) ≤

x
x+yF (x + y). By adding the last two inequalities, we obtain the sub-
additivity of F .

20. Let S be a finite set and let d : S2 −→ R≥0 be a dissimilarity. Prove that
there exists a ∈ R≥0 such that the dissimilarity da defined by

da(x, y) =

{
(d(x, y))a if x �= y

0 if x = y,

for x, y ∈ S satisfies the triangular inequality.
Hint: Observe that lima→0 da(x, y) is a dissimilarity that satisfies the
triangular inequality.

21. Let U be a set and let f : U −→ S be an injective function. Show that if
(S, d) is a metric space, then the pair (U, d′) is also a metric space, where
d′(u, v) = d(f(u), f(v)).

22. Let (S1, d1), . . . , (Sn, dn) be n metric spaces, where n ≥ 1, and let ν be
a norm on R

n. Define the mapping Dν : (S1 × · · · × Sn)2 −→ R̂≥0 as
Dν(x,y) = ν(d1(x1, y1), . . . , dn(xn, yn)) for x = (x1, . . . , xn) and y =
(y1, . . . , yn).
a) Prove that Dν is a metric on S1 × · · · × Sn.

We refer to (S1 × · · · × Sn,Dν) as the ν-product of the metric
spaces (S1, d1), . . . , (Sn, dn). When ν is the Euclidean norm, we re-
fer to (S1 × · · · × Sn,Dν) simply as the product of the metric spaces
(S1, d1), . . . , (Sn, dn).
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b) Let (S1, d1), (S2, d2) be two metric spaces. Consider the functions δ, δ′ :
S1 × S2 −→ R̂≥0 given by

δ((x, y), (u, v)) = d(x, u) + d(y, v),
δ′((x, y), (u, v)) = max{d(x, u), d(y, v)},

for every (x, y), (u, v) ∈ S1×S2. Prove that both δ and δ′ are metrics
on the set product S1 × S2.

23. Let (S, d) be a finite metric space. Prove that there exists a graph G =
(S,E) such that d is the distance associated with this graph if and only
if d(x, y) ∈ N and d(x, y) ≥ 2 implies the existence of z ∈ S such that
d(x, y) = d(x, z) + d(z, y) for x, y ∈ S.

24. Prove that every metric defined on a finite set S such that |S| = 3 is a
tree metric.

25. Let S be a finite set, d : S × S −→ R≥0 be a dissimilarity on S, and s be
an element of S. Define the mapping ds,k : S × S −→ R by

ds,k(x, y) =

{
k+d(x,y)−d(x,s)−d(y,s)

2 if x �= y

0 if x = y,

for x, y ∈ S.
a) Prove that there is k > 0 such that ds,k ≥ 0 for every s ∈ S.
b) Prove that d is a tree metric if and only if there exists k such that
ds,k is an ultrametric for all s ∈ S.

26. Let S be a set, π be a partition of S, and a, b be two numbers such that
a < b. Prove that the mapping d : S2 −→ R≥0 given by

d(x, y) =

⎧⎪⎨
⎪⎩

0 if x = y,

a if x �= y and x ≡π y,

b if x �≡π y,

is an ultrametric on S.
27. Prove the following extension of the statement from Exercise 26.

Let S be a set, π0 < π1 < · · · < πk−1 be a chain of partitions on S, and
let a0 < a1 . . . < ak−1 < ak be a chain of positive reals. Prove that the
mapping d : S2 −→ R≥0 given by

d(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x = y,

a0 if x �= y and x ≡π0 y,
...

...
ak−1 if x �≡πk−2 y and x ≡πk−1 y,

ak if x �≡πk−1 y,

is an ultrametric on S.
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Solution: It is clear that d(x, y) = 0 if and only if x = y and that
d(x, y) = d(y, x) for any x, y ∈ S. Thus, we need to show only that d
satisfies the ultrametric property.

Suppose that x, y, z ∈ S are such that d(x, y) = ai and d(y, z) = aj ,
where ai < aj and i < j. The definition of d implies that x �≡πi−1 y,
x ≡πi

y, and y �≡πj−1 z, y ≡πj
z. Since πi < πj , it follows that x ≡πj

z by
the transitivity of ≡πj

. Thus, d(x, z) ≤ j = max{d(x, y), d(y, z)}.
28. Using the Steinhaus transform (Lemma 10.62 on page 388), prove that if

the mapping d : R
n × R

n −→ R≥0 is defined by

d(x,y) =
d2(x,y)

d2(x,y)+ ‖ x ‖ + ‖ y ‖ ,

for x,y ∈ R
n, then d is a metric on R

n such that d(x,y) < 1.
29. Using Exercises 19 and 28, prove that the mapping e : R

n × R
n −→ R≥0

given by

e(x,y) =
d2(x,y)

‖ x ‖ + ‖ y ‖
for x,y ∈ R

n is a metric on R
n.

30. Prove that the following statements that concern a subset U of (Rn, dp)
are equivalent:
a) U is bounded.
b) There exists n closed intervals [a1, b1], . . . , [an, bn] such that U ⊆

[a1, b1]× · · · × [an, bn].
c) There exists a number k ≥ 0 such that dp(0,x) ≤ k for every x ∈ U .

31. Let S = {x1, . . . ,xm} be a finite subset of the metric space (R2, dp).
Prove that there are at most m pairs of points (xi,xj) ∈ S × S such that
dp(xi, xj) = diam(S).

32. Let x,y ∈ R
2. Prove that z is outside the circle that has the diameter x,y

if and only if d22(x, z) + d22(y, z) > d22(x,y).
33. Let S = {x1, . . . ,xm} be a finite subset of the metric space (R2, dp). The

Gabriel graph of S is the graph G = (S,E), where (xi,xj) ∈ E if and only
if d22(xi,xk) + d22(xj ,xk) > d22(x,y) for every k ∈ {1, . . . , n} − {i, j}.
Prove that if x,y, z ∈ S and (y − x) · (z − x) < 0, for some y ∈ S, then
there is no edge (x, z) in the Gabriel graph of S. Formulate an algorithm
to compute the Gabriel graph of S that requires an amount of time that
grows as m2.

34. Let C ∈ R
n×n be a square matrix such that Cw = 0 implies w = 0 for

w ∈ R
n×1. Define dC : R

n×R
n −→ R by dC(x,y) = (x−y)tranCtranC(x−

y) for x,y ∈ R
n×1. Prove that dC is a metric on R

n.
35. Let Un = {(x1, . . . , xn) ∈ R

n |
∑n

i=1 x
2
i = 1} be the set of unit vectors in

R
n. Prove that the mapping d : U2

n −→ R≥0 defined by

d(x,y) = arccos

(
n∑

i=1

xiyi

)
,
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where x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to Un, is a metric on
Un.

36. Let (S, d) be a finite metric space. Prove that the functions D,E :
P(S)2 −→ R defined by

D(U, V ) = max{d(u, v) | u ∈ U, v ∈ V },

E(U, V ) =
1

|U | · |V |
∑
{d(u, v) | u ∈ U, v ∈ V },

for U, V ∈ P(S) such that U �= V , and D(U,U) = E(U,U) = 0 for every
U ∈ P(S) are metrics on P(S).

37. Prove that if we replace max by min in Exercise 36, then the resulting
function F : P(S)2 −→ R defined by

D(U, V ) = min{d(u, v) | u ∈ U, v ∈ V }

for U, V ∈ P(S) is not a metric on P(S), in general.
Solution: Let S = U ∪ V ∪W , where

U = {(0, 0), (0, 1), (1, 0), (1, 1, )},
V = {(2, 0), (2, 1), (2 + �, 0), (2 + �, 1)},
W = {(�+ 1, 0), (�+ 1, 1), (�+ 2, 0), (�+ 2, 1)}.

The metric d is the usual Euclidean metric in R
2. Note that F (U, V ) =

F (V,W ) = 1; however, F (U,W ) = � + 2. Thus, if � > 0, the triangular
axiom is violated by F .

38. Let (S, d) be a metric space. Prove that:
a) d(x, T ) ≤ d(x, y) + d(y, T ) for every x, y ∈ S and T ∈ P(S).
b) If U and V are nonempty subsets of S, then:

inf
x∈U

d(x, V ) = inf
x∈V

d(x,U).

39. Let S be a finite set and let δ : P(S)2 −→ R≥0 defined by

δ(X,Y ) =
|X ⊕ Y |
|X|+ |Y |

for X,Y ∈ P(S). Prove that δ is a dissimilarity but not a metric.
Hint: Consider the set S = {x, y} and its subsets X = {x} and Y = {y}.
Compare δ(X,Y ) with δ(X,S) + δ(S, Y ).

40. Let S be a finite set and let π and σ ∈ PART(S). Prove that

dβ(π, σ) ≤ dβ(αS , ωS) = Hβ(αS)

for every β ≥ 1.
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41. Let S be a finite set and let π, σ be two partitions on S. Prove that if σ
covers the partition π, then there exist Bi, Bj ∈ π such that

d2(π, σ) =
4 · |Bi| · |Bj |

|S|2 .

42. Let X be a set of attributes of a table θ = (T,H, r), r = (t1, . . . , tn), and
let πX be the partition of {1, . . . , n} defined on page 295. For β ∈ R such
that β > 1, prove that:
a) We have Hβ(πUV ) = Hβ(πU |πV ) + H(πV ).
b) If Dβ : P(H)2 −→ R≥0 is the semimetric defined by Dβ(U, V ) =
dβ(πU , πV ), show that Dβ(U, V ) = 2Hβ(πUV )−Hβ(πU )−Hβ(πV ).

c) Prove that if θ satisfies the functional dependency U −→ V , then
Dβ(U, V ) = Hβ(πU )−Hβ(πV ).

d) Prove that Dβ(U, V ) ≤ Hβ(πUV )−Hβ(πU ∨ πV ).
43. An attribute A of a table θ is said to be binary if Dom(A) = {0, 1}. Define

the contingency matrix of two binary attributes of a table θ = (T,H, r)
as the 2× 2-matrix

KAB =
(
n00 n01

n10 n11

)
,

where r = (t1, . . . , tn) and nij = |{k | tk[AB] = (i, j)}|. Prove that
D2(U, V ) = 4

n (n00 + n11)(n10 + n01), where D2 is a special case of the
semimetric Dβ introduced in Exercise 42.

44. Let π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} be two partitions of a set S.
The Goodman-Kruskal coefficient of π and σ is the number

GK(π, σ) = 1− 1
|S|

m∑
i=1

max
1≤j≤n

|Bi ∩ Cj |.

a) Prove that GK(π, σ) = 0 if and only if π ≤ σ.
b) Prove that the function GK is monotonic in the first argument and

dually monotonic in the second argument.
c) If θ, π, σ ∈ PART(S), then prove that:

GK(π ∧ θ, σ) + GK(θ, π) ≥ GK(θ, π ∧ σ).

d) Prove that GK(θ, π) + GK(π, σ) ≥ GK(θ, σ) for θ, π, σ ∈ PART(S).
e) Prove that the mapping dGK : PART(S)× PART(S) −→ R given by

dGK(π, σ) = GK(π, σ) + GK(σ, π)

for π, σ ∈ PART(S), is a metric on PART(S).

Partition metrics can be used to determine the validity of classification algo-
rithms that yield essentially partitions of objects (see [72]). If σ is a partition
of a set of objects S that reflects a categorization of the objects that is in-
dependent of the classification algorithm applied and π is the partition that
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is produced by the classification algorithm, then the value of dβ(π, σ) can be
used to determine the validity of π compared to the classification of reference
σ.

45. The Rand index of two partitions π, σ ∈ PART(S) is the number

rand(π, σ) =
agr(π, σ)(|S|

2

) ,

where agr(π, σ) and dagr(π, σ) were defined on page 73 . Prove that:
a) dagr(π, σ) = |S|2

4 · d2(π, σ).

b) rand(π, σ) = 1− |S|2
2(|S|2−|S|)d2(π, σ).

c) 0 ≤ rand(π, σ) ≤ 1; moreover, rand(π, σ) = 1 if and only if π = σ.
46. Let S be a set and let φ : Seq(S) −→ R>0 be a function such that

u ≤pref v implies φ(u) ≥ φ(v) for u,v ∈ Seq(S).
a) Define the mapping dφ : (Seq(S))2 −→ R≥0 by

dφ(u,v) =

{
0 if u = v,
φ(lcp(u,v)) otherwise,

for u,v ∈ Seq(S). Prove that dφ is an ultrametric on Seq(S).
b) Consider an extension of the function dφ to the set Seq∞(S) obtained

by replacing the sequences u,v in the definition of dφ by infinite se-
quences. Note that this extension is possible because the longest com-
mon prefix of two distinct infinite sequences is always a finite sequence.
Prove that the extended function is an ultrametric on Seq∞(S).

c) Give examples of functions φ that satisfy the conditions of Part (a)
and the associated ultrametrics.

Solution for Part (a): It is clear that dφ(u,v) = 0 if and only if
u = v and that dφ(u,v) = dφ(v,u). Thus, we need to prove only the
ultrametric inequality. Let u,v,w be three sequences. In Theorem 5.8
we have shown that at most two of the sequences lcp(u,v), lcp(v,w),
lcp(w,u) are distinct and that the common value of two of these sequences
is a prefix of the third sequence. This is equivalent to the ultrametric
inequality for dφ.

47. Let x,y ∈ Seq∞({0, 1}) be two infinite binary sequences. Define d :
(Seq∞({0, 1}))2 −→ R̂≥0 as d(x,y) =

∑∞
i=0

|xi−yi|
ai , where a > 1.

Prove that d is a metric on Seqinfty({0, 1}) such that d(x,y) = d(x, z)
implies y = z for all x,y, z ∈ Seqinfty({0, 1}).

A longest common subsequence of two sequences x and y is a sequence z that
is a subsequence of both x and y and is of maximal length. For example, if
x = (a1, a2, a3, a4, a2, a2) and y = (a3, a2, a1, a3, a2, a1, a1, a2, a1), then both
(a2, a3, a2, a2) and (a1, a3, a2, a2) are both longest subsequences of x and y.
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The length of a longest common subsequence of x and y will be denoted by
llcs(x,y).

48. Let x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1) be two sequences. Prove
that we have

llcs(x,y) =

⎧⎪⎨
⎪⎩

0 if x = λ or y = λ,

llcs(x0,n−2,y0,m−2) + 1 if xn−1 = ym−1,

max{llcs(x0,n−2,y), llcs(x,y0,m−2)}.

Based on this equality, formulate a tabular algorithm (similar to the one
used to compute Levenshtein’s distance) that can be used to compute
llcs(x,y) and all longest common subsequences of x and y.

49. Let d be the string distance calculated with the cost scheme (1, 1,∞).
Prove that d(x,y) = |x|+ |y| − 2llcs(x,y).

50. Let d be the string distance calculated with the cost scheme (∞,∞, 1).
Show that if x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1), then

d(x,y) =

{
∞ if |x| �= |y|,
|{i | 0 ≤ i ≤ n− 1, xi �= yi}| if |x| = |y|.

51. A shortest common supersequence of two sequences x and y is a sequence
of minimum length that contains both x and y as subsequences. Prove
that the length of a shortest common supersequence of x and y equals
|x|+ |y| − llcs(x,y).

52. Let (S, d) be a finite metric space. A metric tree for (S, d) (see [28]) is a
binary tree T(S, d), defined as follows:
• If |S| = 1, then T(S, d) consists of a single node that is sphere B(s, 0),

where S = {s}.
• If |S| > 1 create a node v labeled by a sphere B(s, r) ⊆ S and construct

the trees T(B(s, r), d) and T(S−B(s, r), d). Then, make T(B(s, r) and
T(S −B(s, r) the direct descendants of v.

Design an algorithm for retrieving the k-nearest members of S to a query
q ∈ S using an existing metric tree.

The AESA algorithm (an acronym of Approximating and Eliminating Search
Algorithm) starts with a finite metric space (S, d), a subset X = {x1, . . . , xn}
of S, and a query q ∈ S and produces the nearest neighbors of q in X.
The values of distances between the members of X are precomputed. The
algorithm uses the semimetric DT defined in Exercise 4.

The algorithm partitions the set X into three sets: K,A,E, where K is the
set of known elements (that is, the set of elements of S for which d(x, q) has
been computed), A is the set of active elements, and E is the set of eliminated
elements defined by

E = {x ∈ X | DK(x, q) > min{d(y, q) | y ∈ K}}.
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The algorithm is given next.

Algorithm 10.91 (AESA)
Input: a metric space (S, d) and a query q ∈ S;
Output: the set of nearest neighbors of q in X;
Method: compute the matrix of dissimilarities (d(xi, xj))

of the elements of X;
(preprocessing phase)

A = X; K = ∅; E = ∅;
while (A �= ∅) do
DK(x, q) = ∞;
select x ∈ A such that x = arg min{DK(x, q) | x ∈ A};
compute d(x, q); K = K ∪ {x}; A = A− {x};
update r = min{d(x, q) | x ∈ K};
update DK(x′, q) for all x′ ∈ A as
DK∪{x}(x′, q) = max{DK(x′, q), |d(x, q)− d(x, x′)|};

K = K ∪ {x};
if DK(x′, q) > r then {
A = A− {x′};
E = E ∪ {x′};

}
end while;
return the set K

53. Prove that the AESA algorithm is indeed computing the set of nearest
neighbors of q.

54. Let (S, d) be a metric space and let X = {x1, . . . , xn} be a finite subset of
S. Suppose that not all distances between the elements of X are known.
The distance graph of X is a weighted graph (GX , w), where GX = (X,E).
An edge (x, y) exists in the underlying graph GX if d(x, y) is known; in
this case, w(x, y) = d(x, y).
If p is a simple path in the graph (GX , w) that joins x to y, define η(p) =
w(ê)−

∑
{w(e) | e is in p, e �= ê}, where ê is the edge of maximum weight

in p. Prove that d(x, y) ≥ η(p).
55. Let paths(x, y) be the set of simple paths in (GX , w) that joins x to y.

Define the approximate distance map for X as an n× n matrix A = (aij)
such that

aij = max{η(p) | p ∈ paths(xi, xj)}
for 1 ≤ i, j ≤ n. Also, define the n× n-matrix M = (mij) as

mij = min{w(p) | p ∈ paths(xi, xj)}

for 1 ≤ i, j ≤ n. Prove that aij ≤ d(xi, xj) ≤ mij for 1 ≤ i, j ≤ n.
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56. Let pathsk(x, y) be the set of simple paths in (GX , w) that join x to y and
do not pass through any of the vertices numbered higher than k, where
k ≥ 1. Denote by ak

ij ,m
k
ij , b

k
ij the numbers

ak
ij = max{η(p) | p ∈ pathsk(xi, xj)},

mk
ij = min{w(p) | p ∈ pathsk(xi, xj)},
bkij = max{η(p) | p ∈ pathsk(xi, xk)pathsk(xk, xj)}

for 1 ≤ i, j ≤ n. Prove that

bkij = max{ak−1
ij −mk−1

ij , ak−1
jk −mk−1

ki }

for 1 ≤ k ≤ n.
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Topologies and Measures on Metric Spaces

11.1 Introduction

The study of topological properties of metric spaces allows us to present an
introduction to the dimension theory of these spaces, a topic that is relevant
for data mining due to its role in understanding the complexity of searching
in data sets that have a natural metric structure.

Topologies of metric spaces are presented in Section 11.2.

11.2 Metric Space Topologies

Metrics spaces are naturally equipped with topologies using a mechanism that
we describe next.

Theorem 11.1. Let (S, d) be a metric space. The family of sets Od defined
by

Od = {L ∈ P(S) | for each x ∈ L there exists ε > 0 such that Cd(x, ε) ⊆ L}

is a topology on the set S.

Proof. We have ∅ ∈ Od because there is no x in ∅, so the condition of the defini-
tion of Od is vacuously satisfied. The set S belongs to Od because Cd(x, ε) ⊆ S
for every x ∈ S and every positive number ε.

If {Ui | i ∈ I} ⊆ Od and x ∈
⋃
{Ui | i ∈ I}, then x ∈ Uj for some

j ∈ I. Then, there exists ε > 0 such that S(x, ε) ⊆ Uj and therefore S(x, ε) ⊆⋃
{Ui | i ∈ I}. Thus,

⋃
{Ui | i ∈ I} ∈ Od.

Finally, let U, V ∈ Od and let x ∈ U ∩ V . Since U ∈ Od, there exists ε > 0
such that C(x, ε) ⊆ U . Similarly, there exists ε′ such that C(x, ε′) ⊆ V . If
ε1 = min{ε, ε′}, then

C(x, ε1) ⊆ C(x, ε) ∩ C(x, ε′) ⊆ U ∩ V,

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 11, c© Springer-Verlag London Limited 2008
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so U ∩ V ∈ Od. This concludes the argument. 	

Theorem 11.1 justifies the following definition.

Definition 11.2. Let d be a metric on a set S. The topology induced by d is
the family of sets

Od = {L ∈ P(S) | for each x ∈ L there exists ε > 0 such that Cd(x, ε) ⊆ L}.

We refer to the pair (S,Od) as a topological metric space.

Example 11.3. The usual topology of the set of real numbers R introduced in
Example 6.4 is actually induced by the metric d : R × R −→ R≥0 given by
d(x, y) = |x− y| for x, y ∈ R. Recall that, by Theorem 6.10, every open set of
this space is the union of a countable set of disjoint open intervals.

The next statement explains the terms “open sphere” and “closed sphere,”
which we have used previously.

Theorem 11.4. Let (S,Od) be a topological metric space. If t ∈ S and r > 0,
then any open sphere C(t, r) is an open set and any closed sphere B(t, r) is a
closed set in the topological space (S,Od).

Proof. Let x ∈ C(t, r), so d(t, x) < r. Choose ε such that ε < r − d(t, x). We
claim that C(x, ε) ⊆ C(t, r). Indeed, let z ∈ C(x, ε). We have d(x, z) < ε <
r − d(t, x). Therefore, d(z, t) ≤ d(z, x) + d(x, t) < r, so z ∈ C(t, r), which
implies C(x, ε) ⊆ C(t, r). We conclude that C(t, r) is an open set.

To show that the closed sphere B(t, r) is a closed set, we will prove that
its complement S − B(t, r) = {u ∈ S | d(u, t) > r} is an open set. Let
v ∈ S − B(t, r). Now choose ε such that ε < d(v, t)− r. It is easy to see that
C(v, ε) ⊆ S −B(t, r), which proves that S −B(t, r) is an open set. 	


Corollary 11.5. The collection of all open spheres in a topological metric
space (S,Od) is a basis.

Proof. This statement follows immediately from Theorem 11.4. 	

The definition of open sets in a topological metric space implies that a

subset L of a topological metric space (S,Od) is closed if and only if for every
x ∈ S such that x �∈ L there is ε > 0 such that C(x, ε) is disjoint from L.
Thus, if C(x, ε) ∩ L �= ∅ for every ε > 0 and L is a closed set, then x ∈ L.

The closure and the interior operators KOd
and IOd

in a topological metric
space (S,Od) are described next.

Theorem 11.6. In a topological metric space (S,Od), we have

KOd
(U) = {x ∈ S | C(x, ε) ∩ U �= ∅ for every ε > 0}

and
IOd

(U) = {x ∈ S | C(x, ε) ⊆ U for some ε > 0}
for every U ∈ P(S).
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Proof. Let K = KOd
. If C(x, ε)∩U �= ∅ for every ε > 0, then clearly C(x, ε)∩

K(U) �= ∅ for every ε > 0 and therefore x ∈ K(U) by a previous observation.
Now let x ∈ K(U) and let ε > 0. Suppose that C(x, ε) ∩ U = ∅. Then,

U ⊆ S−C(x, ε) and S−C(x, ε) is a closed set. Therefore, K(U) ⊆ S−C(x, ε).
This is a contradiction because x ∈ K(U) and x �∈ S − C(x, ε).

The second part of the theorem follows from the first part and from Corol-
lary 6.27. 	


If the metric topology Od is clear from the context, then we will denote
the closure operator KOd

simply by K.

Corollary 11.7. The subset U of the topological metric space (S,Od) is closed
if and only if C(x, ε) ∩ U �= ∅ for every ε > 0 implies x ∈ U .

Proof. This statement is an immediate consequence of Theorem 11.6. 	


Corollary 11.8. Let (S,Od) be a topological metric space and let L be a subset
of K. Then, the border ∂L of the set L is given by

∂L = {x ∈ S| for every ε > 0, C(x, ε) ∩ L �= ∅, and C(x, ε) ∩ (S − L) �= ∅}.

Theorem 11.9. Let T be a subset of a topological metric space (S,Od). We
have diam(T ) = diam(K(T )).

Proof. Since T ⊆ K(T ), it follows immediately that diam(T ) ≤ diam(K(T )),
so we have to prove only the reverse inequality.

Let u, v ∈ K(T ). For every positive number ε, we have C(u, ε) ∩ T �= ∅
and C(v, ε) ∩ T �= ∅. Thus, there exists x, y ∈ T such that d(u, x) < ε and
d(v, y) < ε. Thus, d(u, v) ≤ d(u, x) + d(x, y) + d(y, v) ≤ 2ε + diam(T ) for
every ε, which implies d(u, v) ≤ diam(T ) for every u, v ∈ K(T ). This yields
diam(K(T )) ≤ diam(T ). 	


A metric topology can be defined, as we shall see, by more than one metric.

Definition 11.10. Two metrics d and d′ defined on a set S are topologically
equivalent if the topologies Od and Od′ are equal.

Example 11.11. Let d and d′ be two metrics defined on a set S. If there exist
two numbers a, b ∈ R>0 such that

ad(x, y) ≤ d′(x, y) ≤ bd(x, y),

for x, y ∈ S, then Od = O′
d. Let Cd(x, r) be an open sphere centered in x,

defined by d. The inequalities above imply

Cd

(r
b

)
⊆ Cd′(x, r) ⊆ Cd

(
x,
r

a

)
.

Let L ∈ Od. By Definition 11.2, for each x ∈ L there exists ε > 0 such that
Cd(x, ε) ⊆ L. Then, C ′

d(x, aε) ⊆ Cd(x, ε) ⊆ L, which implies L ∈ Od′ . We
leave it to the reader to prove the reverse inclusion Od′ ⊆ Od.

By Corollary 10.52, any two Minkowski metrics dp and dq on R
n are topo-

logically equivalent.
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11.3 Continuous Functions in Metric Spaces

Continuous functions between topological spaces were introduced in Defini-
tion 6.62.

Next, we give a characterization of continuous functions between topolog-
ical metric spaces.

Theorem 11.12. Let (S,Od) and (T,Oe) be two topological metric spaces.
The following statements concerning a function f : S −→ T are equivalent:
(i) f is a continuous function.
(ii) For every x ∈ S and ε > 0, there exists δ > 0 such that

f(Cd(x, δ)) ⊆ Ce(f(x), ε).

Proof. (i) implies (ii): Suppose that f is a continuous function. Since Ce(f(x), ε)
is an open set in (T,Oe), the set f−1(Ce(f(x), ε) is an open set in (S,Od).
Clearly, x ∈ f−1(Ce(f(x), ε)), so by the definition of the metric topol-
ogy there exists δ > 0 such that Cd(x, δ) ⊆ f−1(Ce(f(x), ε), which yields
f(Cd(x, δ)) ⊆ Ce(f(x), ε).

(ii) implies (i): Let V be an open set of (T,Oe). If f−1(V ) is empty, then
it is clearly open. Therefore, we may assume that f−1(V ) is not empty. Let
x ∈ f1−(V ). Since f(x) ∈ V and V is open, there exists ε > 0 such that
Ce(f(x), ε) ⊆ V . By Part (ii) of the theorem, there exists δ > 0 such that
f(Cd(x, δ)) ⊆ Ce(f(x), ε), which implies x ∈ Cd(x, δ) ⊆ f−1(V ). This means
that f−1(V ) is open, so f is continuous. 	


In general, for a continuous function f : S −→ T , the number δ depends
both on x and on ε. If δ is dependent only on ε, then we say that f is uniformly
continuous. Thus, f is uniformly continuous if for every ε > 0 there exists δ
such that if d(u, v) < δ, then e(f(u), f(v)) < ε.

Theorem 11.13. Let (S,Od) and (T,Oe) be two topological metric spaces and
let f : S −→ T be a function. The following statements are equivalent.
(i) f is uniformly continuous.
(ii) For all sequences u = (u0, u1, . . .) and v = (v0, v1, . . .) in Seq∞(S) such

that limn→∞ d(un, vn) = 0 we have limn→∞ e(f(un), f(vn)) = 0.
(iii) For all sequences u = (u0, u1, . . .) and v = (v0, v1, . . .) in Seq∞(S) such

that limn→∞ d(un, vn) = 0, we have limk→∞ e(f(unk
), f(vnk

)) = 0, where
(un0 , un1 , . . .) and (vn0 , vn1 , . . .) are two arbitrary subsequences of u and
v, respectively.

Proof. (i) implies (ii): For ε > 0, there exists δ such that d(u, v) < δ implies
e(f(u), f(v)) < ε. Therefore, if u and v are sequences as above, there exists
nδ such that n > nδ implies d(un, vn) < δ, so e(f(un), f(vn)) < ε. Thus,
limn→∞ e(f(un), f(vn)) = 0.

(ii) implies (iii): This implication is obvious.
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(iii) implies (i): Suppose that f satisfies (iii) but is not uniformly continuous.
Then, there exists ε > 0 such that for every δ > 0 there exist u, v ∈ X such
that d(u, v) < δ and e(f(u), f(v)) > ε. Let un, vn be such that d(un, vn) < 1

n
for n ≥ 1. Then, limn→∞ d(un, vn) = 0 but e(f(un), f(vn)) does not converge
to 0. 	


Example 11.14. The function f : R −→ R given by f(x) = x sinx is continuous
but not uniformly continuous. Indeed, let un = nπ and vn = nπ + 1

n . Note
that limn→∞ |un − vn| = 0, f(un) = 0, and f(vn) = (nπ + 1

n ) sin(nπ + 1
n ) =

(nπ + 1
n )(−1)n sin 1

n . Therefore,

lim
n→∞

|f(un)− f(vn)|

= lim
n→∞

(
nπ +

1
n

)
sin

1
n

= π lim
n→∞

n

sin 1
n

= π.

This implies that f is not uniformly continuous.

A local continuity property is introduced next.

Definition 11.15. Let (S,Od) and (T,Oe) be two topological metric spaces
and let x ∈ S.

A function f : S −→ T is continuous in x if for every ε > 0 there exists
δ > 0 such that

f(C(x, δ)) ⊆ C(f(x), ε).

It is clear that f is continuous if it is continuous in every x ∈ S.
The definition can be restated by saying that f is continuous in x if for

every ε > 0 there is δ > 0 such that d(x, y) < δ implies e(f(x), f(y)) < ε.

11.4 Separation Properties of Metric Spaces

We begin by discussing properties of distances between points and sets in
metric spaces.

Theorem 11.16. Let (S, d) be a metric space. The following statements hold:
(i) |d(u, V )− d(u′, V )| ≤ d(u, u′),
(ii) d(u, V ) = 0 if and only if u ∈ K(V ), and
(iii) d(u, V ) = d(u,K(V ))
for every u, u′ ∈ S and V ⊆ S.

Proof. Let v be an element of v. Since d(u, v) ≤ d(u, u′) + d(u′, v), it follows
that d(u, V ) ≤ d(u, u′) + d(u′, v) by the definition of d(u, V ). Since d(u, V )−
d(u, u′) ≤ d(u′, v) for every v ∈ V , by the same definition we obtain d(u, V )−
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d(u, u′) ≤ d(u′, V ). Thus, d(u, V )− d(u′, V ) ≤ d(u, u′). Reversing the roles of
u and u′ we have d(u′, V )− d(u, V ) ≤ d(u, u′), which gives Inequality (i).

Suppose that d(u, V ) = 0. Again, by the definition of d(u, V ), for every ε >
0 there exists v ∈ V such that d(u, v) < ε, which means that C(u, ε) ∩ V �= ∅.
By Theorem 11.6, we have u ∈ K(V ). The converse implication is immediate,
so (ii) holds.

Finally, to prove (iii), observe that V ⊆ K(V ) implies that d(u,K(V )) ≤
d(u, V ), so we need to prove only the reverse inequality.

Let w be an arbitrary element of K(V ). By Theorem 11.6, for every ε > 0,
C(w, ε) ∩ V �= ∅. Let v ∈ C(w, ε) ∩ V . We have

d(u, v) ≤ d(u,w) + d(w, v) ≤ d(u,w) + ε,

so d(u, V ) ≤ d(u,w) + ε. Since this inequality holds for every ε, d(u, V ) ≤
d(u,w) for every w ∈ K(V ), so d(u, V ) ≤ d(u,K(V )). This allows us to
conclude that d(u, V ) = d(u,K(V )). 	


Theorem 11.16 can be restated using the function dV : S −→ R≥0 defined
by dV (u) = d(u, V ) for u ∈ S. Thus, for every subset V of S, we have

|dV (u)− dV (u′)| ≤ d(u, u′),
dV (u) = 0 if and only if u ∈ K(V ), and
dV = dK(V )

for u, u′ ∈ S.

Corollary 11.17. Let (S,Od) be a topological metric space and let V be a
subset of S. Then, the function dV is a continuous function on the space
(S,Od) and K(V ) = d−1

V (0).

Proof. This statement is an immediate consequence of Theorem 11.16. 	

The notions of an open sphere and a closed sphere in a metric space (S, d)

are extended by defining the sets C(T, r) and B(T, r) as

C(T, r) = {u ∈ S | d(u, T ) < r},
B(T, r) = {u ∈ S | d(u, T ) ≤ r},

for T ∈ P(S) and r ≥ 0, respectively.
The next statement is a generalization of Theorem 11.4.

Theorem 11.18. Let (S,Od) be a topological metric space. For every set T ,
T ⊆ S, and every r > 0, C(T, r) is an open set and B(T, r) is a closed set in
(S,Od).

Proof. Let u ∈ C(T, r). We have d(u, T ) < r, or, equivalently, inf{d(u, t) |
t ∈ T} < r. We claim that if ε is a positive number such that ε < r

2 , then
C(u, ε) ⊆ C(T, r).
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Let z ∈ C(u, ε). For every v ∈ T , we have d(z, v) ≤ d(z, u) + d(u, v) <
ε+ d(u, v). From the definition of d(u, T ) as an infimum, it follows that there
exists v′ ∈ T such that d(u, v′) < d(u, V )+ ε

2 , so d(z, v′) < d(u, T )+ ε < r+ ε.
Since this inequality holds for every ε > 0, it follows that d(z, v′) < r, so
d(z, T ) < r, which proves that C(u, ε) ⊆ C(T, r). Thus, C(T, r) is an open
set.

Suppose now that s ∈ K(B(T, r)). By Part (ii) of Theorem 11.16, we have
d(s,B(T, r)) = 0, so inf{d(s, w) | w ∈ B(T, r)} = 0. Therefore, for every
ε > 0, there is w ∈ B(T, r) such that d(s, w) < ε. Since d(w, T ) ≤ r, it follows
from the first part of Theorem 11.16 that |d(s, T )− d(w, T )| ≤ d(s, w) < ε for
every ε > 0. This implies d(s, T ) = d(w, T ), so s ∈ B(T, r). This allows us to
conclude that B(T, r) is indeed a closed set. 	


Theorem 11.19 (Lebesgue’s Lemma). Let (S,Od) be a topological metric
space that is compact and let C be an open cover of this space. There exists
r ∈ R>0 such that for every subset U with diam(U) < r there is a set L ∈ C

such that U ⊆ L.

Proof. Suppose that the statement is not true. Then, for every k ∈ P, there
exists a subset Uk of S such that diam(Uk) < 1

k and Uk is not included in
any of the sets L of C. Since (S,Od) is compact, there exists a finite subcover
{L1, . . . , Lp} of C.

Let xik be an element in Uk − Li. For every two points xik, xjk, we have
d(xik, xjk) ≤ 1

k because both belong to the same set Uk. By Theorem 11.60,
the compactness of S implies that any sequence xi = (xi1, xi2, . . .) contains
a convergent subsequence. Denote by xi the limit of this subsequence, where
1 ≤ i ≤ p. The inequality d(xik, xjk) ≤ 1

k for k ≥ 1 implies that d(xi, xj) = 0
so xi = xj for 1 ≤ i, j ≤ p. Let x be their common value. Then x does not
belong to any of the sets Li, which contradicts the fact that {L1, . . . , Lp} is
an open cover. 	


Theorem 11.20. Every topological metric space (S,Od) is a Hausdorff space.

Proof. Let x and y be two distinct elements of S, so d(x, y) > 0. Choose
ε = d(x,y)

3 . It is clear that for the open spheres C(x, ε) and C(y, ε), we have
x ∈ C(x, ε), y ∈ C(y, ε), and C(x, ε) ∩ C(y, ε) = ∅, so (S,Od) is indeed a
Hausdorff space. 	


Corollary 11.21. Every compact subset of a topological metric space is closed.

Proof. This follows directly from Theorems 11.20 and 6.89. 	


Corollary 11.22. If S is a finite set and d is a metric on S, then the topology
Od is the discrete topology.
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Proof. Let S = {x1, . . . , xn} be a finite set. We saw that every singleton {xi}
is a closed set. Therefore, every subset of S is closed as a finite union of closed
sets. 	


Theorem 11.23. Every topological metric space (S,Od) is a T4 space.

Proof. We need to prove that for all disjoint closed sets H1 and H2 of S there
exist two open disjoint sets V1 and V2 such that H1 ⊆ V1 and H2 ⊆ V2.

Let x ∈ H1. Since H1 ∩ H2 = ∅, it follows that x �∈ H2 = K(H2),
so d(x,H2) > 0 by Part (ii) of Theorem 11.16. By Theorem 11.18, the set
C
(
H1,

d(x,L)
3

)
is an open set and so is

QH =
⋃{

C

(
H1,

d(x,L)
3

)
| x ∈ H1

}
.

The open set QH2 is defined in a similar manner as

QH2 =
⋃{

C

(
H2,

d(y,H1)
3

)
| y ∈ H2

}
.

The sets QH1 and QH2 are disjoint because t ∈ QH1 ∩QH2 implies that there
is x1 ∈ H1 and x2 ∈ H2 such that d(t, x1) <

d(x1,H2)
3 and d(t, x2) <

d(x2,H1)
3 .

This, in turn, would imply

d(x1, x2) <
d(x1,H2) + d(x2,H1)

3
≤ 2

3
d(x1, x2),

which is a contradiction. Therefore, (S,Od) is a T4 topological space. 	


Corollary 11.24. Every metric space is normal.

Proof. By Theorem 11.20, a metric space is a T2 space and therefore a T1

space. The statement then follows directly from Theorem 11.23. 	


Corollary 11.25. Let H be a closed set and L be an open set in a topological
metric space (S,Od) such that H ⊆ L. Then, there is an open set V such that
H ⊆ V ⊆ K(V ) ⊆ L.

Proof. The closed sets H and S − L are disjoint. Therefore, since (S,O) is
normal, there exist two disjoint open sets V and W such that H ⊆ V and
S − L ⊆ W . Since S −W is closed and V ⊆ S −W , it follows that K(V ) ⊆
S −W ⊆ L. Thus, we obtain H ⊆ V ⊆ K(V ) ⊆ L. 	


A stronger form of Theorem 11.23, where the disjointness of the open sets
is replaced by the disjointness of their closures, is given next.

Theorem 11.26. Let (S,Od) be a metric space. For all disjoint closed sets
H1 and H2 of S, there exist two open sets V1 and V2 such that H1 ⊆ V1,
H2 ⊆ V2, and K(V1) ∩K(V2) = ∅.
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Proof. By Theorem 11.23, we obtain the existence of the disjoint open sets
QH1 and QH2 such that H1 ⊆ QH1 and H2 ⊆ QH2 . We claim that the closures
of these sets are disjoint.

Suppose that s ∈ K(QH1) ∩K(QH2). Then, we have C
(
s, ε

12

)
∩QH1 �= ∅

and C
(
s, ε

12

)
∩ QH2 �= ∅. Thus, there exist t ∈ QH1 and t′ ∈ QH2 such that

d(t, s) < ε
12 and d(t′, s) < ε

12 .
As in the proof of the previous theorem, there is x1 ∈ H1 and y1 ∈ H2

such that d(t, x1) <
d(x1,H2)

3 and d(t′, y1) <
d(y1,H1)

3 . Choose t and t′ above
for ε = d(x1, y1). This leads to a contradiction because

d(x1, y1) ≤ d(x1, t) + d(t, s) + d(s, t′) + d(t′, y1) ≤
5
6
d(x1, y1).

	


Corollary 11.27. Let (S,Od) be a metric space. If x ∈ L, where L is an open
subset of S, then there exists two open sets V1 and V2 in S such that x ∈ V1,
S − L ⊆ V2, and K(V1) ∩K(V2) = ∅.

Proof. The statement follows by applying Theorem 11.26 to the disjoint closed
sets H1 = {x} and H2 = S − L. 	


Recall that the Bolzano-Weierstrass property of topological spaces was in-
troduced in Theorem 6.61. Namely, a topological space (S,O) has the Bolzano-
Weierstrass property if every infinite subset T of S has at least one accumu-
lation point. For metric spaces, this property is equivalent to compactness, as
we show next.

Theorem 11.28. Let (S,Od) be a topological metric space. The following
three statements are equivalent:
(i) (S,Od) is compact.
(ii) (S,Od) has the Bolzano-Weierstrass property.
(iii) Every countable open cover of (S,Od) contains a finite subcover.

Proof. (i) implies (ii): by Theorem 6.61.
(ii) implies (iii): Let {Ln | n ∈ N} be a countable open cover of S. Without

loss of generality, we may assume that none of the sets Ln is included in⋃n−1
p=1 Lp; indeed, if this is not the case, we can discard Ln and still have a

countable open cover. Let xn ∈ Ln −
⋃n−1

p=1 Lp and let U = {xn | n ∈ N}.
Since (S,Od) has the Bolzano-Weierstrass property, we have U ′ �= ∅, so there
exists an accumulation point z of U . In every open set L that contains z, there
exists xn ∈ U such that xn �= z.

Since {Ln | n ∈ N} is an open cover, there exists Lm such that
z ∈ Lm. Suppose that the set Lm contains only a finite number of elements
xn1 , . . . , xnk

, and let d = min{d(z, xni
) | 1 ≤ i ≤ k}. Then, Lm ∩ C

(
z, d

2

)
is an open set that contains no elements of U with the possible exception
of z, which contradicts the fact that z is an accumulation point. Thus, Lm
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contains an infinite subset of U , which implies that there exists xq ∈ Lm for
some q > m. This contradicts the definition of the elements xn of U . We
conclude that there exists a number r0 such that Lr−

⋃r−1
i=0 Li = ∅ for r ≥ r0,

so S = L0 ∪ · · · ∪ Lr0−1, which proves that L0, . . . , Lr0−1 is a finite subcover.
(iii) implies (i). Let ε be a positive number. Suppose that there is an infinite

sequence x = (x0, . . . , xn, . . .) such that d(xi, xj) > ε for every i, j ∈ N such
that i �= j. Consider the open spheres C(xi, ε) and the set

C = S −K

⎛
⎝⋃

i∈N

C
(
xi,
ε

2

)⎞⎠ .
We will show that {C} ∪ {C(xi, ε) | i ∈ N} is a countable open cover of S.

Suppose that x ∈ S−C; that is x ∈ K
(⋃

i∈N
C
(
xi,

ε
2

))
. By Theorem 6.37,

we have either that x ∈
⋃

i∈N
C
(
xi,

ε
2

)
or x is an accumulation point of that

set.
In the first case, x ∈

⋃
i∈N

C(xi, ε) because C
(
xi,

ε
2

)
⊆ C(xi, ε). If x is an

accumulation point of
⋃

i∈N
C
(
xi,

ε
2

)
, given any open set L such that x ∈ L,

then L must intersect at least one of the spheres C
(
xi,

ε
2

)
. Suppose that

C
(
x, ε

2

)
∩C

(
xi,

ε
2

)
�= ∅, and let t be a point that belongs to this intersection.

Then, d(x, xi) < d(x, t) + d(t, xi) < ε
2 + ε

2 = ε, so x ∈ C(xi, ε).
Therefore, {C} ∪ {C(xi, ε) | i ∈ N} is a countable open cover of S. Since

every countable open cover of (S,Od) contains a finite subcover, it follows
that this open cover contains a finite subcover. Observe that there exists an
open sphere C(xi, ε) that contains infinitely many xn because none of these
elements belongs to C. Consequently, for any two of these points, the distance
is less than ε, which contradicts the assumption we made initially about the
sequence x.

Choose ε = 1
k for some k ∈ N such that k ≥ 1. Since there is no infinite

sequence of points such that every two distinct points are at a distance greater
than 1

k , it is possible to find a finite sequence of points x = (x0, . . . , xn−1)
such that i �= j implies d(xi, xj) > 1

k for 0 ≤ i, j ≤ n− 1 and for every other
point x ∈ S there exists xi such that d(xi, x) ≤ 1

k .
Define the set Lk,m,i as the open sphere C

(
xi,

1
m

)
, where xi is one of the

points that belongs to the sequence above determined by k and m ∈ N and
m ≥ 1. The collection {Lk,m,i | m ≥ 1, 0 ≤ i ≤ n−1} is clearly countable. We
will prove that each open set of (S,Od) is a union of sets of the form Lk,m,i;
in other words, we will show that this family of sets is a basis for (S,Od).

Let L be an open set and let z ∈ L. Since L is open, there exists ε > 0
such that z ∈ C(z, ε) ⊆ L. Choose k and m such that 1

k <
1
m < ε

2 . By the
definition of the sequence x, there is xi such that d(z, xi) < 1

k . We claim that

Lk,m,i = C

(
xi,

1
m

)
⊆ L.
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Let y ∈ Lk,m,i. Since d(z, y) ≤ d(z, xi) + d(xi, y) < 1
k + 1

m < ε, it follows that
Lk,m,i ⊆ C(z, ε) ⊆ L. Since d(y, z) < 1

k <
1
m , we have z ∈ Lk,m,i. This shows

that L is a union of sets of the form Lk,m,i, so this family of sets is a countable
open cover of S. It follows that that there exists a finite open cover of (S,Od)
because every countable open cover of (S,Od) contains a finite subcover. 	


Closed or open spheres in ultrametric spaces have an interesting property,
which we discuss next.

Corollary 11.29. If d is an ultrametric on S, then any closed sphere B(t, r)
and any open sphere C(t, r) is a clopen set in the topological ultrametric space
(S,Od).

Proof. We already know that B(t, r) is closed. To prove that this set is also
open if d is an ultrametric, let s ∈ B(t, r). We saw that s is again a center
of the sphere (see Theorem 10.22). Therefore, C

(
s, r

2

)
⊆ B(t, r), so B(t, r) is

open. We leave the proof that C(t, r) is also closed to the reader. 	

By Theorem 6.34, the border of a closed sphere or of an open sphere in an

ultrametric space is empty.

Theorem 11.30. Let d and d′ be two metrics on a set S such that there exist
c0, c1 ∈ R>0 for which c0d(x, y) ≤ d′(x, y) ≤ c1d(x, y) for every x, y ∈ S.
Then, the topologies Od and Od′ coincide.

Proof. Suppose that L ∈ Od, and let x ∈ L. There exists ε > 0 such that
Cd(x, ε) ⊆ L. Note that Cd′(x, c1ε) ⊆ Cd(x, ε). Thus, Cd′(x, ε′) ⊆ L, where
ε′ = c1ε, which shows that L ∈ Od′ . In a similar manner, one can prove that
Od′ ⊆ Od, so the two topologies are equal. 	


If d and d′ are two metrics on a set S such that Od = Od′ , we say that
d and d′ are topologically equivalent. Corollary 10.55 implies that all metrics
dp on R

n with p ≥ 1 are topologically equivalent.
In Section 6.2, we saw that if a topological space has a countable basis, then

the space is separable (Theorem 6.46) and each open cover of the basis contains
a countable subcover (Corollary 6.49). For metric spaces, these properties are
equivalent, as we show next.

Theorem 11.31. Let (S,Od) be a topological metric space. The following
statements are equivalent:
(i) (S,Od) has a countable basis.
(ii) (S,Od) is a separable.
(iii) Every open cover of (S,Od) contains a countable subcover.

Proof. By Theorem 6.46 and Corollary 6.49, the first statement implies (ii)
and (iii). Therefore, it suffices to prove that (iii) implies (ii) and (ii) implies
(i).

To show that (iii) implies (ii), suppose that every open cover of (S,Od)
contains a countable subcover. The collection of open spheres {C

(
x, 1

n

)
| x ∈
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S, n ∈ N>0} is an open cover of S and therefore there exists a countable set
Tn ⊆ S such that Cn = {C

(
x, 1

n

)
| x ∈ Tn, n ∈ N>0} is an open cover of S.

Let C =
⋃

n≥1 Tn. By Theorem 1.130, C is a countable set.
We claim that C is dense in (S,Od). Indeed, let s ∈ S and choose n

such that n > 1
ε . Since Cn is an open cover of S, there is x ∈ Tn such that

s ∈ C
(
x, 1

n

)
⊆ C (x, ε). Since Tn ⊆ C, it follows that C is dense in (S,Od).

Thus, (S,Od) is separable.
To prove that (ii) implies (i), let (S,Od) be a separable space. There exists

a countable set U that is dense in (S,Od). Consider the countable collection

C =
{
C

(
u,

1
n

)
| u ∈ U, n ≥ 1

}
.

If L is an open set in (S,Od) and x ∈ L, then there exists ε > 0 such that
C(x, ε) ⊆ L. Let n be such that n > 2

ε . Since U is dense in (S,Od), we know
that x ∈ K(U), so there exists y ∈ S(x, ε)∩U and x ∈ C

(
y, 1

n

)
⊆ C

(
x, 2

n

)
⊆

C(x, ε) ⊆ L. Thus, C is a countable basis. 	


Theorem 11.32. Let (S,Od) be a topological metric space. Every closed set
of this space is a countable intersection of open sets, and every open set is a
countable union of closed sets.

Proof. Let H be a closed set and let Un be the open set

Un =
⋃
n≥1

{
C

(
x,

1
n

)
| x ∈ F

}
.

It is clear that H ⊆
⋂

n≥1 Un. Now let u ∈
⋂

n≥1 Un and let ε be an arbitrary
positive number. For every n ≥ 1, there is an element xn ∈ H such that
d(u, xn) < 1

n . Thus, if 1
n < ε, we have xn ∈ H ∩ C(u, ε), so C(u, ε) ∩H �= ∅.

By Corollary 11.7, it follows that u ∈ H, which proves the reverse inclusion⋂
n≥1 Un ⊆ H. This shows that every closed set is a countable union of open

sets.
If L is an open set, then its complement is closed and, by the first part

of the theorem, it is a countable intersection of open sets. Thus, L itself is a
countable union of closed sets. 	


Definition 11.33. Let (S,Od) be a topological metric space. A Gδ-set is a
countable intersection of open sets. An Fδ-set is a countable union of open
sets.

Now, Theorem 11.32 can be restated by saying that every closed set of a
topological metric space is a Gδ-set and every open set is an Fδ-set.

Theorem 11.34. Let U be a Gδ-set in the topological metric space (S,Od).
If T is a Gδ-set in the subspace U , then T is a Gδ-set in S.
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Proof. Since T is a Gδ-set in the subspace U , we can write T =
⋂

n∈N
Ln,

where each Ln is an open set in the subspace U . By the definition of the
subspace topology, for each Ln there exists an open set in S such that Ln =
L′

n ∩ U , so
T =

⋂
n∈N

Ln =
⋂

n∈N

(L′
n ∩ U) = U ∩

⋂
n∈N

L′
n.

Since U is a countable intersection of open sets of S, the last equality shows
that T is a countable intersection of open sets of S and hence a Gδ-set in S.
	


11.5 Sequences in Metric Spaces

Definition 11.35. Let (S,Od) be a topological metric space and let x =
(x0, . . . , xn, . . .) be a sequence in Seq∞(S).

The sequence x converges to an element x of S if for every ε > 0 there
exists nε ∈ N such that n ≥ nε implies xn ∈ C(x, ε).

A sequence x is convergent if it converges to an element x of S.

Theorem 11.36. Let (S,Od) be a topological metric space and let x =
(x0, . . . , xn, . . .) be a sequence in Seq∞(S). If x is convergent, then there exists
a unique x such that x converges to x.

Proof. Suppose that there are two distinct elements x and y of the set S
that satisfy the condition of Definition 11.35. We have d(x, y) > 0. Define
ε = d(x,y)

3 . By definition, there exists nε such that n ≥ nε implies d(x, xn) < ε
and d(xn, y) < ε. By applying the triangular inequality, we obtain

d(x, y) ≤ d(x, xn) + d(xn, y) < 2ε =
2
3
d(x, y),

which is a contradiction. 	

If the sequence x = (x0, . . . , xn, . . .) converges to x, this is denoted by

limn→∞ xn = x.
An alternative characterization of continuity of functions can be formu-

lated using convergent sequences.

Theorem 11.37. Let (S,Od) and (T,Oe) be two topological metric spaces
and let f : S −→ T . The function f is continuous in x if and only if
for every sequence x = (x0, . . . , xn, . . .) such that limn→∞ xn = x we have
limn→∞ f(xn) = f(x).

Proof. Suppose that f is continuous in x, and let x = (x0, . . . , xn, . . .) be a
sequence such that limn→∞ xn = x. Let ε > 0. By Definition 11.35, there exists
δ > 0 such that f(C(x, δ)) ⊆ C(f(x), ε). Since limn→∞ xn = x, there exists nδ
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such that n ≥ nδ implies xn ∈ C(x, δ). Then, f(xn) ∈ f(C(x, δ)) ⊆ C(f(x), ε).
This shows that limn→∞ f(xn) = f(x).

Conversely, suppose that for every sequence x = (x0, . . . , xn, . . .) such that
limn→∞ xn = x, we have limn→∞ f(xn) = f(x). If f were not continuous in
x, we would have an ε > 0 such that for all δ > 0 we would have y ∈ C(x, δ)
but f(y) �∈ C(f(x), ε). Choosing δ = 1

n , let yn ∈ S such that yn ∈ C
(
x, 1

n

)
and f(yn) �∈ C(f(x), ε). This yields a contradiction because we should have
limn→∞ f(yn) = f(x). 	


Sequences of Real Numbers

Theorem 11.38. Let x = (x0, . . . , xn, . . .) be a sequence in (R,O), where O

is the usual topology on R.
If x is an increasing (decreasing) sequence and there exists a number b ∈ R

such that xn ≤ b (xn ≥ b, respectively), then the sequence x is convergent.

Proof. Since the set {xn | n ∈ N} is bounded above, its supremum s ex-
ists by the Completeness Axiom for R given in Section 4.4. We claim that
limn→∞ xn = s. Indeed, by Theorem 4.28, for every ε > 0 there exists nε ∈ N

such that s−ε < xnε
≤ s. Therefore, by the monotonicity of the sequence and

its boundedness, we have s − ε < xn ≤ s for n ≥ nε, so xn ∈ C(x, ε), which
proves that x converges to s.

We leave it to the reader to show that any decreasing sequence in (R,O)
that is bounded below is convergent. 	


If x is an increasing sequence and there is no upper bound for x, this
means that for every b ∈ R there exists a number nb such that n ≥ nb implies
xn > b. If this is the case, we say that x is a sequence divergent to +∞ and we
write limn→∞ xn = +∞. Similarly, if x is a decreasing sequence and there is
no lower bound for it, this means that for every b ∈ R there exists a number
nb such that n ≥ nb implies xn < b. In this case, we say that x is a sequence
divergent to −∞ and we write limn→∞ xn = −∞.

Theorem 11.38 and the notion of a divergent sequence allow us to say that
limn→∞ xn exists for every increasing or decreasing sequence; this limit may
be a real number or ±∞ depending on the boundedness of the sequence.

Theorem 11.39. Let [a0, b0] ⊇ [a1, b1] ⊃ · · · ⊃ [an, bn] ⊃ · · · be a sequence
of nested closed intervals of real numbers. There exists a closed interval [a, b]
such that a = limn→∞ an, b = limn→∞ bn, and

[a, b] =
⋂

n∈N

[an, bn].

Proof. The sequence a0, a1, . . . , an, . . . is clearly increasing and bounded be-
cause we have an ≤ bm for every n,m ∈ N. Therefore, it converges to a
number a ∈ R and a ≤ bm for every m ∈ N. Similarly, b0, b1, . . . , bn, . . . is



11.5 Sequences in Metric Spaces 437

a decreasing sequence that is bounded below, so it converges to a number b
such that an ≤ b for n ∈ N. Consequently, [a, b] ⊆

⋂
n∈N

[an, bn].
Conversely, let c be a number in

⋂
n∈N

[an, bn]. Since c ≥ an for n ∈ N, it
follows that c ≥ sup{an | n ∈ N}, so c ≥ a. A similar argument shows that
c ≤ b, so c ∈ [a, b], which implies the reverse inclusion

⋂
n∈N

[an, bn] ⊆ [a, b].
	


In Example 6.56, we saw that every closed interval [a, b] of R is a compact
set. This allows us to prove the next statement.

Theorem 11.40 (Bolzano-Weierstrass Theorem). A bounded sequence
of real numbers has a convergent subsequence.

Proof. Let x = (x0, . . . , xn, . . .) be a bounded sequence of real numbers. The
boundedness of x implies the existence of a closed interval D0 = [a0, b0] such
that {xn | n ∈ N} ⊆ [a0, b0].

Let c = a0+b0
2 be the midpoint of D0. At least one of the sets x−1([a0, c0]),

x−1([c0, b0]) is infinite. Let [a1, b1] be one of [a0, c0] or [c0, b0], for which
x−1([a0, c0]), x−1([c0, b0]) is infinite.

Suppose that we have constructed the interval Dn = [an, bn] having
cn = an+bn

2 as its midpoint such that x−1(Dn) is infinite. Then, Dn+1 =
[an+1, bn+1] is obtained from Dn as one of the intervals [an, cn] or [cn, bn] that
contains xn for infinitely many n.

Thus, we obtain a descending sequence of closed intervals [a0, b0] ⊃
[a1, b1] ⊃ · · · such that each interval contains an infinite set of members of
the sequence x. By Theorem 11.39, we have [a, b] =

⋃
n∈N

[an, bn], where
a = limn→∞ an and b = limn→∞ bn. Note that bn − an = b0−a0

2n , so
a = limn→∞ an = limn→∞ bn = b.

The interval D0 contains at least one member of x, say xn0 . Since D1

contains infinitely many members of x, there exists a member xn1 of x
such that n1 > n0. Continuing in this manner, we obtain a subsequence
xn0 , xn1 , . . . , xnp

, . . .. Since ap ≤ xnp
≤ bp, it follows that the sequence

(xn0 , xn1 , . . . , xnp
, . . .) converges to a. 	


Let x = (x0, x1, . . .) be a sequence of real numbers. Consider the sequence
of sets Sn = {xn, xn+1, . . .} for n ∈ N. It is clear that S0 ⊇ S1 ⊇ · · · ⊆ Sn ⊇
· · · . Therefore, we have the increasing sequence of numbers inf S0 ≤ inf S1 ≤
· · · ≤ inf Sn ≤ · · · ; we define lim inf x as limn→∞ inf Sn. On the other hand,
we have the decreasing sequence supS0 ≥ supS1 ≥ · · · ≥ supSn ≥ · · · of
numbers; we define lim supx as limn→∞ supSn.

Example 11.41. Let x be the sequence defined by xn = (−1)n for n ∈ N.
It is clear that supSn = 1 and inf Sn = −1. Therefore, lim supx = 1 and
lim inf x = −1.

Theorem 11.42. For every sequence x of real numbers, we have lim inf x ≤
lim supx.
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Proof. Let Sn = {xn, xn+1, . . .}, yn = inf Sn, and zn = supSn for n ∈ N.
If p ≥ n, we have yn ≤ yp ≤ zp ≤ zn, so yn ≤ zp for every n, p such that
p ≥ n. Since z1 ≥ z2 ≥ · · · ≥ zp, it follows that yn ≤ zp for every p ∈ N.
Therefore, lim supx = limp→∞ zp ≥ yn for every n ∈ N, which in turn implies
lim inf x = limn→∞ yn ≤ lim supx. 	


Corollary 11.43. Let x = (x0, x1, . . . , xn, . . .) be a sequence of real numbers.
We have lim inf x = lim supx = � if and only if limn→∞ xn = �.

Proof. Suppose that lim inf x = lim supx = � and that it is not the case that
limn→∞ xn = �. This means that there exists ε > 0 such that, for everym ∈ N,
n ≥ m implies |xn − �| ≥ ε, which is equivalent to xn ≥ � + ε or xn ≤ � − ε.
Thus, at least one of the following cases occurs:
(i) there are infinitely many n such that xn ≥ � + ε, which implies that

lim supxn ≥ �+ ε, or
(ii) there are infinitely many n such that xn ≤ � − ε, which implies that

lim inf xn ≥ �− ε.
Either case contradicts the hypothesis, so limn→∞ xn = �.

Conversely, suppose that limn→∞ xn = �. There exists nε such that n ≥ nε

implies �−ε < xn < �+ε. Thus, sup{xn | n ≥ nε} ≤ �+ε, so lim supx ≤ �+ε.
Similarly, y − ε ≤ lim inf x and the inequality

�− ε ≤ lim inf x ≤ lim supx ≤ �+ ε,

which holds for every ε > 0, implies lim inf x = lim supx = �. 	


Sequences and Open and Closed Sets

Theorem 11.44. Let (S,Od) be a topological metric space. A subset U of S
is open if and only if for every x ∈ U and every sequence (x0, . . . , xn, . . .) such
that limn→∞ xn = x there is m such that n ≥ m implies xn ∈ U .

Proof. Suppose U is an open set. Since x ∈ U , there exists ε > 0 such
that C(x, ε) ⊆ U . Let (x0, . . . , xn, . . .) be such that limn→∞ = x. By Defi-
nition 11.35, there exists nε such that n ≥ nε implies xn ∈ C(x, ε) ⊆ U .

Conversely, suppose that the condition is satisfied and that U is not open.
Then, there exists x ∈ U such that for every n ≥ 1 we have C

(
x, 1

n

)
−U �= ∅.

Choose xn−1 ∈ C
(
x, 1

n

)
for n ≥ 1. It is clear that the sequence (x0, . . . , xn, . . .)

converges to x. However, none of the members of this sequence belong to U .
This contradicts our supposition, so U must be an open set. 	


Theorem 11.45. Let (S,Od) be a topological metric space. A subset W of S
is closed if and only if for every sequence x = (x0, . . . , xn, . . .) ∈ Seq∞(W )
such that limn→∞ xn = x we have x ∈W .
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Proof. If W is a closed set and x = (x0, . . . , xn, . . .) is a sequence whose
members belong to W , then none of these members belong to S −W . Since
S −W is an open set, by Theorem 11.45, it follows that x �∈ S −W ; that is,
x ∈W .

Conversely, suppose that for every sequence (x0, . . . , xn, . . .) such that
limn→∞ = x and xn ∈ W for n ∈ N we have x ∈ W . Let v ∈ S − W ,
and suppose that for every n ≥ 1 the open sphere C

(
v, 1

n

)
is not included in

S−W . This means that for each n ≥ 1 there is zn−1 ∈ C
(
v, 1

n

)
∩W . We have

limn→∞ zn = v; this implies v ∈ W . This contradiction means that there is
n ≥ 1 such that C

(
v, 1

n

)
⊆ V , so V is an open set. Consequently, W = S−V

is a closed set. 	
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Let x = (x0, . . . , xn, . . .) be a sequence in the topological metric space (S,Od)
such that limn→∞ xn = x. If m,n > n ε

2
, we have d(xm, xn) ≤ d(xm, x) +

d(x, xn) < ε
2 + ε

2 = ε. In other words, if x is a sequence that converges to x,
then given a positive number ε we have members of the sequence closer than
ε if we go far enough in the sequence. This suggests the following definition:

Definition 11.46. A sequence x = (x0, . . . , xn, . . .) in the topological metric
space (S,Od) is a Cauchy sequence if for every ε > 0 there exists nε ∈ N such
that m,n ≥ nε implies ρ(xm, xn) < ε.

Theorem 11.47. Every convergent sequence in a topological metric space
(S,Od) is a Cauchy sequence.

Proof. Let x = (x0, x1, . . .) be a convergent sequence and let x = limn→∞ x.
There exists n′ε

2
such that if n > n′ε

2
, then d(xn, x) < ε

2 . Thus, if m,n ≥ nε =
n′ε

2
, it follows that

d(xm, xn) ≤ d(xm, x) + d(x, xn) <
ε

2
+
ε

2
= ε,

which means that x is a Cauchy sequence. 	


Example 11.48. The converse of Theorem 11.47 is not true, in general, as we
show next.

Let ((0, 1), d) be the metric space equipped with the metric d(x, y) = |x−y|
for x, y ∈ (0, 1). The sequence defined by xn = 1

n+1 for n ∈ N is a Cauchy
sequence. Indeed, it suffices to take m,n ≥ 1

ε − 1 to obtain |xn − xm| < ε;
however, the sequence xn is not convergent to an element of (0, 1).

Definition 11.49. A topological metric space is complete if every Cauchy
sequence is convergent.
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Example 11.50. The topological metric space (R,Od), where d(x, y) = |x− y|
for x, y ∈∈ R, is complete.

Let x = (x0, x1, . . .) be a Cauchy sequence in R. For every ε > 0, there
exists nε ∈ N such that m,n ≥ nε implies |xm−xn| < ε. Choose m0 ∈ N such
that m0 ≥ nε. Thus, if n ≥ nε, then xm0 − ε < xn < xm0 + ε, which means
that x is a bounded sequence. By Theorem 11.40, the sequence x contains a
bounded subsequence (xi0 , xi1 , . . .) that is convergent. Let � = limk→∞ xik

. It
is not difficult to see that limxn

xn = �, which shows that (R,Od) is complete.

Theorem 11.51. Let (S,Od) be a complete topological metric space. If T is
a closed subset of S, then the subspace T is complete.

Proof. Let T be a closed subset of S and let x = (x0, x1, . . .) be a Cauchy se-
quence in this subspace. The sequence x is a Cauchy sequence in the complete
space S, so there exists x = limn→∞ xn. Since T is closed, we have x ∈ T , so
T is complete.

Conversely, suppose that T is complete. Let x ∈ K(T ). There exists a
sequence x = (x0, x1, . . .) ∈ Seq∞(T ) such that limn→∞ xn = x. Then, x
is a Cauchy sequence in T , so there is a limit t of this sequence in T . The
uniqueness of the limit implies x = t ∈ T , so T is a closed set. 	


Theorem 11.52. There is no clopen set in the topological space (R,O) except
the empty set and the set R.

Proof. Suppose that L is a clopen subset of R that is distinct from ∅ and R.
Then, there exist x ∈ L and y �∈ L. Starting from x and y, we define inductively
the terms of two sequences x = (x0, . . . , xn, . . .) and y = (y0, . . . , yn, . . .) as
follows. Let x0 = x and y0 = y. Suppose that xn and yn are defined. Then,

xn+1 =

{
xn+yn

2 if xn+yn

2 ∈ L,
xn otherwise,

and

yn+1 =

{
xn+yn

2 if xn+yn

2 �∈ L,
yn otherwise.

It is clear that {xn | n ∈ N} ⊆ L and {yn | n ∈ N} ⊆ R − L. Moreover, we
have

|yn+1 − xn+1| =
|yn − xn|

2
= · · · = |y − x|

2n+1
.

Note that

|xn+1 − xn| ≤ |yn − xn| ≤
|y − x|

2n
.

This implies that x is a Cauchy sequence and therefore there is x = limn→∞ xn;
moreover, the sequence y also converges to x, so x belongs to ∂L, which is a
contradiction. 	
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Theorem 11.53. In a complete topological metric space (S,Od), every de-
scending sequence of closed sets V0 ⊃ V1 ⊃ · · ·Vn ⊂ Vn+1 ⊃ · · · such that
limn→∞ diam(Vn) = 0 has a nonempty intersection, that is,

⋂
n∈N

Vn �= ∅.

Proof. Consider a sequence x0, x1, . . . , xn, . . . such that xn ∈ Vn. This is a
Cauchy sequence. Indeed, let ε > 0. Since limn→∞ diam(Vn) = 0, there exists
nε such that if m,n > nε we have xm, xn ∈ Vmin{m,n}. Since min{m,n} ≥
nε, it follows that d(xm, xn) ≤ diam(Vmin m,n) < ε. Since the space (S,Od)
is complete, it follows that there exists x ∈ S such that limn→∞ xn = x.
Note that all members of the sequence above belong to Vm, with the possible
exception of the first m members. Therefore, by Theorem 11.45, x ∈ Vm, so
x ∈

⋂
n∈N

Vn, so
⋂

n∈N
Vn �= ∅. 	


Recall that the definition of Baire spaces was introduced on page 233.

Theorem 11.54. Every complete topological metric space is a Baire space.

Proof. We prove that if (S,Od) is complete, then it satisfies the first condition
of Theorem 6.28.

Let L1, . . . , Ln, . . . be a sequence of open subsets of S that are dense in
S and let L be an open, nonempty subset of S. We construct inductively a
sequence of closed sets H1, . . . ,Hn, . . . that satisfy the following conditions:
(i) H1 ⊆ L0 ∩ L,
(ii) Hn ⊆ Ln ∩Hn−1 for n ≥ 2,
(iii) I(Hn) �= ∅, and
(iv) diam(Hn) ≤ 1

n
for n ≥ 2.

Since L1 is dense in S, by Theorem 6.22, L1 ∩ L �= ∅, so there is a closed
sphere of diameter less than 1 enclosed in L1 ∩ L. Define H1 as this closed
sphere.

Suppose that Hn−1 was constructed. Since I(Hn−1) �= ∅, the open set
Ln ∩ I(Hn−1) is not empty because Ln is dense in S. Thus, there is a closed
sphereHn included in Ln∩I(Hn−1), and therefore included in Ln∩Hn−1, such
that diam(Hn) < 1

n . Clearly, we have I(Hn) �= ∅. By applying Theorem 11.53
to the descending sequence of closed sets H1, . . . , Hn, . . ., the completeness of
the space implies that

⋂
n≥1Hn �= ∅. If s ∈

⋂
n≥1Hn, then it is clear that

x ∈
⋂

n≥1 Ln and x ∈ L, which means that the set
⋂

n≥1 Ln has a nonempty
intersection with every open set L. This implies that

⋂
n≥1 Ln is dense in S.

	

The notion of precompactness that we are about to introduce is a weaker

notion than the notion of compactness formulated for general topological
spaces, which can be introduced for topological metric spaces.

Definition 11.55. Let (S, d) be a metric space. A finite subset {x1, . . . , xn}
is an r-net on (S, d) if S =

⋃n
i=1 C(xi, r).

Observe that, for every positive number r the family of open spheres
{C(x, r) | x ∈ S} is an open cover of the space S.
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Definition 11.56. A topological metric space (S,Od) is precompact if, for
every positive number r, the open cover {C(x, r) | x ∈ S} contains an r-net
{C(x1, r), . . . , C(xn, r)}.

Clearly, compactness implies precompactness.
Using the notion of an r-net, it is possible to give the following character-

ization to precompactness.

Theorem 11.57. The topological metric space (S,Od) is precompact if and
only if for every positive number r there exists an r-net Nr on (S,Od).

Proof. This statement is an immediate consequence of the definition of pre-
compactness. 	


Next, we show that precompactness is inherited by subsets.

Theorem 11.58. If (S,Od) is a precompact topological metric space and T ⊆
S, then the subspace (T,Od �T ) is also precompact.

Proof. Since (S,Od) is precompact, for every r > 0 there exists a finite open
cover Cr/2 = {C

(
si,

r
2

)
| si ∈ S, 1 ≤ i ≤ n}. Let C′ = {C

(
sij
, r

2

)
| 1 ≤

j ≤ m} be a minimal subcollection of Cr/2 that consists of those open spheres
that cover T ; that is,

T ⊆
⋃{

C
(
sij
,
r

2

)
| 1 ≤ j ≤ m

}
.

The minimality of C′ implies that each set C
(
sij
, r

2

)
contains an element yj of

T . By Exercise 6 of Chapter 10, we have C
(
sij
, r

2

)
⊆ C(yj , r) and this implies

that the set {y1, . . . , ym} is an r-net for the set T . 	

If the subspace (T,Od �T ) of (S,Od) is precompact, we say that the set T

is precompact.
The next corollary shows that there is no need to require the centers of

the spheres involved in the definition of the precompactness of a subspace to
be located in the subspace.

Corollary 11.59. Let (S,Od) be a topological metric space (not necessarily
precompact) and let T be a subset of S. The subspace (T,Od �T ) is precom-
pact if and only if for every positive number r there exists a finite subcover
{C(x1, r), . . . , C(xn, r) | xi ∈ S for 1 ≤ i ≤ n}.

Proof. The argument has been made in the proof of Theorem 11.58. 	

The next theorem adds two further equivalent characterizations of compact

metric spaces to the ones given in Theorem 11.28.

Theorem 11.60. Let (S,Od) be a topological metric space. The following
statements are equivalent.
(i) (S,Od) is compact.
(ii) Every sequence x ∈ Seq∞(S) contains a convergent subsequence.
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(iii) (S,Od) is precompact and complete.

Proof. (i) implies (ii): Let (S,Od) be a compact topological metric space and
let x be a sequence in Seq∞(S). By Theorem 11.28, (S,Od) has the Bolzano-
Weierstrass property, so the set {xn | n ∈ N} has an accumulation point t.
For every k ≥ 1, the set {xn | n ∈ N} ∩ C

(
t, 1

k

)
contains an element xnk

distinct from t. Since d(t, xnk
) < 1

k for k ≥ 1, it follows that the subsequence
(xn1 , xn2 , . . .) converges to t.

(ii) implies (iii): Suppose that every sequence x ∈ Seq∞(S) contains a
convergent subsequence and that (S,Od) is not precompact. Then, there exists
a positive number r such that S cannot be covered by any collection of open
spheres of radius r.

Let x0 be an arbitrary element of S. Note that C(x0, r) − S �= ∅ because
otherwise the C(x0, r) would constitute an open cover for S. Let x1 be an arbi-
trary element in C(x0, r)−S. Observe that d(x0, x1) ≥ r. The set (C(x0, r)∪
C(x1, r)) − S is not empty. Thus, for any x2 ∈ (C(x0, r) ∪ C(x1, r)) − S, we
have d(x0, x2) ≥ r and d(x0, x1) ≥ r, etc. We obtain in this manner a sequence
x0, x1, . . . , xn, . . . such that d(xi, xj) ≥ r when i �= j. Clearly, this sequence
cannot contain a convergent sequence, and this contradiction shows that the
space must be precompact.

To prove that (S,Od) is complete, consider a Cauchy sequence x =
(x0, x1, . . . , xn, . . .). By hypothesis, this sequence contains a convergent sub-
sequence (xn0 , xn1 , . . .). Suppose that limk→∞ xnk

= l. Since x is a Cauchy
sequence, there is n′ε

2
such that n, nk ≥ n′ε

2
implies d(xn, xnk

) < ε
2 . The con-

vergence of the subsequence (xn0 , xn1 , . . .) means that there exists n′′ε
2

such
that nk ≥ n′′ε

2
implies d(xnk

, l) < ε
2 . Choosing nk ≥ n′′ε

2
, if n ≥ n′ε

2
= nε, we

obtain
d(xn, l) ≤ d(xn, xnk

) + d(xnk
, l) <

ε

2
+
ε

2
= ε,

which proves that x is convergent. Consequently, (S,Od) is both precompact
and complete.

(iii) implies (i): Suppose that (S,Od) is both precompact and complete but
not compact, which means that there exists an open cover C of S that does
not contain any finite subcover.

Since (S,Od) is precompact, there exists a 1
2 -net, {x1

1, . . . , x
1
n1
}. For each

of the closed spheres B(x1
i ,

1
2 ), 1 ≤ i ≤ n1, the trace collection CB(x1

i , 1
2 ) is

an open cover. There is a closed sphere B(x1
j ,

1
2 ) such that the open cover

CB(x1
j , 1

2 ) does not contain any finite subcover of B(x1
j ,

1
2 ) since (S,Od) was

assumed not to be compact. Let z1 = x1
j .

By Theorem 11.58, the closed sphere B(z1, 1
2 ) is precompact. Thus, there

exists a 1
22 -net {x2

1, . . . , x
2
n2
} ofB(z1, 1

2 ). There exists a closed sphere B(x2
k,

1
22 )

such that the open cover CB(x2
k, 1

22
) does not contain any finite subcover of

B(x2
k,

1
22 ). Let z2 = x2

k; note that d(z1, z2) ≤ 1
2 .
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Thus, we construct a sequence z = (z1, z2, . . .) such that d(zn+1, zn) ≤ 1
2n

for n ≥ 1.
Observe that

d(zn+p, zn) ≤ d(zn+p, zn+p−1) + d(zn+p−1, zn+p−2) + · · ·+ d(zn+1, zn)

≤ 1
2n+p−1

1
2n+p−2

+ · · ·+ 1
2n

=
1

2n−1

(
1− 1

2p

)
.

Thus, the sequence z is a Cauchy sequence and there exists z = limn→∞ zn,
because (S,Od) is complete.

Since C is an open cover, there exists a set L ∈ C such that z ∈ L. Let r be
a positive number such that C(z, r) ⊆ L. Let n0 be such that d(zn, z) < r

2 and
1
2n ≤ r

2 . If x ∈ B(zn, 1
2n ), then d(x, z) ≤ d(x, zn) + d(zn, z) < 1

2n + r
2 ≤ r, so

B(zn, 1
2n ) ⊆ C(z, r) ⊆ L. This is a contradiction because the spheres B(zn, 1

2n )
were defined such that CB(zn, 1

2n ) did not contain any finite subcover. Thus,
(S,Od) is compact. 	


Theorem 11.61. A subset T of (Rn,O) is compact if and only if it is closed
and bounded.

Proof. Let T be a compact set. By Corollary 11.21. T is closed. Let r be
a positive number and let {C(t, r) | t ∈ T} be a cover of T . Since T is
compact, there exists a finite collection {C(ti, r) | 1 ≤ i ≤ p} such that
T ⊆

⋃
{C(ti, r) | 1 ≤ i ≤ p}. Therefore, if x, y ∈ T , we have d(x, y) ≤

2 + max{d(ti, tj) | 1 ≤ i, j ≤ p}, which implies that T is also bounded.
Conversely, suppose that T is closed and bounded. The boundedness of T

implies the existence of a parallelepiped [x1, y1]× · · · × [xn, yn] that includes
T , and we saw in Example 6.99 that this parallelepiped is compact. Since T
is closed, it is immediate that T is compact by Theorem 6.60. 	


Corollary 11.62. Let (S,O) be a compact topological space and let f : S −→
R be a continuous function, where R is equipped with the usual topology. Then,
f is bounded and there exist u0, u1 ∈ S such that f(u0) = infx∈S f(x) and
f(u1) = supx∈S f(x).

Proof. Since S is compact and f is continuous, the set f(S) is a compact
subset of R and, by Theorem 11.61, is bounded and closed.

Both infx∈S f(x) and supx∈S f(x) are cluster points of f(S); therefore,
both belong to f(S), which implies the existence of u0 and u1. 	


Theorem 11.63 (Heine’s Theorem). Let (S,Od) be a compact topological
metric space and let (T,Oe) be a metric space. Every continuous function
f : S −→ T is uniformly continuous on S.
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Proof. Let u = (u0, u1, . . .) and v = (v0, v1, . . .) be two sequences in Seq∞(S)
such that limn→∞ d(un, vn) = 0. By Theorem 11.60, the sequence u con-
tains a convergent subsequence (up0 , up1 , . . .). If x = limn→∞ upn

, then
limn→∞ vpn

= x. The continuity of f implies that limn→∞ e(f(upn
), f(vpn

)) =
e(f(x), f(x)) = 0, so f is uniformly continuous by Theorem 11.13. 	


11.7 Contractions and Fixed Points

Definition 11.64. Let (S, d) and (T, d′) be two metric spaces. A function
f : S −→ T is a similarity if there exists a number r > 0 for which
d′(f(x), f(y)) = rd(x, y) for every x, y ∈ S. If the two metric spaces coin-
cide, we refer to f as a self-similarity of (S, d).

The number r is called the ratio of the similarity f and is denoted by
ratio(f).

An isometry is a similarity of ratio 1. If an isometry exists between the
metric spaces (S, d) and (T, d′), then we say that these spaces are isometric.

If there exists r > 0 such that d′(f(x), f(y)) ≤ rd(x, y) for all x, y ∈ S,
then we say that f is a Lipschitz function. Furthermore, if this inequality is
satisfied for a number r < 1, then f is a contraction.

Example 11.65. Let (R, d) be the metric space defined by d(x, y) = |x − y|.
Any linear mapping (that is, any mapping of the form f(x) = ax+b for x ∈ R)
is a similarity having ratio a.

Theorem 11.66. Let (S,Od) and (T,Od′) be two metric spaces. Every Lips-
chitz function f : S −→ T is continuous.

Proof. Let ε be a positive number. Define δ = ε
k . If z ∈ f(C(x, δ)), there exists

y ∈ C(x, δ) such that z = f(y). This implies e(f(x), z) = e(f(x), f(y)) <
kd(x, y) < kδ = ε, so z ∈ C(f(x), ε). Thus, f(C(x, δ)) ⊆ C(f(x), ε), so f is
continuous. 	


Theorem 11.66 implies that every similarity is continuous.
Let f : S −→ S be a function. We define inductively the functions f (n) :

S −→ S for n ∈ N by
f (0)(x) = x

and
f (n+1)(x) = f(f (n)(x))

for x ∈ S. The function f (n) is the nth iteration of the function f .

Example 11.67. Let f : R −→ R be the function defined by f(x) = ax+ b for
x ∈ R, where a, b ∈ R and a �= 1. We have
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f (0)(x) = x,

f (1)(x) = ax+ b,
f (2)(x) = a2x+ ab,

...

f (n)(x) = anx+
an − 1
a− 1

· b,

...

for x ∈ R.

Definition 11.68. Let f : S −→ S be a function. A fixed point of f is a
member x of the set S that satisfies the equality f(x) = x.

Example 11.69. The function f defined in Example 11.67 has the fixed point
x0 = b

1−a .

Theorem 11.70 (Banach Fixed Point Theorem). Let (S,Od) be a com-
plete topological metric space and let f : S −→ S be a contraction on S.
Then, there exists a unique fixed point u ∈ S for f , and for any x ∈ S we
have limn→∞ f

(n)(x) = u.

Proof. Since f is a contraction, there exists a positive number r, r < 1, such
that d(f(x), f(y)) ≤ rd(x, y) for x, y ∈ S. Note that each such function has
at most one fixed point. Indeed, suppose that we have both u = f(u) and
v = f(v) and u �= v, so d(u, v) > 0. Then, d(f(u), f(v)) = d(u, v) ≤ rd(u, v),
which is absurd because r < 1.

The sequence s = (x, f(x), . . . , f (n)(x), . . .) is a Cauchy sequence. Indeed,
observe that

d(f (n)(x), f (n+1)(x)) ≤ rd(f (n−1)(x), f (n)(x)) ≤ · · · ≤ rnd(x, f(x)).

For n ≤ p, this implies

d(f (n)(x), f (p)(x)) ≤ d(f (n)(x), f (n+1)(x)) + d(f (n+1)(x), f (n+2)(x)) +
· · ·+ d(f (p−1)(x), f (p)(x))

≤ rnd(x, f(x) + · · ·+ rp−1d(x, f(x))

≤ rn

1− r d(x, f(x)),

which shows that the sequence s is indeed a Cauchy sequence. Since (S,Od)
is complete, there exists u ∈ S such that u = limn→∞ f

(n)(x). The continuity
of f implies

u = lim
n→∞

f (n+1)(x) = lim
n→∞

f(f (n)(x)) = f(u),
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so u is a fixed point of f . Since d(f (n)(x), f (p)(x)) ≤ rn

1−rd(x, f(x)), we have

lim
p→∞

d(f (n)(x), f (p)(x)) = d(f (n)(x), u) ≤ rn

1− r d(x, f(x))

for n ∈ N. 	


The Hausdorff Metric Hyperspace of Compact Subsets

Lemma 11.71. Let (S, d) be a metric space and let U and V be two subsets
of S. If r ∈ R≥0 is such that U ⊆ C(V, r) and V ⊆ C(U, r), then we have
|d(x,U)− d(x, V )| ≤ r for every x ∈ S.

Proof. Since U ⊆ C(V, r), for every u ∈ U there is v ∈ V such that d(u, v) < r.
Therefore, by the triangular inequality, it follows that for every u ∈ U there is
v ∈ V such that d(x, u) < d(x, v) + r, so d(x,U) < d(x, v) + r. Consequently,
d(x,U) ≤ d(x, V ) + r. In a similar manner, we can show that V ⊆ C(U, r)
implies d(x, V ) ≤ d(x,U) + r. Thus, |d(x,U) − d(x, V )| ≤ r for every x ∈ S.
	


Let (S,Od) be a topological metric space. Denote by K(S,Od) the col-
lection of all nonempty, compact subsets of (S,Od), and define the mapping
δ : K(S,Od)2 −→ R≥0 by

δ(U, V ) = inf{r ∈ R≥0 | U ⊆ C(V, r) and V ⊆ C(U, r)}

for U, V ∈ K(S,Od).

Lemma 11.72. Let U and V be two compact subsets of a topological metric
space (S,Od). We have

sup
x∈S

|d(x,U)− d(x, V )| = max
{

sup
x∈V

d(x,U), sup
x∈U

d(x, V )
}
.

Proof. Let x ∈ S. There is v0 ∈ V such that d(x, v0) = d(x, V ) because V is
a compact set. Then, the compactness of U implies that there is u0 ∈ U such
that d(u0, v0) = d(v0, U). We have

d(x,U)− d(x, V ) = d(x,U)− d(x, v0)
≤ d(x, u0)− d(x, v0)
≤ d(u0, v0) ≤ sup

x∈V
d(U, x).

Similarly, d(x,U)− d(x, V ) ≤ supx∈U d(x, V ), which implies

sup
x∈S

|d(x,U)− d(x, V )| ≤ max
{

sup
x∈V

d(x,U), sup
x∈U

d(x, V )
}
.



448 11 Topologies and Measures on Metric Spaces

On the other hand, since U ⊆ S, we have

sup
x∈S

|d(x,U)− d(x, V )| ≥ sup
x∈U

|d(x,U)− d(x, V )| = sup
x∈U

d(x, V )

and, similarly, supx∈S |d(x,U)−d(x, V )| ≥ supx∈V d(x,U), and these inequal-
ities prove that

sup
x∈S

|d(x,U)− d(x, V )| ≥ max
{

sup
x∈V

d(x,U), sup
x∈U

d(x, V )
}
,

which concludes the argument. 	

An equivalent useful definition of δ is given in the next theorem.

Theorem 11.73. Let (S, d) be a metric space and let U and V be two compact
subsets of S. We have the equality

δ(U, V ) = sup
x∈S

|d(x,U)− d(x, V )|.

Proof. Observe that we have both U ⊆ C(V, supx∈U d(x, V )) and V ⊆
C(U, supx∈V d(x,U)). Therefore, we have

δ(U, V ) ≤ max{sup
x∈V

d(x,U), sup
x∈U

d(x, V )}.

Combining this observation with Lemma 11.72 yields the desired equality. 	


Theorem 11.74. Let (S,Od) be a complete topological metric space. The
mapping δ : K(S,Od)2 −→ R≥0 is a metric on K(S,Od).

Proof. It is clear that δ(U,U) ≥ 0 and that δ(U, V ) = δ(V,U) for every
U, V ∈ K(S,Od). Suppose that δ(U, V ) = 0; that is, d(x,U) = d(x, V ) for
every x ∈ S. If x ∈ U , then d(x,U) = 0, so d(x, V ) = 0. Since V is closed, by
Part (ii) of Theorem 11.16, we have x ∈ V , so U ⊆ V . The reverse inclusion
can be shown in a similar manner.

To prove the triangular inequality, let U, V,W ∈ K(S,Od). Since

|d(x,U)− d(x, V )| ≤ |d(x,U)− d(x, V )|+ |d(x, V )− d(x,W )|,

for every x ∈ S, we have

sup
x∈S

|d(x,U)− d(x, V )| ≤ sup
x∈S

(|d(x,U)− d(x, V )|+ |d(x, V )− d(x,W )|)

≤ sup
x∈S

|d(x,U)− d(x, V )|+ sup
x∈S

|d(x, V )− d(x,W )|,

which implies the triangular inequality

δ(U, V ) ≤ δ(U,W ) + δ(W,V ).

	

The metric δ is known as the Hausdorff metric, and the metric space

(K(S,Od), δ) is known as the Hausdorff metric hyperspace of (S,Od).
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Theorem 11.75. If (S,Od) is a complete topological metric space, then so is
the Hausdorff metric hyperspace (K(S,Od), δ).

Proof. Let U = (U0, U1, . . .) be a Cauchy sequence in (K(S,Od), δ) and let
U = K(

⋃
n∈N

Un). It is clear that U consists of those elements x of S such
that x = limn→∞ xn for some sequence x = (x0, x1, . . .), where xn ∈ Un for
n ∈ N.

The set U is precompact. Indeed, let ε > 0 and let n0 be such that
δ(Un, Un0) ≤ ε for n ≥ n0. Let N be an ε-net for the compact set H =⋃

n≤n0
Un. Clearly, H ⊆ C(N, ε). Since δ(Un, Un0) ≤ ε, it follows that

U ⊆ C(H, ε), so U ⊆ C(N, 2ε). This shows that U is precompact. Since
U is closed in the complete space (S,Od), it follows that U is compact.

Let ε be a positive number. Since U is a Cauchy sequence, there exists
n ε

2
such that m,n ≥ n ε

2
implies δ(Um, Un) < ε

2 ; that is, sups∈S |d(s, Um) −
d(s, Un)| < ε

2 . In particular, if xm ∈ Um, then d(xm, Un) = infy∈Um
d(x, y) <

ε
2 , so there exists y ∈ Un such that d(xm, y) < ε

2 .
For x ∈ U , there exists a sequence x = (x0, x1, . . .) such that xn ∈ Un for

n ∈ N and limn→∞ xn = x. Therefore, there exists a number n′ε
2

such that
p ≥ n′ε

2
implies d(x, xp) < ε

2 . This implies d(x, y) ≤ d(x, xp) + d(xp, y) ≤ ε if
n ≥ max{n ε

2
, n′ε

2
}, and therefore U ⊆ C(Un, ε).

Let y ∈ Un. Since U is a Cauchy sequence, there exists a subsequence
U′ = (Uk0 , Uk1 , . . .) of U such that k0 = q and δ(Ukj

, Un) < 2jε for all n ≥ kj .
Define the sequence z = (z0, z1, . . .) by choosing zk arbitrarily for k < q,

zq = y, and zk ∈ Uk for kj < k < kj+1 such that d(zk, zkj
) < 2−jε. The

sequence z is a Cauchy sequence in S, so there exists z = limk→∞ zk and
z ∈ U . Since d(y, z) = limk→∞ d(y, zk) < ε, it follows that y ∈ C(U, ε).
Therefore, δ(U,Un) < ε, which proves that limn→∞ Un = U . We conclude
that (K(S,Od), δ) is complete. 	


11.8 Measures in Metric Spaces

In this section, we discuss the interaction between metrics and measures de-
fined on metric spaces.

Definition 11.76. Let (S, d) be a metric space. A Carathéodory outer mea-
sure on (S, d) is an outer measure on S, μ : P(S) −→ R̂≥0 such that, for
every two sets U and V of the topological space (S,Od) such that d(U, V ) > 0,
we have μ(U ∪ V ) = μ(U) + μ(V ).

Example 11.77. The Lebesgue outer measure introduced in Example 6.130 is
a Carathéodory outer measure.

Indeed, let U and V be two disjoint subsets of R
n such that d2(U, V ) > 0

and let D be the family of n-dimensional intervals that covers U ∪V . Suppose
that the diameter of each of these intervals is less than r. If D =

⋃
D, we



450 11 Topologies and Measures on Metric Spaces

have D = DU ∪DV ∪D′, where U ⊆ DU , V ⊆ DV , and D′ ∩ (U ∪ V ) = ∅.
Since vol(DU ) + vol(DV ) ≤ vol(D), we have μ(U) + μ(V ) ≤ μ(U ∪ V ), which
implies that μ is a Carathéodory outer measure.

Theorem 11.78. Let (S, d) be a metric space. The outer measure μ on S
is a Carathéodory outer measure if and only if every closed set of (S,Od) is
μ-measurable.

Proof. Suppose that every closed set is μ-measurable, and let U and V be two
subsets of S such that d(U, V ) > 0. Consider the closed set K(C(U, r)), where
r = d(u,v)

2 . Since this is a μ-measurable set, we have

μ(U ∪ V ) = μ((U ∪ V ) ∩C(U, r)) + μ((U ∪ V ) ∩K(C(U, r))) = μ(U) + μ(V ),

so μ is a Carathéodory outer measure.
Conversely, suppose that μ is a Carathéodory outer measure; that is,

d(U, V ) > 0 implies μ(U ∪ V ) = μ(U) + μ(V ).
Let U be an open set, L be a subset of U , and L1, L2, . . . be a sequence of

sets defined by

Ln =
{
t ∈ L | d(t,K(U)) ≥ 1

n

}
for n ≥ 1. Note that L1, L2, . . . is an increasing sequence of sets, so the
sequence μ(L1), μ(L2), . . . is increasing. Therefore, limn→∞ μ(Li) exists and
limn→∞ μ(Li) ≤ μ(L). We claim that limn→∞ μ(Li) = μ(L).

Since every set Ln is a subset of L, it follows that
⋃

n≥1 Ln ⊆ L. Let
t ∈ L ⊆ U . Since U is an open set, there exists ε > 0 such that C(t, ε) ⊆ U ,
so d(t,K(U)) ≥ 1

n if n > 1
ε . Thus, for sufficiently large values of n, we have

t ∈ Ln, so L ⊆
⋃

n≥1 Ln. This shows that L =
⋃

n≥1 Ln.
Consider the sequence of sets Mn = Ln+1 − Ln for n ≥ 1. Clearly, we can

write

L = L2n ∪
∞⋃

k=2n

Mk = L2n ∪
∞⋃

p=n

M2p ∪
∞⋃

p=n

M2p+1,

so

μ(L) ≤ μ(L2n) +
∞∑

p=n

μ(M2p) +
∞∑

p=n

μ(M2p+1).

If both series
∑∞

p=1 μ(M2p) and
∑∞

p=1 μ(M2p+1) are convergent, then

lim
n→∞

∞∑
p=n

μ(M2p) = 0 and lim
n→∞

∞∑
p=n

μ(M2p+1) = 0,

and so μ(L) ≤ limn→∞ μ(L2n).
If the series

∑∞
p=n μ(M2p) is divergent, let t ∈M2p ⊆ L2p+1. If z ∈ K(U),

then d(t, z) ≥ 1
2p+1 by the definition of L2p+1. Let y ∈ M2p+2 ⊆ L2p+3. We

have
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1
2p+ 2

> d(y, z) >
1

2p+ 3
,

so
d(t, y) ≥ t(t, z)− d(y, z) ≥ 1

2p+ 1
− 1

2p+ 2
,

which means that d(M2p,M2p+2) > 0 for p ≥ 1. Since μ is a Carathéodory
outer measure, we have

n∑
p=1

μ(M2p) = μ

(
n⋃

p=1

M2p

)
≤ μ(L2n).

This implies limn→∞ μ(Ln) = limn→∞ μ(L2n) = ∞, so we have in all cases
limn→∞ μ(An) = μ(L).

Let F be a closed set in (S,Od) and let V be an arbitrary set. The set
V ∪K(F ) is contained in the set K(F ) = F , so, by the previous argument,
there exists a sequence of sets Ln such that d(Ln, F ) ≥ 1

n for each n and
limn→∞ μ(Ln) = μ(V ∩ K(F )). Consequently, μ(V ) ≥ μ((V ∩ F ) ∪ Ln) =
μ(V ∪F )+μ(Ln). Taking the limit, we obtain μ(V ) ≥ μ(V ∩F )+μ(V ∩K(F )),
which proves that F is μ-measurable. 	


Corollary 11.79. Let (S, d) be a metric space. Every Borel subset of S is
μ-measurable, where μ is a Carathéodory outer measure on S.

Proof. Since every closed set is μ-measurable relative to a Carathéodory outer
measure, it follows that every Borel set is μ-measurable with respect to such
a measure. 	


Thus, we can conclude that every Borel subset of S is Lebesgue measurable.
Let (S, d) be a metric space and let C be a countable collection of subsets

of S. Define
Cr = {C ∈ C | diam(C) < r},

and assume that for every x ∈ S and r > 0 there exists C ∈ Cr such that
x ∈ C. Thus, the collection Cr is a sequential cover for S, and for every
function f : C → R̂≥0 we can construct an outer measure μf,r using Method I
(the method described in Theorem 6.127). This construction yields an outer
measure that is not necessarily a Carathéodory outer measure.

By Corollary 6.129, when r decreases, μf,r increases. This allows us to
define

μ̂f = lim
r→0

μf,r.

We shall prove that the measure μ̂f is a Carathéodory outer measure.
Since each measure μf,r is an outer measure, it follows immediately that

μ̂f is an outer measure.

Theorem 11.80. Let (S, d) be a metric space, C be a countable collection of
subsets of S, and f : C → R̂≥0. The measure μ̂f is a Carathéodory outer
measure.
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Proof. Let U and V be two subsets of S such that d(U, V ) > 0. We need to
show only that μ̂f (U ∪ V ) ≥ μ̂f (U) + μ̂f (V ).

Choose r such that 0 < r < d(U, V ), and let D be an open cover of U ∪ V
that consists of sets of Cr. Each set of D can intersect at most one of the set
U and V . This observation allows us to write D as a disjoint union of two
collections, D = DU ∪ DV , where DU is an open cover for U and DV is an
open cover for V . Then,∑

{f(D) | D ∈ D} =
∑
{f(D) | D ∈ DU}+

∑
{f(D) | D ∈ DV }

≥ μf,r(U) + μf,r(V ).

This implies μf,r(U ∪ V ) ≥ μf,r(U) + μf,r(V ), which yields μ̂f (U ∪ V ) ≥
μ̂f (U) + μ̂f (V ) by taking the limit for r → 0. 	


The construction of the Carathéodory outer measure μ̂f described earlier
is knows as Munroe’s Method II or simply Method II (see [100, 44]).

11.9 Embeddings of Metric Spaces

Searching in multimedia databases and visualization of the objects of such
databases is facilitated by representing objects in a k-dimensional space, as
observed in [49]. In general, the starting point is the matrix of distances be-
tween objects, and the aim of the representation is to preserve as much as
possible the distances between objects.

Definition 11.81. Let (S, d) and (S′, d′)) be two metric spaces. An embed-
ding of (S, d) in (S′, d′) is a function f : S −→ S′. The embedding f is an
isometry if d′(f(x), f(y)) = cd(x, y) for some positive constant number c. If
f is an isometry, we refer to it as an isometric embedding.

If an isometric embedding f : S −→ S′ exists, then we say that (S, d) is
isometrically embedded in (S, d).

Note that an isometry is an injective function for if f(x) = f(y), then
d′(f(x), f(y)) = 0, which implies d(x, y) = 0. This, in turn, implies x = y.

Example 11.82. Let S be a set that consists of four objects, S = {o1, o2, o3, o4},
that are equidistant in the metric space (S, d); in other words, we assume that
d(oi, oj) = k for every pair of distinct objects (oi, oj).

The subset U = {o1, o2} of S can be isometrically embedded in R
1; the

isometry h : U −→ R
1 is defined by h(o1) = (0) and h(o2) = (k).

For the subset {o1, o2, o3} define the embedding f : {o1, o2, o3} −→ R
2 by

f(o1) = (0, 0),
f(o2) = (k, 0),
f(o3) = (c1, c2),
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subject to the conditions

c21 + c22 = k2,

(c1 − k)2 + c22 = k2.

These equalities yield c1 = k
2 and c22 = 3k2

4 . Choosing the positive solution of
the last equality yields f(o3) = (k

2 ,
k
√

3
2 ).

To obtain an isometric embedding g of S in R
3, we seek the mapping

g : S −→ R
3 as

g(o1) = (0, 0, 0),
g(o2) = (k, 0, 0),

g(o3) =

(
k

2
,
k
√

3
2
, 0

)
,

g(o4) = (e1, e2, e3),

where

e21 + e22 + e23 = k2,

(e1 − k)2 + e22 + e23 = k2,(
e1 −

k

2

)2

+

(
e2 −

k
√

3
2

)2

+ e23 = k2.

The first two equalities imply e1 = k
2 ; this, in turn, yields

e22 + e23 =
3k2

4
,(

e2 −
k
√

3
2

)2

+ e23 = k2.

Subtracting these equalities, one gets e2 = k
√

3
6 . Finally, we have e23 = 2k2

3 .
Choosing the positive solution, we obtain the embedding

g(o1) = (0, 0, 0),
g(o2) = (k, 0, 0),

g(o3) =

(
k

2
,
k
√

3
2
, 0

)
,

g(o4) =

(
k

2
,
k
√

3
6
,
k
√

6
3

)
.
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Example 11.83. Let (S, d) be a finite metric space such that |S| = n. We show
that there exists an isometric embedding of (S, d) into (Rn−1, d∞), where d∞
was defined by Equality (10.7).

Indeed, suppose that S = {x1, . . . , xn}, and define f : S −→ R
n−1 as

f(xi) = (d(x1, xi), . . . , d(xn−1, xi))

for 1 ≤ i ≤ n. We prove that d(xi, xj) = d∞(f(xi), f(xj)) for 1 ≤ i, j ≤ n,
which will imply that f is an isometry with c = 1.

By the definition of d∞, we have

d∞(f(xi), f(xj)) = max
1≤k≤n−1

|d(xk, xi)− d(xk, xj)|.

Note that for every k we have |d(xk, xi) − d(xk, xj)| ≤ d(xi, xj) (see Exer-
cise 1). Moreover, for k = i, we have |d(xi, xi) − d(xi, xj)| = d(xi, xj), so
max1≤k≤n−1 |d(xk, xi)− d(xk, xj)| = d(xi, xj). The isometry whose existence
was established in this example is known as the Fréchet isometry and was
obtained in [54].

Example 11.84. We now prove the existence of an isometry between the metric
spaces (R2, d∞) and (R2, d1).

Consider the function f : R
2 −→ R

2 defined by

f(u, v) =
(
u− v

2
,
u+ v

2

)

for (u, v) ∈ R
2.

Since max{a, b} = 1
2 (|a − b| + |a + b|) for every a, b ∈ R, it is easy to see

that

max{|u− u′|, |v − v′|} =
1
2

∣∣∣u− u′ − (v − v′)
∣∣∣+ ∣∣∣u− u′ + (v − v′)

∣∣∣,
which is equivalent to

d∞((u, v), (u′, v′)) = d1

((
u− v

2
,
u+ v

2

)
,

(
u′ − v′

2
,
u′ + v′

2

))
.

The last equality shows that f is an isometry between (R2, d∞) and (R2, d1).

Exercises and Supplements

1. Prove that any subset U of a topological metric space (S,Od) that has
a finite diameter is included in a closed sphere B(x, diam(U)) for some
x ∈ U .

2. Let du be the metric defined in Exercise 7 of Chapter 10, where S = R
2

and d is the usual Euclidean metric on R
2.
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a) Prove that if x �= u, the set {x} is open.
b) Prove that the topological metric space (R2,Odu

) is not separable.
3. Let (S,Od) be a topological metric space.

a) Prove that, for every s ∈ S and every positive number r, we have
K(C(x, r)) ⊆ B(x, r).

b) Give an example of a topological metric space where the inclusion
K(C(x, r)) ⊆ B(x, r) can be strict.

Solution for Part (b): Let (Seq∞({0, 1}), dφ) be the ultrametric space,
where the ultrametric dφ was introduced in Supplement 46 of Chapter 10
and φ(u) = 1

|u| for u ∈ Seq({0, 1}).
It is clear that B(x, 1) = Seq∞({0, 1}) because dφ(x,y) ≤ 1 for every

x,y ∈ Seq∞({0, 1}). On the other hand, C(x, 1) contains those sequences
y that have a non-null longest common prefix with x; the first symbol of
each such sequence is the same as the first symbol s of x.

Since dφ is an ultrametric, the open sphere C(x, 1) is also closed, so
C(x, 1) = K(C(x, 1)). Let s′ be a symbol in S distinct from s and let
z = (s′, s′, . . .) ∈ Seq∞(S). Note that dφ(x, z) = 1, so z �∈ C(x, 1) =
K(C(x, 1)). Thus, we have K(C(x, 1) ⊂ B(x, 1).

4. Consider the ultrametric space (Seq∞({0, 1}), dφ), where φ(u) = 1
2|u| for

u ∈ Seq({0, 1}). For u ∈ Seq({0, 1}), let Pu = {ut | t ∈ Seq∞({0, 1})}
be the set that consists of all infinite sequences that begin with u. Prove
that {Pu | u ∈ Seq({0, 1})} is a basis for the topological ultrametric
space defined above.

5. Let (S,Od) be a topological metric space and let U and V be two subsets
of S such that δ(U, V ) ≤ r. Prove that if D = {Di | i ∈ I} is a cover for
V , then the collection D′ = {C(Di, r) | i ∈ I} is a cover for U .

6. Prove that if Nr is an r-net for a subset T of a topological metric space
(S,Od), then T ⊆ C(Nr, r).

Solution: Suppose Nr = {yi | 1 ≤ i ≤ n}, so T ⊆
⋃n

i=1 C(yi, r). Thus,
for each t ∈ T there is yj ∈ Nr such that d(yj , t) < r. This implies that
d(t,Nr) = inf{d(t, y) | y ∈ Nr} < r, so t ∈ C(Nr, r).

7. Prove that if Nr is an r-net for each of the sets of a collection of subsets
of a metric space (S, d), then Nr is an r-net for

⋃
C.

8. Let U and V be two subsets of a metric space (S, d) such that δ(U, V ) ≤ c.
Prove that every r-net for V is an (r + c)-net for U .

9. Let {Ui | i ∈ I} be a collection of pairwise disjoint open subsets of the
topological metric space (Rn,Od2) such that for each i ∈ I there exists
xi,yi ∈ R

n such that B(xi, ar) ⊆ Vi ⊆ B(yi, br). Then, for any B(u, r),
we have |{Vi | K(Vi) ∩B(u, r) �= ∅}| ≤

(
1+2b

a

)n
.

Solution: Suppose that K(Vi) ∩B(u, r) �= ∅. Then K(Vi) ⊆ B(u, r +
2br). Recall that the volume of a sphere of radius r in R

n is Vn(r) =
π

n
2 rn

Γ(n
2 +1) as shown in Section C.4. If m = |{Vi | K(Vi)∩B(u, r) �= ∅}|, the

total volume of the spheres B(xi, ar) is smaller than the volume of the
sphere B(u, (1 + 2b)r), and this implies man ≤ (1 + 2b)n.
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10. Let (S,Od) be a topological metric space and let f : S −→ R be the
function defined by f(x) = d(x0, x) for x ∈ S. Prove that f is a continuous
function between the topological spaces (S,Od) and (R,O).

11. Define the function f : R −→ (0, 1) by

f(x) =
1

1 + e−x

for x ∈ R. Prove that f is a homeomorphism between the topological
spaces (R,Od) and ((0, 1),Od �(0,1)).
Conclude that completeness is not a topological property.

12. Let X and Y be two separated sets in the topological metric space (S,Od)
(recall that the notion of separated sets was introduced in Exercise 12 of
Chapter 6). Prove that there are two disjoint open sets L1, L2 in (S,Od)
such that X ⊆ L1, Y ⊆ L2.

Solution: By Corollary 11.17, the functions dX and dY are continuous,
K(X) = d−1

X (0), and K(Y ) = d−1
Y (0). Since X and Y are separated, we

have X ∩ d−1
Y (0) = Y ∩ d−1

X (0) = ∅. The disjoint sets L1 = {s ∈ S |
dX(s)− dY (s) < 0} and L2 = {s ∈ S | dX(s)− dY (s) > 0} are open due
to the continuity of dX and dY , and X ⊆ L1 and Y ⊆ L2.

13. This is a variant of the T4 separation property of topological metric spaces
formulated for arbitrary sets instead of closed sets.
Let (S,Od) be a topological metric space and let U1 and U2 be two subsets
of S such that U1 ∩ K(U2) = ∅ and U2 ∩ K(U1) = ∅. There exists two
open, disjoint subsets V1 and V2 of S such that Ui ⊆ Vi for i = 1, 2.

Solution: Define the disjoint open sets

V1 = {x ∈ S | d(x,U1) < d(x,U2)},
V2 = {x ∈ S | d(x,U2) < d(x,U1)}.

We have U1 ⊆ V1 because, for x ∈ U1, d(x,U1) = 0 and d(x,U2) > 0 since
x �∈ K(U2). Similarly, U2 ⊆ V2.

14. Prove that, for every sequence x of real numbers, we have lim inf x =
− lim sup(−x).

15. Find lim inf x and lim supx for x = (x0, . . . , xn, . . .), where
a) xn = (−1)n · n,
b) xn = (−1)n

n .
16. Let (S,Od) be a topological metric space. Prove that x = (x0, x1, . . .) is

a Cauchy sequence if and only if for every ε > 0 there exists n ∈ N such
that d(xn, xn+m) < ε for every m ∈ N.

17. Let (S,Od) be a topological metric space. Prove that if every bounded
subset of S is compact, then (S,Od) is complete.

18. Prove that if (S1, d1), . . . , (Sn, dn) are complete metric spaces, then their
product is a complete metric space.

19. Prove that a topological metric space (S,Od) is complete if and only if
for every nonincreasing sequence of nonempty closed sets S = (S0, S1, . . .)
such that limn→∞ diam(Sn) = 0, we have

⋂
i∈N

Si �= ∅.
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20. Prove that x = (x0, x1, . . .) is a Cauchy sequence in a topological ultra-
metric space (S,Od) if and only if limn→∞ d(xn, xn+1) = 0.

21. Let (S, d) and (T, d′) be two metric spaces. Prove that every similarity
f : S −→ T is a homeomorphism between the metric topological spaces
(S,Od) and (T,Od′).

22. Let (S,Od) be a complete topological metric space and let f : B(x0, r) −→
S be a contraction such that d(f(x), f(y)) ≤ kd(x, y) for x, y ∈ B(x0, r)
and k ∈ (0, 1).
a) Prove that if d(f(x0), x0) is sufficiently small, then the sequence x =

(x0, x1, . . .), where xi+1 = f(xi) for i ∈ N, consists of points located
in B(x0, r).

b) Prove that y = limn→∞ xn exists and f(y) = y.
23. Let f : R

n −→ R
n be a self-similarity of the topological metric (Rn, d2)

having similarity ratio r. Prove that if H is a Lebesgue-measurable set,
then f(H) is also Lebesgue-measurable and μ(f(H)) = rnμ(H), where μ
is the Lebesgue outer measure.

Solution: Suppose initially that r > 0. Since f is a homeomor-
phism, the image on an n-dimensional interval I =

∏n
i=1(ai, bi) is the

n-dimensional interval f(I) =
∏n

i=1(f(ai), f(bi)). The definition of f im-
plies vol(f(I)) = rnvol(I).

Since

μ(f(H)) = inf
{∑

vol(f(I)) | I ∈ C,H ⊆
⋃
I
}
,

it follows that μ(f(H)) ≤ rnμ(H). Note that the inverse of f is a
self similarity with ratio 1

r , which implies μ(f(H)) ≥ rnμ(H). Thus,
μ(f(H)) = rnμ(H).

24. If U is a subset of R
n and μ is the Lebesgue outer measure, then μ(U) =

inf{μ(L) | U ⊆ L,L is open }.
Solution: The monotonicity of μ implies μ(U) ≤ inf{μ(L) | U ⊆

L,L is open }. If μ(U) = ∞, the reverse inequality is obvious. Suppose
therefore that μ(U) <∞. By Equality (6.11) of Chapter 6, we have

μ(U) = inf

⎧⎨
⎩
∑

vol(Ij) | j ∈ J, U ⊆
⋃
j∈J

Ij

⎫⎬
⎭ ,

so there exists a collection of n-dimensional open intervals {Ij | j ∈
N} such that

∑
j∈N

μ(Ij) < μ(U) + ε. Thus, μ(U) = inf{μ(L) | U ⊆
L,L is open}.

25. A subset U of R
n is Lebesgue measurable if and only if for every ε > 0

there exist an open set L and a closed set H such that H ⊆ U ⊆ L and
μ(L−H) < ε.
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12

Dimensions of Metric Spaces

12.1 Introduction

Recent research results attempt to counteract the dimensionality curse by
focusing on local dimensionality of data by using the fractal dimension of
data.

Subsets of R
n may have “intrinsic” dimensions that are much lower than

n. Consider, for example, two distinct vectors a,b ∈ R
n and the line L =

{a + tb | t ∈ R}. Intuitively, L has the intrinsic dimensionality 1; however, L
is embedded in R

n and from this point of view is an n-dimensional object. In
this chapter we examine formalisms that lead to the definition of this intrinsic
dimensionality.

Difficulties related to the high number of correlated features that occur
when data mining techniques are applied to data of high dimensionality are
collectively designated as the dimensionality curse. In Section 12.2 we discuss
properties of the R

n spaces related to the dimensionality curse and we show
how the reality of highly dimensional spaces contradicts the common intu-
ition that we acquire through our common experience with lower dimensional
spaces. Higher dimensional spaces are approached using analogies with lower
dimensional spaces.

12.2 The Dimensionality Curse

The term “dimensionality curse,” invented by Richard Bellman in [8], is used
to describe the difficulties of exhaustively searching a space of high dimen-
sionality for an optimum value of a function defined on such a space. These
difficulties stem from the fact that the size of the sets that must be searched
increases exponentially with the number of dimensions. Moreover, phenomena
that are at variance with the common human intuition acquired in two- or
three-dimensional spaces become more significant. This section is dedicated
to a study of these phenomena.

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 12, c© Springer-Verlag London Limited 2008
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The dimensionality curse impacts many data mining tasks, including clas-
sification and clustering. Thus, it is important to realize the limitations that
working with high-dimensional data impose on designing data mining algo-
rithms.

In Section C.4, we show that the volume of a sphere of radius R in R
n is

Vn(R) =
π

n
2Rn

Γ
(

n
2 + 1

)
Let Qn(�) be an n-dimensional cube in R

n. The volume of this cube is �n.
Consider the n-dimensional closed sphere of radius R that is centered in the
center of the cube Qn(2R) and is tangent to the opposite faces of this cube.
We have:

lim
n→∞

Vn(R)
2nRn

=
π

n
2

2nΓ
(

n
2 + 1

) = 0.

In other words, as the dimensionality of the space grows, the fraction of the
cube volume that is located inside the sphere decreases and tends to become
negligible for very large values of n.

It is interesting to compare the volumes of two concentric spheres of radii
R and R(1 − ε), where ε ∈ (0, 1). The volume located between these spheres
relative to the volume of the larger sphere is

Vn(R)− Vn(R(1− ε))
Vn(R)

= 1− (1− ε)n,

and we have

lim
n→∞

Vn(R)− Vn(R(1− ε))
Vn(R)

= 1.

Thus, for large values of n, the volume of the sphere of radius R is concentrated
mainly near the surface of this sphere.

Let Qn(1) be a unit side-length n-dimensional cube, Qn(1) = [0, 1]n, cen-
tered in cn = (0.5, . . . , 0.5) ∈ Rn. The d2-distance between the center of the
cube cn and any of its vertices is:√

0.52 + · · · 0.52 = 0.5
√
n,

and this value tends to infinity with the number of dimensions n despite the
fact that the volume of the cube remains equal to 1. On the other hand, the
distance from the center of the cube to any of its faces remains equal to 0.5.
Thus, the n-dimensional cube is exhibits very different properties in different
directions; in other words the n-dimensional cube is an anisotropic object.

An interesting property of the unit cube Qn(1) is observed in [82]. Let
P = (p, . . . , p) ∈ R

n be a point located on the main diagonal of Qn(1) and
let K be the subcube of Qn(1) that includes (0, . . . , 0) and P and has a side
of length p; similarly, let K ′ be the subcube of Qn(1) that includes P and
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(1, . . . , 1) and has side of length 1− p. The ratio of the volumes V and V ′ of
the cubes K and K ′ is

r(p) =
(

p

1− p

)n

.

To determine the increase δ of p needed to double the volume of this ratio,
we must find δ such that r(p+δ)

r(p = 2, that is

p(1− p) + δ(1− p)
p(1− p)− δp = n

√
2.

Equivalently, we have

δ =
p(1− p)( n

√
2− 1)

1− p+ p n
√

2
.

The first factor p(1−p)

1−p+p n√2
remains almost constant for large values of n. How-

ever, the second factor n
√

2− 1 tends toward 0, which shows that within large
dimensionality smaller and smaller moves of the point p are needed to dou-
ble the ratio of the volumes of the cubes K and K ′. This suggests that the
division of Qn(1) into subcubes is very unstable. If data classifications are
attempted based on the location of data vectors in subcubes, this shows in
turn the instability of such classification schemes.

Another interesting example of the counterintuitive behavior of spaces of
high dimensionality is given in [17]. Now let Qn(1) be the unit cube centered
in the point cn ∈ R

n, where cn = (0.5, . . . , 0.5). For n = 2 or n = 3, it is easy
to see that every sphere that intersects the sides of Q2(1) or all faces of Q3(1)
must contain the center of the cube cn. We shall see that, for sufficiently high
values of n a sphere that intersects all (n−1)-dimensional faces of Qn(1) does
not necessarily contain the center of Qn(1).

Consider the closed sphere B(qn, r), whose center is the point qn =
(q, . . . , q), where q ∈ [0, 1]. Clearly, we have qn ∈ Qn(1) and d2(cn,qn) =√
n(q2 − q + 0.25).
If the radius r of the sphere B(qn, r) is sufficiently large, then B(qn, r) in-

tersects all faces of Qn. Indeed, the distance from qn to an (n−1)-dimensional
face is no more than max{q, 1−q}, which shows that r ≥ max{q, 1−q} ensures
the nonemptiness of all these intersections. Thus, the inequalities

n (q − 0.5)2 > r2 > max{q2, (1− q)2} (12.1)

ensure that B(qn, r) intersects every (n − 1)-dimensional face of Qn, while
leaving cn outside B(qn, r). This is equivalent to requiring

n >
max{q2, (1− q)2}

(q − 0.5)2
.

For example, if we choose q = 0.3, then n > 0.72

0.22 = 12.25. Thus, in the case of
R13, Inequality (12.1) amounts to 0.52 > r2 > 0.49. Choosing r =

√
2

2 gives
the sphere with the desired “paradoxical” property.
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The examples discussed in this section suggest that precautions and sound
arguments are needed when trying to extrapolate familiar properties of two-
or three-dimensional spaces to spaces of higher dimensionality.

12.3 Inductive Dimensions of Topological Metric Spaces

We present two variants of the inductive dimensions of topological metric
spaces: the small inductive dimension ind(S,Od) and the large inductive di-
mension IND(S,Od). Informally, these dimensions capture the intuitive idea
that a sphere B(x, r) in R

n+1 has a border that is n-dimensional. They are
defined by inductive definitions, which we present next.

Definition 12.1. Let (S,Od) be a topological metric space. The large induc-
tive dimension of (S,Od) is a member of the set {n ∈ Z | n ≥ −1} ∪ {∞}
defined by:
(i) If S = ∅ and Od = {∅}, then IND(S,Od) = −1.
(ii) IND(S,Od) ≤ n for n ≥ 0 if, for every closed set H and every open set L

such that H ⊆ L, there exists an open set V such that H ⊆ V ⊆ L such
that IND(∂V,Od �∂V ) ≤ n− 1.

(iii) IND(S,Od) = n if IND(S,Od) ≤ n and IND(S,Od) �≤ n− 1.
(iv) If there is no integer n ≥ −1 such that IND(S,Od) = n, then IND(S,Od) =

∞.

An immediate equivalent definition of IND(S,Od) is contained by the next
theorem.

Theorem 12.2. If IND(S,Od) ∈ Z, then IND(S,Od) is the smallest integer
n such that n ≥ −1, and for every closed set H and every open set L of the
topological metric space (S,Od) such that H ⊆ L, there exists an open set V
such that H ⊆ V ⊆ L such that IND(∂V,Od �∂V ) ≤ n− 1.

Proof. The statement is an immediate consequence of Definition 12.1. 	

If we relax the requirement of Definition 12.1 by asserting the existence of

the set V only when the closed set H is reduced to an element of S, we obtain
the following definition of the small inductive dimension.

Definition 12.3. Let (S,Od) be a topological metric space. The small induc-
tive dimension of (S,Od) is a member of the set {n ∈ Z | n ≥ −1} ∪ {∞}
defined by:
(i) If S = ∅ and Od = {∅}, then ind(S,Od) = −1.
(ii) ind(S,Od) ≤ n, where n ≥ 0, if for x ∈ S and every open set L that

contains x, there exists an open set V such that x ∈ V ⊆ L such that
ind(∂V,Od �∂V ) ≤ n− 1.

(iii) ind(S,Od) = n if IND(S,Od) ≤ n and ind(S,Od) �≤ n− 1.
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(iv) If there is no integer n ≥ −1 such that ind(S,Od) = n, then ind(S,Od) =
∞.

Theorem 12.4. If ind(S,Od) ∈ Z, then ind(S,Od) is the smallest integer n
such that n ≥ −1, and for every x ∈ S and every open set L that contains x,
there is an open set V such that x ∈ V ⊆ L and ind(∂V,Od �∂V ) ≤ n− 1.

Proof. The statement is an immediate consequence of Definition 12.3. 	

Since {x} is a closed set for every x ∈ S, it is clear that, for every topo-

logical metric space (S,Od), we have ind(S,Od) ≤ IND(S,Od).
If there is no risk of confusion, we denote ind(S,Od) and IND(S,Od) by

ind(S) and IND(S), respectively.

Definition 12.5. A topological metric space (S,Od) is zero-dimensional if
ind(S,Od) = 0.

Clearly, if IND(S,Od) = 0, then (S,Od) is zero-dimensional.

Theorem 12.6. Let (S,Od) be a nonempty topological metric space. The
space is zero-dimensional if and only if there exists a basis for Od that consists
of clopen sets.

Proof. Suppose that ind(S) = 0. By Definition 12.3, for every x ∈ S and every
open set L, there is an open set V such that x ∈ V ⊆ L and ind(∂V ) ≤ −1,
which implies ind(∂V ) = −1 and thus ∂V = ∅. This shows that V is a clopen
set and the collection of all such sets V is the desired basis.

Conversely, if there exists a basis B for Od such that each set in B is clopen,
then for every x ∈ S and open set L there exists V ∈ B such that ∂V = ∅,
x ∈ V = K(V ) ⊆ L. This implies ind(S) = 0. 	


Theorem 12.7. Let (S,Od) be a zero-dimensional separable topological metric
space. If H1 and H2 are two disjoint closed subsets of S, there exists a clopen
set U such that H1 ⊆ U and U ∩H2 = ∅.

Proof. Since ind(S) = 0, by Theorem 12.6 there exists a base B of (S,Od)
that consists of clopen sets.

Let x ∈ S. If x �∈ H1, then x belongs to the open set S − H1, so there
exists Ux ∈ B such that x ∈ Ux ⊆ S −H1, which implies Ux ∩H1 = ∅.

If x �∈ H2, a similar set Ux can be found such that x ∈ Ux ∩H2 = ∅. Since
every x is in either of the two previous cases, it follows that U = {Ux | x ∈ S}
is an open cover of S and each set Ux is disjoint from H1 or H2.

By Theorem 11.31, the separability of (S,Od) implies that U contains a
countable subcover, {Ux1 , Ux2 , . . .}. Let V1, V2, . . . be the sequence of clopen
sets defined inductively by V1 = Ux1 , and Vn = Uxn

−
⋃n−1

i=1 Vi for n ≥ 1. The
sets Vi are pairwise disjoint,

⋃
i≥0 Vi = S, and each set Vi is disjoint from H1

or H2.
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Let U =
⋃
{Vi | Vi∩H2 = ∅}. The set U is open, H1 ⊆ U , and U∩H2 = ∅.

Note that the set U is also closed because S−U =
⋃
{Vi | Vi∩H2 �= ∅} is also

open. This means that U is clopen and satisfies the conditions of the theorem.
	


Theorem 12.7 can be restated by saying that in a zero-dimensional space
(S,Od), for any two disjoint closed subsets of S, H1 and H2, there exist two
disjoint clopen subsets U1 and U2 such that H1 ⊆ U1 and H2 ⊆ U2. This
follows from the fact that we can choose U1 = U and U2 = S − U .

Corollary 12.8. Let (S,Od) be a zero-dimensional separable topological met-
ric space. If H is a closed set and L is an open set such that H ⊆ L, then
there exists a clopen set U such that H ⊆ U ⊆ L.

Proof. This statement is immediately equivalent to Theorem 12.7. 	


Corollary 12.9. Let (S,Od) be a separable topological metric space. We have
ind(S) = 0 if and only if IND(S) = 0.

Proof. We saw that IND(S) = 0 implies ind(S) = 0. Suppose that ind(S) = 0.
By Corollary 12.9, if H is a closed set and L is an open set such that H ⊆ L,
then there exists a clopen set U such that H ⊆ U ⊆ L. This implies IND(S) =
0 by Theorem 12.2. 	


Example 12.10. If (S,Od) is a nonempty topological ultrametric space, then
ind(S) = 0 because the collection of open spheres is a basis for Od that consists
of clopen sets (see Corollary 11.29).

Example 12.11. For any nonempty, finite topological metric space (S,Od), we
have ind(S) = 0. Indeed, consider the a open sphere C(x, ε). If we choose
ε < min{d(x, y) | x, y ∈ S and x �= y}, then each open sphere consists of {x}
itself and thus is a clopen set.

Example 12.12. Let Q be the set of rational numbers and let I = R−Q be the
set of irrational numbers. Consider the topological metric spaces (Q,O′) and
(I,O′′), where the topologies O′ and O′′ are obtained by restricting the usual
metric topology Od of R to Q and I, respectively. We claim that ind(Q,O′) =
ind(I,O′′) = 0.

Let r be a rational number and let α be an irrational positive number.
Consider the set D(r, α) = {q ∈ Q | |r − q| < α}. It is easy to see that the
collection {D(r, α) | r ∈ Q, α ∈ I} is a basis for (Q,O′). We have

∂D(r, α) = {q ∈ Q | |q − r| ≤ α} ∩ {q ∈ Q | |q − r| ≥ α}
= {q ∈ Q | |q − r| = α} = ∅

because the difference of two rational numbers is a rational number. Therefore,
the sets of the form D(r, α) are clopen and ind(Q,O′) = 0.
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Let r and p be two rational numbers. Consider the set of irrational numbers

E(r, p) = {α ∈ I | |r − α| < p}.

We claim that the collection E = {E(r, p) | r, p ∈ Q} is a basis for (I,O′′).
Indeed, let β ∈ I, and let L be an open set in O′′. There exists an open sphere
C(β, u) such that u > 0 and C(β, u) ⊆ L. Let r1, r2 ∈ Q be two rational
numbers such that β − u < r1 < β < r2 < β + u. If we define r = (r1 + r2)/2
and p = (r2 − r1)/2, then β ∈ E(r, p) ⊆ C(β, u) ⊆ L, which proves that E is
indeed a basis. We have

∂E(r, p) = {α ∈ I | |r − α| ≤ p} ∩ {α ∈ I | |r − α| ≥ p}
= {α ∈ I | |r − α| = p} = ∅

for reasons similar to the ones given above. The sets in the basis E are clopen,
and therefore ind(I,O′′) = 0.

Example 12.13. We have ind(R,O) = 1. Indeed, by Theorem 11.52, its topo-
logical dimension is not 0 and, on the other hand, it has a basis that consists
of spheres C(x, r), that are open intervals of the form (x− r, x+ r). Clearly,
∂(x− r, x+ r) is the finite set {−r, r}, which has a small inductive dimension
equal to 0. Therefore, ind(R,O) = 1. It is interesting to observe that this shows
that the union of two zero-dimensional sets is not necessarily zero-dimensional
because ind(Q,O′) = ind(I,O′′) = 0, as we saw in Example 12.12.

Theorem 12.14. Let (S,Od) be a topological metric space and let T be a
subset of S. We have ind(T,Od �T ) ≤ ind(S,Od).

Proof. The statement is immediate if ind(S,Od) = ∞. The argument for the
finite case is by strong induction on n = dim(S,Od) ≥ −1.

For the base case, n = −1, the space (S,Od) is the empty space (∅, {∅}),
so T = ∅ and the inequality obviously holds.

Suppose that the statement holds for topological metric spaces of dimen-
sion no larger than n. Let (S,Od) be a metric topological space such that
ind(S,Od) = n + 1, T be a subset of S, t be an element of T , and L be an
open set in (T,Od �T ) such that t ∈ L.

There is an open set L1 ∈ Od such that L = L1∩T . Since ind(S,Od) = n+1,
n is the least integer such that there is an open set W ⊆ S for which

t ∈W ⊆ L1 (12.2)

and ind(∂W ) ≤ n. The set V = W ∩ T is an open set in (T,Od �T ), and we
have

t ∈ V ⊆ L
by intersecting the sets involved in Inclusions (12.2) with T . Theorem 6.31
implies that
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∂T (V ) = ∂T (W ∩ T ) ⊆ ∂S(W )

and, by the inductive hypothesis, ind(∂T (V )) ≤ ind(∂S(W )) ≤ n. Therefore,
the small inductive dimension of T cannot be greater than n+1, which is the
desired conclusion. 	


A similar statement involving the large inductive dimension can be shown.

Theorem 12.15. Let (S,Od) be a topological metric space and let T be a
subset of S. We have IND(T,Od �T ) ≤ IND(S,Od).

Proof. The argument is similar to the one given in the proof of Theorem 12.14.
	


We denote ind(T,Od �U ) by ind(T ).
An extension of Theorem 12.6 is given next.

Theorem 12.16. Let (S,Od) be a topological metric space. We have ind(S) =
n, where n ≥ 0, if and only if n is the smallest integer such that there exists
a basis for Od such that for every B ∈ B we have ind(∂B) ≤ n− 1.

Proof. The necessity of the condition is immediate from Definition 12.3 be-
cause the sets V constitute a basis that satisfies the condition.

To prove that the condition is sufficient, note that from the proof of The-
orem 11.23 we obtain the existence of two open disjoint sets V1 and V2 such
that {x} ⊆ V1 and S −L ⊆ V2 because {x} and S −L are two disjoint closed
sets. This is equivalent to x ∈ V1 ⊆ S − V2 ⊆ L and, because S − V2 is
closed, we have x ∈ V1 ⊆ K(V1) ⊆ L. Let B be a set in the basis such that
x ∈ B ⊆ V1. We have x ∈ B ⊆ L and ind(∂B) ≤ n − 1; since n is the least
number with this property, we have ind(S) = n. 	


Corollary 12.17. For every separable topological metric space (S,Od), we
have ind(S) = n, where n ≥ 0, if and only if n is the smallest integer such
that there exists a countable basis for Od such that, for every B ∈ B, we have
ind(∂B) ≤ n− 1.

Proof. This statement is a consequence of Theorems 12.16 and 6.48. 	

The inductive dimensions can be alternatively described using the notion

of set separation.

Definition 12.18. Let (S,O) be a topological space, and let X and Y be two
disjoint subsets of S. The subset T of S separates the sets X and Y if there
exists two open, disjoint sets L1 and L2 in (S,O) such that X ⊆ L1, Y ⊆ L2,
and T = S − (L1 ∪ L2).

It is clear that if T separates X and Y , then T must be a closed subset of S.
Observe that the empty set separates the sets X and Y if and only if the

space S is the union of two open disjoint sets L1 and L2 such that X ⊆ L1

and Y ⊆ L2. Since L1 is the complement of L2, both L1 and L2 are clopen
sets.
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Theorem 12.19. Let (S,O) be a topological space, and let X and Y be two
disjoint subsets of S. The set T separates the sets X and Y if and only if the
following conditions are satisfied:
(i) T is a closed set in (S,O), and
(ii) there exist two disjoint sets K1 and K2 that are open in the subspace S−T

such that X ⊆ K1, Y ⊆ K2, and S − T = K1 ∪K2.

Proof. Suppose that T separates the sets X and Y . It is clear that we have
both X ⊆ S − T and Y ⊆ S − T . We already observed that T is closed, and
so S−T is open. Therefore, the sets L1 and L2 considered in Definition 12.18
are open in S − T and the second condition is also satisfied.

Conversely, suppose that conditions (i) and (ii) are satisfied. Since T is
closed, S − T is open. Since K1 and K2 are open in S − T , they are open in
(S,O), so T separates X and Y . 	


Theorem 12.20. Let (S,O) be a topological space, H be a closed set, and L
be an open set such that H ⊆ L. The set T separates the disjoint sets H and
S − L if and only if there exists an open set V and a closed set W such that
the following conditions are satisfied:
(i) H ⊆ V ⊆W ⊆ S − L and
(ii) T = W − V .

Proof. Suppose that T separates H and S − L. There are two disjoint open
sets L1 and L2 such that H ⊆ L1, S − L ⊆ L2, and T = S − (L1 ∪ L2).
This implies S − L2 ⊆ L, and T = (S − L1) ∩ (S − L2). Let V = L1 and
W = S − L2. Since L1 and L2 are disjoint, it is clear that V ⊆ W . Also,
T = (S − V ) ∩W = W − V .

Conversely, if the conditions of the theorem are satisfied, then T sepa-
rates H and S − L because V and S −W are the open sets that satisfy the
requirements of Definition 12.18. 	


Using the notion of set separation, we have the following characterization
of topological metric spaces having large or small inductive dimension n.

Theorem 12.21. Let (S,Od) be a topological metric space and let n ∈ N.
(i) IND(S) = n if and only if n is the smallest integer such that for every

closed subset H and open set L of S such that H ⊆ L there exists a set
W with IND(W ) ≤ n− 1 that separates H and L.

(ii) ind(S) = n if and only if n is the smallest integer such that for any
element x of S and any open set L that contains x there exists a set W
with ind(W ) ≤ n− 1 that separates {x} and L.

Proof. Suppose that IND(S) = n. By Definition 12.1, n is the smallest integer
such that n ≥ −1, and for every closed set H and every open set L such that
H ⊆ L, there exists an open set V such that H ⊆ V ⊆ K(V ) ⊆ L such that
IND(∂V ) ≤ n − 1. Let W = K(V ) − V . It is clear that W separates H and
L. Since
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W = K(V )− V = K(V ) ∩ (S − V ) ⊆ K(V ) ∩K(S − V ) = ∂(V ),

it follows that IND(W ) ≤ n− 1.
Conversely, suppose that n is the least integer such that for any closed set

H and open set L such that H ⊆ L there exist an open set V and a closed
set U such that H ⊆ V ⊆ U ⊆ L, W = U −V , and IND(W ) ≤ n− 1. Clearly,
we have K(V ) ⊆ U and therefore

H ⊆ V ⊆ K(V ) ⊆ L.

Note that

∂(V ) = K(V ) ∩K(S − V )
= K(V ) ∩ (S − V )

because S − V is a closed set
⊆ U ∩ (S − V ) = U − V = W,

which implies IND(V ) ≤ n− 1.
The proof of the second part of the theorem is similar. 	

The next statement shows the possibility of lifting the separation of two

closed sets from a subspace to the surrounding space.

Theorem 12.22. Let (S,Od) be a topological metric space, and let H1 and
H2 be two closed and disjoint subsets of S. Suppose that U1 and U2 are two
open subsets of S such that H1 ⊆ U1, H2 ⊆ U2 and K(U1) ∩K(U2) = ∅.

If T ⊆ S and the set K separates the sets T ∩K(U1) and T ∩K(U2) in
the subspace (T,Od �T ), then there exists a subset W of S, that separates H1

and H2 in (S,Od) such that W ∩ T ⊆ K.

Proof. Since K separates the sets T ∩K(U1) and T ∩K(U2) in T there are two
open, disjoint subsets V1 and V2 of T such that T ∩K(U1) ⊆ V1, T ∩K(U2) ⊆
V2, and T −K = V1 ∪ V2.

We have

U1 ∩ V2 = U1 ∩ (T ∩ V2)
= (U1 ∩ T ) ∩ V2

⊆ K(U1) ∩ T ∩ V2

⊆ V1 ∩ V2 = ∅,

and therefore U1∩K(V2) = ∅, because U1 is open (by Theorem 6.8). Therefore,
H1 ∩K(V2) = ∅. Similarly, H2 ∩K(V1) = ∅. Consequently,

(H1 ∪ V1) ∩ (K(H2 ∪ V2)) = (H1 ∪ V1) ∩ (K(H2) ∪K(V2))
= (H1 ∪ V1) ∩ (H2 ∪K(V2)) = ∅

and similarly
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K(H1 ∪ V1) ∩ (H2 ∪ V2) = ∅.
By Supplement 13 of Chapter 11, there exist two disjoint open sets Z1 and Z2

such that H1 ∪ V1 ⊆ Z1 and H2 ∪ V2 ⊆ Z2. Then, the set W = S − (Z1 ∪ Z2)
separates H1 and H2, and W ∩ T ⊆ T − (Z1 ∪ Z2) ⊆ T − (V1 ∪ V2) = K. 	


We can now extend Corollary 12.8.

Corollary 12.23. Let (S,Od) be a separable topological metric space and let
T be a zero-dimensional subspace of S. For any disjoint closed sets H1 and
H2 in S, there exist two disjoint open sets L1 and L2 such that H1 ⊆ L1,
H2 ⊆ L2, and T ∩ ∂L1 = T ∩ ∂L2 = ∅.

Proof. By Theorem 11.26, there are two open sets V1 and V2 such that H1 ⊆
V1, H2 ⊆ V2, and K(V1)∩K(V2) = ∅. By Theorem 12.7, there exists a clopen
subset U of T such that T ∩K(V1) ⊆ U and T ∩K(V2) ⊆ T − U . Therefore,
we have

T − U ⊆ S −K(V1) ⊆ S − V1 ⊆ S −H1,
U ⊆ T −K(V2) ⊆ S − V2 ⊆ S −H2,

which implies that the sets H1 ∪ U and H2 ∪ (T − U) are disjoint.
Let f, g : S −→ R be the continuous functions defined by f(x) = dH1∪U (x)

and g(x) = dH2∪(T−U)(x) for x ∈ S. The open sets

L1 = {x ∈ S | f(x) < g(x)},
L2 = {x ∈ S | f(x) > g(x)},

are clearly disjoint. Note that if x ∈ H1 we have f(x) = 0 and g(x) > 0, so
H1 ⊆ L1. Similarly, H2 ⊆ L2.

Since U is closed in T , we have f(x) = 0 and g(x) > 0 for every x ∈ U ;
similarly, since T − U is closed in T , we have f(x) > 0 and g(x) = 0. Thus,
U ⊆ L1 and T − U ⊆ L2, so T ⊆ L1 ∪ L2.

Note that we have the inclusions

∂L1 = K(L1) ∩K(S − L1)
(by the definition of the border)

= K(L1) ∩ (S − L1)
(because S − L1 is a closed set)

⊆ K(S − L2) ∩ S − L1

(since L1 ⊆ S − L2)
= (S − L2) ∩ (S − L1)
= S − (L1 ∪ L2)
⊆ S − T.

Similarly, we can show that ∂L2 ⊆ S − T , so T ∩ ∂L1 = T ∩ ∂L2 = ∅. 	
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Theorem 12.24. Let T be a zero-dimensional, separable subspace of the topo-
logical metric space (S,Od). If H1 and H2 are disjoint and closed subsets of
S, then there exists a set W that separates H1 and H2 such that W ∩ T = ∅.

Proof. By Theorem 11.26, there exist two open sets U1 and U2 such that
H1 ⊆ U1, H2 ⊆ U2, and K(U1) ∩K(U2) = ∅.

Since T is zero-dimensional, the empty set separates the sets T ∩K(U1)
and T ∩K(U1) in the space T . By Theorem 12.22, there exists a set W of S
that separates H1 and H2 in (S,Od) such that W ∩ T = ∅, as stipulated in
the statement. 	


Theorem 12.25. Let (S,Od) be a nonempty separable topological metric space
that is the union of a countable collection of zero-dimensional closed sets {Hn |
n ∈ N}. Then, (S,Od) is zero-dimensional.

Proof. Let x ∈ S and let L be an open set such that x ∈ L. By Corollary 11.27,
two open sets U0 and W0 exist such that x ∈ U0, L ⊆ W0, and K(U0) ∩
K(W0) = ∅.

We define two increasing sequences of open sets U0, U1, . . . , Un, . . . and
W0,W1, . . . ,Wn, . . . such that
(i) K(Ui) ∩K(Wi) = ∅ for i ≥ 0;
(ii) Hi ⊆ Ui ∪Wi for i ≥ 1.

Suppose that we have defined the sets Un and Wn that satisfy the condi-
tions above. Observe that the disjoint sets Hn+1 ∩K(Un) and Hn+1 ∩K(Wn)
are closed in the subspace Hn+1.

Since dim(Hn+1) = 0, by Theorem 12.7, there is a clopen set K in Hn+1

such that Hn+1 ∩K(Un) ⊂ K and K ∩ (Hn+1 ∩K(Wn)) = ∅. Both K and
Hn+1 −K are closed sets in the space S because Hn+1 is a closed subset of
S, which implies that the sets K ∪K(Un) and (Hn+1 −K)∪K(Wn) are also
closed. Moreover, we have

(K ∪K(Un)) ∩ ((Hn+1 −K) ∪K(Wn)) = ∅,

so there exist two open subsets of S, Un+1 and Wn+1, such that K ∪K(Un) ⊆
Un+1, (Hn+1 −K) ∪K(Wn) ⊆Wn+1, and K(Un+1) ∩K(Wn+1) = ∅.

Consider the open sets U =
⋃

n∈N
Un and W =

⋃
n∈N

Wn. It is clear
that U ∩ W = ∅ and U ∪ W = S, so both U and W are clopen. Since
x ∈ U0 ⊆ U = S − W ⊆ V and S − V ⊆ W0 ⊆ W , it follows that S is
zero-dimensional. 	


It is interesting to contrast this theorem with Example 12.13, where we
observed that ind(R,O) = 1 and ind(Q,O′) = ind(I,O′′) = 0. This happens,
of course, because the subspaces Q and I are not closed.

Theorem 12.26. Let (S,Od) be a separable metric space. If X and Y are two
subsets of S such that S = X ∪ Y , ind(X) ≤ n − 1, and ind(Y ) = 0, then
ind(S) ≤ n.
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Proof. Suppose that S can be written as S = X∪Y such that X and Y satisfy
the conditions of the theorem. Let x ∈ S and let L be an open set such that
x ∈ L. By applying Theorem 12.24 to the closed sets {x} and S−L, we obtain
the existence of a set W that separates {x} and S − L such that W ∩ Y = ∅,
which implies W ⊆ X. Thus, ind(W ) ≤ n− 1, and this yields ind(S) ≤ n. 	


Theorem 12.27 (The Sum Theorem). Let (S,Od) be a separable topolog-
ical metric space that is a countable union of closed subspaces, S =

⋃
i≥1,

where ind(Hi) ≤ n. Then, ind(S) ≤ n, where n ≥ 0.

Proof. The argument is by strong induction on n. The base case, n = 0, was
discussed in Theorem 12.25.

Suppose that the statement holds for numbers less than n, and let S be
a countable union of closed subspaces of small inductive dimension less than
n. By Corollary 12.17, each subspace Hi has a countable basis Bi such that
ind(∂Hi

Bi) ≤ n− 1 for every Bi ∈ Bi.
Each border ∂Hi

Bi is closed in Hi and therefore is closed in S because
each Hi is closed. Define X =

⋃
i≥1

⋃
{∂Bi | Bi ∈ Bi}. By the inductive

hypothesis, we have ind(X) ≤ n− 1.
Define the sets Ki = Hi−X for i ≥ 1. The collection Ci = {Ki ∩B | B ∈

B} consists of sets that are clopen in Ki, and therefore, for each nonempty set
Ki, we have ind(Ki) = 0. Let Y = S−X. Since Y is a countable union of the
closed subspaces Ki = Hi ∩Y , it follows that ind(Y ) = 0. By Theorem 12.26,
it follows that ind(S) ≤ n. 	


The next statement complements Theorem 12.26.

Corollary 12.28. Let (S,Od) be a separable metric space. If ind(S) ≤ n, then
there exist two subsets X and Y of S such that S = X ∪ Y , ind(X) ≤ n− 1,
and ind(Y ) = 0.

Proof. Let S be such that ind(S) ≤ n and let B be a countable basis such that
ind(∂B) ≤ n− 1 for every B ∈ B. The existence of such a basis is guaranteed
by Corollary 12.17. Define X =

⋃
{∂B | B ∈ B}. By the Sum Theorem, we

have ind(X) ≤ n − 1. If Y = S −X, then {Y ∩ B | B ∈ B} is a base of Y
that consists of clopen sets (in Y ), so ind(Y ) ≤ 0. 	


Theorem 12.29 (The Decomposition Theorem). Let (S,Od) be a sepa-
rable metric space such that S �= ∅. We have ind(S) = n, where n ≥ 0 if and
only if S is the union of n+ 1 zero-dimensional subspaces.

Proof. This statement follows from Theorem 12.26. 	


Theorem 12.30. [The Separation Theorem] Let (S,Od) be a separable topo-
logical metric space such that ind(S) ≤ n, where n ≥ 0. If H1 and H2 are two
disjoint closed subsets, then there exist two disjoint open subsets L1 and L2

that satisfy the following conditions:
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(i) H1 ⊆ L1 and H2 ⊆ L2;
(ii) ind(∂L1) ≤ n− 1 and ind(∂L2) ≤ n− 1.

Proof. By Theorem 12.26, there exist two subsets X and Y of S such that
S = X ∪ Y , ind(X) ≤ n − 1, and ind(Y ) = 0. By Corollary 12.23, there
exist two disjoint open sets L1 and L2 such that H1 ⊆ L1, H2 ⊆ L2, and
Y ∩∂L1 = Y ∩∂L2 = ∅. Therefore, ∂L1 ⊆ X and ∂L2 ⊆ X, so ind(∂L1) ≤ n−1
and ind(∂L2) ≤ n− 1. 	


The next statement is an extension of Theorem 12.24.

Theorem 12.31. Let T be a subspace of a separable topological metric space
(S,Od) such that ind(T ) = k, where k ≥ 0. If H1 and H2 are disjoint closed
subsets of S, then there exists a subset U of S that separates H1 and H2 such
that ind(T ∩ U) ≤ k − 1.

Proof. The case k = 0 was discussed in Theorem 12.24.
If k ≥ 1, then T = X ∪ Y , where ind(X) = k − 1 and ind(Y ) = 0. By

Theorem 12.24, the closed sets H1 and H2 are separated by a set W such that
W ∩ Y = ∅, which implies W ∩ T ⊆ X. Thus, ind(W ∩ T ) ≤ k − 1. 	


Theorem 12.32. Let (S,Od) be a separable topological metric space. We have
ind(S) = IND(S).

Proof. We observed already that ind(S) ≤ IND(S) for every topological met-
ric space. Thus, we need to prove only the reverse equality, IND(S) ≤ ind(S).
This clearly holds if ind(S) =∞.

The remaining argument is by induction on n = ind(S). The base case,
n = 0, was discussed in Corollary 12.9.

Suppose that the inequality holds for numbers less than n. If H1 and H2

are two disjoint and closed sets in S, then they can be separated by a subset U
of S such that ind(U) ≤ n−1 by Theorem 12.31. By the induction hypothesis,
IND(U) ≤ n− 1, so IND(S) ≤ n. 	


12.4 The Covering Dimension

Definition 12.33. Let E be a family of subsets of a set S. The order of E is
the least number n such that any n+ 2 sets of E have an empty intersection.

The order of E is denoted by ord(E).

If ord(E) = n, then there exist n+ 1 sets in E that have a nonempty intersec-
tion. Also, we have ord(E) ≤ |E|+ 1.

Example 12.34. If ord(E) = −1, this means that any set of E is empty, so
E = {∅}.

The order of any partition is 0.
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Definition 12.35. A topological metric space (S,Od) has the covering dimen-
sion n if n is the least number such that n ≥ −1 and every open cover C of
S has a refinement D that consists of open sets with ord(D) = n. If no such
number n exists, then the covering dimension is ∞.

The covering dimension of (S,Od) is denoted by cov(S,Od), or just by
cov(S), when there is no risk of confusion.

Theorem 12.36. Let (S,Od) be a topological metric space. The following
statements are equivalent:
(i) cov(S) ≤ n.
(ii) For every open cover L = {L1, . . . , Lp} of (S,Od), there is an open cover

K = {K1, . . . ,Kp} such that ord(K) ≤ n and Ki ⊆ Li for 1 ≤ i ≤ p.
(iii) For every open cover L = {L1, . . . , Ln+2} there exists an open cover K =

{K1, . . . ,Kn+2} such that
⋂

K = ∅ and Ki ⊆ Li for 1 ≤ i ≤ n+ 2.
(iv) For every open cover L = {L1, . . . , Ln+2} there exists a closed cover H =

{H1, . . . , Hn+2} such that
⋂

H = ∅ and Hi ⊆ Li for 1 ≤ i ≤ n+ 2.

Proof. (i) implies (ii): If cov(S) ≤ n, then for the open cover L = {L1, . . . , Lp}
of (S,Od) there exists an open cover U that is a refinement of L such that
ord(U) ≤ n. We need to derive from U another open cover that is also a
refinement of L, contains the same number of sets as L, and satisfies the
other conditions of (ii).

For U ∈ U, let iU be the least number i such that U ⊆ Li. Define the open
set Ki =

⋃
{U ∈ U | iU = i} for 1 ≤ i ≤ p. Observe that K = {K1, . . . ,Kp}

is an open cover.
An arbitrary element x ∈ S belongs to at most n + 1 members of the

collection U because ord(U) ≤ n. Observe that x ∈ Ki only if x ∈ U for some
U ∈ U, which implies that x belongs to at most n + 1 members of K. Thus,
ord(K) ≤ n.

(ii) implies (iii): This implication is immediate.
(iii) implies (iv): Suppose that (iii) holds, so for every open cover L =

{L1, . . . , Ln+2} there exists an open cover K = {K1, . . . ,Kn+2} such that⋂
K = ∅ and Ki ⊆ Li for 1 ≤ i ≤ n + 2. Starting from the open cover

K, by Supplement 35(b) of Chapter 6, we obtain the existence of the closed
cover H = {H1, . . . , Hn+2} such that Hi ⊆ Ki for 1 ≤ n + 2. This implies
immediately that H satisfies the requirements.

(iv) implies (iii): Suppose that (iv) holds, so for every open cover L =
{L1, . . . , Ln+2} there exists a closed cover H = {H1, . . . ,Hn+2} such that⋂

H = ∅ and Hi ⊆ Li for 1 ≤ i ≤ n + 2. By Part (b) of Supplement 36 of
Chapter 6, there exists an open cover K = {K1, . . . ,Kn+2} such that Ki ⊆ Li

for 1 ≤ i ≤ n+ 2 and
⋂

K = ∅.
(iii) implies (ii): Suppose that (S,O) satisfies condition (iii), and let L =

{L1, . . . , Lp} be an open cover of (S,Od). If p ≤ n + 1, then the desired
collection is L itself. Thus, we may assume that p ≥ n+ 2.
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We need to prove that there exists an open cover K = {K1, . . . ,Kp} such
that ord(K) ≤ n and Ki ⊆ Li for 1 ≤ i ≤ p. This means that we have to
show that the intersection on any n + 2 sets of K is empty. Without loss of
generality, we can prove that the intersection of the first n + 2 sets of K is
empty.

Consider the open cover {L1, . . . , Ln+1, Ln+2 ∪ · · · ∪ Lp}. By (iii), there
exists an open cover Q = {Q1, . . . , Qn+2} such that

⋂
Q = ∅ and Qi ⊆ Li for

1 ≤ i ≤ n+1 and Qn+2 ⊆ Ln+2 ∪ · · · ∪Lp. For 1 ≤ i ≤ p, define the open sets

Ki =

{
Qi if 1 ≤ i ≤ n+ 1,
Qn+2 ∩ Li if n+ 2 ≤ i ≤ p.

The collection K = {K1, . . . ,Kp} is clearly an open cover, Ki ⊆ Li for 1 ≤
i ≤ p, and

⋂n+2
i=1 Ki = ∅.

(ii) implies (i): This implication is immediate. 	


Corollary 12.37. Let (S,Od) be a nonempty topological metric space. The
following statements are equivalent:
(i) cov(S) = 0.
(ii) For all open sets L1 and L2 such that L1∪L2 = S, there exist two disjoint

open sets K1 and K2 such that Ki ⊆ Li for i ∈ {1, 2}.
(iii) For all open sets L1 and L2 such that L1∪L2 = S there exist two disjoint

closed sets H1 and H2 such that Hi ⊆ Li for i ∈ {1, 2}.

Proof. This corollary is a special case of Theorem 12.36. 	


Theorem 12.38. Let (S,Od) be a topological metric space. We have cov(S) =
0 if and only if IND(S) = 0.

Proof. Suppose that cov(S) = 0. Let H1 and H2 be two disjoint closed sets.
Then {S−H1, S−H2} is an open cover of S. By Part (ii) of Corollary 12.37,
there exist two disjoint open sets K1 and K2 such that K1 ⊆ S − H1 and
K2 ⊆ S −H2. Thus, K1 ∪K2 ⊆ (S −H1) ∪ (S −H2) = S − (H1 ∩H2) = S,
which means that both K1 and K2 are clopen. This implies IND(S) = 0.

Conversely, suppose that IND(S) = 0, so ind(S) = 0. Let L1 and L2 be
two open sets such that L1 ∪ L2 = S. The closed sets S − L1 and S − L2 are
disjoint, so by Theorem 12.7 there exists a clopen set U such that S−L1 ⊆ U
(that is, S − U ⊆ L1) and U ∩ (S − L2) = ∅ (that is, U ⊆ L2). Since the sets
S − U and U are also closed, it follows that cov(S) = 0 by the last part of
Corollary 12.37. 	


Theorem 12.39. If (S,Od) is a separable topological space, then cov(S) ≤
ind(S).

Proof. The statement clearly holds if ind(S) = ∞. Suppose now that ind(S) =
n.
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By the Decomposition Theorem (Theorem 12.29), S is the union of n+ 1
zero-dimensional spaces, S =

⋃n+1
i=1 Ti. If L = {L1, . . . , Lm} is a finite open

cover of S, then C = {L1∩Ti, . . . , Lm∩Ti} is a finite open cover of the subspace
Ti. Since ind(Ti) = 0, we have cov(Ti) = 0 by Theorem 12.38. Therefore, the
open cover C has a finite refinement that consists of disjoint open sets of the
form Kij such that Kij ⊆ Lj and

⋃
j=1Kij ⊆ Ti. Consequently, the collection

K = {Bij | 1 ≤ i ≤ n+1, 1 ≤ j ≤ m} is a cover of S that refines the collection
L. Every subcollection K′ of K that contains n+2 sets must contain two sets
that have the same second index, so any such intersection is empty. This allows
us to conclude that cov(S) ≤ n = ind(S). 	


12.5 The Cantor Set

We introduce a special subset of the set of real numbers that plays a central
role in the dimension theory of metric spaces.

Let vn : {0, 1}n −→ N be the function defined by

vn(b0, b1, . . . , bn−1) = 2n−1b0 + · · ·+ 2bn−2 + bn−1

for every sequence (b0, . . . , bn) ∈ {0, 1}n. Clearly, vn(b0, . . . , bn−2, bn−1) yields
the number designated by the binary sequence (b0, . . . , bn−2, bn−1). For exam-
ple, v3(110) = 22 · 1 + 21 · 1 + 0 = 6.

Similarly, let wn : {0, 1, 2}n −→ N be the function defined by

wn(b0, b1, . . . , bn−1) = 3n−1b0 + · · ·+ 3bn−2 + bn−1

for every sequence (b0, . . . , bn) ∈ {0, 1, 2}n. Then, wn(b0, . . . , bn−2, bn−1) is the
number designated by the ternary sequence (b0, . . . , bn−2, bn−1). For example,
w3(110) = 32 · 1 + 31 · 1 + 0 = 12.

Consider a sequence of subsets of R, E0, E1, . . ., where E0 = [0, 1] and
E1 is obtained from E0 by removing the middle third (1/3, 2/3) of E0. If the
remaining closed intervals are E1

0 and E1
1 , then E1 is defined by E1 = E1

0∪E1
1 .

By removing the middle intervals from the sets E1
0 and E1

1 , four new closed
intervals E2

00, E
2
01, E

2
10, E

2
11 are created. Let E2 = E2

00 ∪ E2
01 ∪ E2

10 ∪ E2
11.

En is constructed from En−1 by removing 2n−1 disjoint middle third in-
tervals from En−1 (see Figure 12.1). Namely, if En

i0···in−1
is an interval of the

set En, by removing the middle third of this interval, we generate two closed
intervals En+1

i0···in−10
and En+1

i0···in−11
.

In general, En is the union of 2n closed intervals

En =
⋃

i0,...,in−1

{En
i0,...,in−1

| (i0, . . . , in−1) ∈ {0, 1}n},

for n ≥ 0.
An argument by induction on n ∈ N shows that
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En
i0···in−1

=
[
2wn(i0, . . . , in−1)

3n
,
2wn(i0, . . . , in−1) + 1

3n

]
.

Indeed, the equality above holds for n = 0. Suppose that it holds for n, and
denote by a and b the endpoints of the interval En

i0···in−1
; that is,

a =
2wn(i0, . . . , in−1)

3n
,

b =
2wn(i0, . . . , in−1) + 1

3n
.

By the inductive hypothesis, the points that divide En
i0···in−1

are

2a+ b
3

=
6wn(i0, . . . , in−1) + 1

3n+1

=
2wn+1(i0, . . . , in−1, 0) + 1

3n+1

and

a+ 2b
3

=
6wn(i0, . . . , in−1) + 2

3n+1

=
2wn+1(i0, . . . , in−1, 1)

3n+1
.

Thus, the remaining left third of En
i0···in−1

is

En+1
i0···in−10

=
[
2wn(i0, . . . , in−1)

3n
,
2wn+1(i0, . . . , in−1, 0) + 1

3n+1

]

=
[
2wn+1(i0, . . . , in−1, 0)

3n+1
,
2wn+1(i0, . . . , in−1, 0) + 1

3n+1

]
,

while the remaining right third is

En+1
i0···in−11

=
[
2wn+1(i0, . . . , in−1, 1)

3n+1
,
2wn(i0, . . . , in−1) + 1

3n

]

=
[
2wn+1(i0, . . . , in−1, 1)

3n+1
,
2wn+1(i0, . . . , in−1, 1) + 1

3n+1

]
,

which concludes the inductive argument.
Each number x located in the leftmost third E1

0 = [0, 1/3] of the set
E0 = [0, 1] can be expressed in base 3 as a number of the form x = 0.0d2d3 · · · ;
the number 1/3, the right extreme of this interval, can be written either as
x = 0.1 or x = 0.022 · · · . We adopt the second representation which allows us
to say that all numbers in the rightmost third E1

1 = [2/3, 1] of E0 have the
form 0.2d2d3 · · · in the base 3.

The argument applies again to the intervals E2
00, E

2
01, E

2
10, E

2
11 obtained

from the set E1. Every number x in the interval E2
ij can be written in base 3

as x = 0.i′j′ · · · , where i′ = 2i and j′ = 2j.
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0 1

E0

E1

E2

E3

...

E1
0 E1

1

E2
00 E2

01 E2
10 E2

11

Fig. 12.1. Construction of the Cantor dust.

The Cantor set is the intersection

C =
⋂
{En | n ≥ 0}.

Let us evaluate the total length of the intervals of which a set of the form
En consists. There are 2n intervals of the form En

i0···in−1
, and the length of

each of these intervals is 1
3n . Therefore, the length of En is (2/3)n, so this

length tends toward 0 when n tends towards infinity. In this sense, the Cantor
set is very sparse. Yet, surprisingly, the Cantor set is equinumerous with the
interval [0, 1]. To prove this fact, observe that the Cantor set consists of the
numbers x that can be expressed as

x =
∞∑

n=1

an

3n
,

where an ∈ {0, 2} for n ≥ 1. For example, 1/4 is a member of this set since 1/4
can be expressed in base 3 as 0.020202 · · · . Define the function g : C −→ [0, 1]
by g(x) = y if x = 0.a1a2 · · · (in base 3), where ai ∈ {0, 2} for i ≥ 1 and
y = 0.b1b2 · · · (in base 2), where bi = ai/2 for i ≥ 1. It is easy to see that this is
a bijection between C and [0, 1], which shows that these sets are equinumerous.

We now study the behavior of the sets

En
i0···in−1

=
[
2wn(i0, . . . , in−1)

3n
,
2wn(i0, . . . , in−1) + 1

3n

]

relative to two mappings f0, f1 : [0, 1] −→ [0, 1] defined by

f0(x) =
x

3
and f1(x) =

x+ 2
3
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for x ∈ [0, 1].
Note that

f0(En
i0···in−1

) =
[
2wn(i0, . . . , in−1)

3n+1
,
2wn(i0, . . . , in−1) + 1

3n+1

]

=
[
2wn+1(0i0, . . . , in−1)

3n+1
,
2wn+1(0i0, . . . , in−1) + 1

3n+1

]
= En+1

0i0···in−1
.

Similarly,
f1(En

i0···in−1
) = En+1

1i0···in−1
.

Thus, in general, we have fi(En
i0···in−1

) = En+1
ii0···in−1

for i ∈ {0, 1}.
This allows us to conclude that En+1 = f0(En)∪ f1(En) for n ∈ N. Since

both f0 and f1 are injective, it follows that

C =
⋂
n≥1

En =
⋂
n≥0

En+1

=
⋂
n≥0

[f0(En) ∪ f1(En)]

=

⎛
⎝⋂

n≥0

f0(En)

⎞
⎠ ∪

⎛
⎝⋂

n≥0

f1(En)

⎞
⎠

= f0

⎛
⎝⋂

n≥0

En

⎞
⎠ ∪ f1

⎛
⎝⋂

n≥0

En

⎞
⎠ .

In Figure 12.2 we show how sets of the form E2
ij are mapped into sets

of the form E3
ijk by f0 (represented by plain arrows) and f1 (represented by

dashed arrows).

E3
000 E3

001 E3
010 E3

011 E3
100 E3

101 E3
110 E3

111

E2
00 E2

01 E2
10 E2

11

4 5

#########6 6 7 7 8 9
f0 f1

Fig. 12.2. Mapping sets E2
ij into sets E3

ijk.

Theorem 12.40. The small inductive dimension of the Cantor set is 0.

Proof. We saw that
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C =
⋂

n∈N

En =
⋂

n∈N

⋃
i0···in−1

En
i0···in−1

.

The sets C∩En
i0···in−1

form a base for the open sets of the subspace C of (R,O).
Note that the length of a closed interval En

i0···in−1
is 1

3n and the distance
between two distinct intervals En

i0···in−1
and En

j0···jn−1
is at least 1

3n . Thus,
C ∩ En

i0···in−1
is closed in C. On the other hand, the same set is also open

because

C ∩ En
i0···in−1

= C ∩
(
a− 1

3n
, b+

1
3n

)
,

where

a =
2wn(i0, . . . , in−1)

3n
,

b =
2wn(i0, . . . , in−1) + 1

3n
.

If x ∈ C, then C ∩ En
i0···in−1

⊆ C ∩ S(x, r) provided that 1
3n < r. This shows

that C has a basis that consists of clopen sets, so ind(C) = 0 by Theorem 12.6.
	


12.6 The Box-Counting Dimension

The box-counting dimension reflects the variation of the results of measuring
a set at a diminishing scale, which allows the observation of progressively
smaller details.

Let (S,Od) be a topological metric space and let T be a precompact set.
For every positive r, there exists an r-net for T ; that is, a finite subset Nr of
S such that T ⊆

⋃
{C(x, r) | x ∈ Nr} for every r > 0. Denote by nT (r) the

smallest size of an r-net of T . It is clear that r < r′ implies nT (r) ≥ nT (r′).

Definition 12.41. Let (S,Od) be a topological metric space and let T be a
precompact set.

The upper box-counting dimension of T is the number

ubd(T ) = lim sup
r→0

nT (r)
log 1

r

.

The lower box-counting dimension of T is the number

lbd(T ) = lim inf
r→0

nT (r)
log 1

r

.

If ubd(T ) = lbd(T ), we refer to their common values as the box-counting
dimension of T , denoted by bd(T ).
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Example 12.42. Let T = {0} ∪ { 1
n | n ≥ 1} be a subset of R. The interval

[0, r] contains almost all members of T because if n ≥ & 1
r ', we have 1

n ∈ [0, r].
It is easy to verify that

1
n− 1

− 1
n
>

1
n
− 1
n+ 1

,

for n > 1. Note that 1
n−1 −

1
n > r is equivalent to n2 − n − 1

r < 0, and this
happens when

n <
1 +
√

1 + 4
r

2
.

Thus, each number of the form 1
n for

n ≤ n0 =

⎢⎢⎢⎣1 +
√

1 + 4
r

2

⎥⎥⎥⎦
requires a distinct interval of size r to be covered.

The portion of T that is located to the left of 1
n0

and ends with the number
r has length 1

n0
− r and can be covered with no more than 1

rn0
− 1 intervals

of length r. The least number of intervals of length r that are needed has

1
rn0

+

⎢⎢⎢⎣1 +
√

1 + 4
r

2

⎥⎥⎥⎦
as an upper bound, a number that has the order of magnitude Θ(r−1/2). Thus,
ubd(T ) ≤ 1

2 .

The notion of an r-net is related to two other notions, which we introduce
next.

Definition 12.43. Let (S, d) be a metric space, T be a subset of S, and let r
be a positive number.

A collection C of subsets of S is an r-cover of T of S if, for every C ∈ C,
diamd(C) ≤ 2r and T ⊆

⋃
C;

A subset W of T is r-separated if, for every x, y ∈ W , x �= y implies
d(x, y) > r. The cardinality of the largest r-separated subsetW of T is denoted
by ℘T (r) and will be referred to as the r-separation number of T .

Observe that an r-net for a set T is an r-cover.

Example 12.44. Consider the metric space ([0, 1]2, d2), where d2 is the Eu-
clidean metric. Since the area of a circle Bd2(x, r) is πr2, it follows that for
any 2r-cover C that consists of circles, we have π · r2 · |C| ≥ 1. Thus, a cover
of this type of ([0, 1]2, d2) must contain at least 1

π·r2 circles.
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In general, the volume of a sphere Bd2(x, r) in R
n is

π
n
2

Γ
(

n
2 + 1

)rn,
which means that in the metric space ([0, 1]n, d2), a cover by spheres of radius
r contains at least

Γ
(

n
2 + 1

)
π

n
2 rn

spheres.

Example 12.45. LetW = {w1, . . . , wn} be an r-separated subset of the interval
[0, 1], where w1 < · · · < wn. We have 1 ≥ wn − w1 ≥ (n− 1)r, so n ≤ 1

r + 1.
This implies

℘[0,1](r) =
⌊

1
r

+ 1
⌋
.

Example 12.46. Let T = {0} ∪ { 1
n | n ∈ N1}. We seek to determine an upper

bound for ℘T (r). Note that if p > n, then

1
n
− 1
p
≥ 1
n
− 1
n+ 1

.

By the Mean Value Theorem, there exists c ∈ (n, n+ 1) such that

1
n
− 1
n+ 1

=
1
c2

and therefore
1
n2
>

1
n
− 1
n+ 1

>
1

(n+ 1)2
.

Let n1 be the largest number such that 1
(n1+1)2 ≥ r. Then, an r-separated

subset of T has at least n1 elements; thus, the number 1√
r

is a lower bound
for the number of elements of an r-separating set.

Theorem 12.47. Let T be a subset of a metric space (S, d). The following
statements are equivalent:
(i) For each r > 0, there exists an r-net for T .
(ii) For each r > 0, every r-separated subset of T is finite.
(iii) For each r > 0, there exists a finite r-cover of T .

Proof. (i) implies (ii): Let W be an r-separated subset of T and let N r
2

be an
r
2 -net for T . By the definition of r

2 -nets, for each w ∈ W there exists t ∈ N r
2

such that d(w, t) < r
2 ; that is, w ∈ C

(
t, r

2

)
. Note that each sphere C(t, r

2 )
contains at most one member of w because W is an r-separated subset of T .
The finiteness of T implies that W is finite too.
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(ii) implies (iii): Let W = {w1, . . . , wn} be a maximal finite r-separated
subset of T . If t ∈ T , then there exists wi ∈W such that d(t, wi) ≤ r since oth-
erwise the maximality of W would be contradicted. Thus, T ⊆

⋃n
i=1B(wi, r),

each set B(wi, r) has a diameter of 2r, and this implies that {B(wi, r)|1 ≤
i ≤ n} is an r-cover of T .

(iii) implies (i): Let D = {D1, . . . , Dn} be a finite r+ε
2 -cover of T , where

ε > 0. Select yi ∈ Di for 1 ≤ i ≤ n, and define the set Y = {y1, . . . , yn}. Since
the diameter of every set Di is not larger than r + ε, for every t ∈ T there
exists yi such that d(t, yi) ≤ r + ε for every ε > 0, so d(t, yi) < r. Therefore,
Y is an r-net for T . 	


The connection between the numbers nT (r) and ℘T (r) is discussed next.

Corollary 12.48. For every precompact set T of a topological metric space
(S,Od), we have

nT (r) ≤ ℘T (r) ≤ nT

(r
2

)
,

for every positive r.

Proof. The first inequality follows from the proof of the first implication in
Theorem 12.47. The second is a consequence of the last two implications of
the same theorem. 	


The open spheres of radius r in the definition of a box-counting dimension
of a precompact set T can be replaced with arbitrary sets of diameter 2r.
Indeed, suppose nT (r) is the smallest number of open spheres of radius r that
cover T and nT (2r)′ is the least number of sets of diameter 2r that cover
T . Since each sphere of radius r has diameter 2r, we have nT (2r)′ ≤ nT (r).
Observe that each set of diameter 2r that intersects T is enclosed in an open
sphere with radius 2r centered in T , so nT (2r) ≤ nT (2r)′. The inequalities
nT (2r) ≤ nT (2r)′ ≤ nT (r) imply that the replacement previously mentioned
does not affect the value of the box dimension. For example, open spheres can
be replaced by closed spheres without affecting the value of the box-counting
dimension.

Theorem 12.49. Let T be a subset of a topological metric space (S,Od). We
have ubd(K(T )) = ubd(T ) and lbd(K(T )) = lbd(T ).

Proof. Let {B(x1, r), . . . , B(xn, r)} be a finite collection of closed spheres such
that T ⊆

⋃n
i=1B(xi, r). Clearly, we have K(T ) ⊆

⋃n
i=1B(xi, r). Thus, a

finite collection of closed spheres covers T if and only if it covers K(T ). The
conclusion follows immediately. 	


12.7 The Hausdorff-Besicovitch Dimension

The Hausdorff-Besicovitch measure plays a fundamental role in the study of
fractals. The best-known definition of fractals was formulated by B. Mandel-
brot [94], who is the founder of this area of mathematics, and states that
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a fractal is a geometrical object whose Hausdorff-Besicovitch dimension is
greater than its small inductive dimension. The most famous example is the
Cantor set whose small inductive dimension is 0 (by Theorem 12.40) and
whose Hausdorff-Besicovitch dimension is ln 2

ln 3 , as we shall prove below.
Recall that a collection C of subsets of a metric space (S, d) is an r-cover

of a subset U of S if, for every C ∈ C, diamd(C) ≤ 2r and U ⊆
⋃

C.
Let (S, d) be a metric space and let Cr(U) be the collection of all countable

r-covers for a set U . Observe that r1 ≤ r2 implies Cr1(U) ⊆ Cr2(U) for
r1, r2 ∈ R>0.

Let s be a positive number. We shall use the outer measure HBs
r obtained

by applying Method I (see Theorem 6.127) to the function f : C −→ R≥0

given by f(C) = (diam(C))s for C ∈ C, which is given by

HBs
r(U) = inf

C∈Cr(U)

∑
{(diam(C))s | C ∈ C}.

The function HBs
r(U) is antimonotonic with respect to r. Indeed, if r1 ≤ r2,

then Cr1(U) ⊆ Cr2(U), so

inf
C∈Cr2 (U)

∑
{(diam(C))s | C ∈ C} ≤ inf

C∈Cr1 (U)

∑
{(diam(C))s | C ∈ C},

which means that HBs
r2

(U) ≤ HBs
r1

(U). Because of this, limr→0 HBs
r(U) exists

for every set U , and this justifies the next definition.

Definition 12.50. The Hausdorff-Besicovitch outer measure HBs is given by

HBs(U) = lim
r→0

HBs
r(U)

for every U ∈ P(S).

Theorem 12.51. Let (S, d) be a metric space and let U be a Borel set in this
space. If s and t are two positive numbers such that s < t and HBs(U) is
finite, then HBt(U) = 0. Further, if HBt(U) > 0, then HBs(U) =∞.

Proof. If s < t and C is an r-cover of U , then∑
{(diam(C))t | C ∈ C} =

∑
{(diam(C))t−s(diam(C))s | C ∈ C}

≤ rt−s
∑
{(diam(C))s | C ∈ C},

which implies
HBt

r(U) ≤ rt−sHBs
r(U).

This, in turn, yields

HBt(U) = lim
r→0

HBt
r(U) ≤ lim

r→0
rt−sHBs(U).

If HBs(U) is finite, then HBt(U) = 0. On the other hand, if HBt(U) > 0, the
last inequality implies HBs(U) =∞. 	
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Corollary 12.52. Let (S, d) be a metric space and let U be a Borel set. There
exists a unique s0 such that 0 ≤ s0 ≤ ∞ and

HBs(U) =

{
∞ if s < s0,
0 if s > s0.

Proof. This statement follows immediately from Theorem 12.51 by defining
s0 as

s0 = inf{s ∈ R≥0 | HBs(U) = 0} = sup{s ∈ R≥0 | HBs(U) =∞}.

	

Corollary 12.52 justifies the following definition.

Definition 12.53. Let (S, d) be a metric space and let U be a Borel set. The
Hausdorff-Besicovitch dimension of U is the number

HBdim(U) = sup{s ∈ R≥0 | HBs(U) = ∞}.

Theorem 12.54. The Hausdorff-Besicovitch dimension is monotonic; that is,
U ⊆ U ′ implies HBdim(U) ≤ HBdim(U ′).

Proof. If U ⊆ U ′, then it is clear that Cr(U ′) ⊆ Cr(U). Therefore, we have
HBs

r(U) ≤ HBs
r(U

′), which implies HBs(U) ≤ HBs(U ′) for every s ∈ R≥0.
This inequality yields HBdim(U) ≤ HBdim(U ′). 	


Theorem 12.55. If {Un | n ∈ N} is a countable family of sets, then

HBdim

⎛
⎝ ⋃

n∈N

Un

⎞
⎠ = sup{HBdim(Un) | n ∈ N}.

Proof. By Theorem 12.55, we have HBdim(Un) ≤ HBdim
(⋃

n∈N
Un

)
, so

sup{HBdim(Un) | n ∈ N} ≤ HBdim
(⋃

n∈N
Un

)
.

If HBdim(Un) < t for n ∈ N, then HBt(Un) = 0, so HBt
(⋃

n∈N
Un

)
= 0

since the Hausdorff-Besicovitch outer measure HBt is subadditive. Therefore,
HBdim

(⋃
n∈N

Un

)
< t. This implies HBdim

(⋃
n∈N

Un

)
≤ sup{HBdim(Un) |

n ∈ N}, which gives the desired equality. 	


Example 12.56. If U = {u} is a singleton, then HB0({u}) = 0. Thus,
HBdim({x}) = 0. By Theorem 12.55, we have HBdim(T ) = 0 for every count-
able set T .

Example 12.57. Let f : [0, 1]2 −→ R be a function that is continuous and has
bounded partial derivatives in the square [0, 1]2 and let S be the surface in
R

2 defined by z = f(x, y). Under these conditions, there is a constant k such
that |f(x′, y′)− f(x, y)| ≤ k(|x′−x|+ |y′− y|). We prove that HBdim(S) = 2.



12.7 The Hausdorff-Besicovitch Dimension 485

Suppose that S is covered by spheres of diameter di, S ⊆
⋃
{B(xi,

di

2 ) |
i ∈ I}. Then, the square [0, 1]2 is covered by disks of diameter di and therefore∑

i∈I
πd2

i

4 ≥ 1, which is equivalent to
∑

i∈I d
2
i ≥ 4

π . Therefore, HB2(S) > 0,
so HBdim(S) ≥ 2. Observe that, in this part of the argument, the regularity
of f played no role.

To prove the converse inequality, HBdim(S) ≤ 2, we show that HB2+ε(S) =
0 for every ε > 0; that is, limr→0 HB2+ε

r (U) = 0 for every ε > 0.
Divide the square [0, 1]2 into n2 squares of size 1

n . Clearly, for any two
pairs (x, y) and (x′, y′) located in the same small square, we have |f(x′, y′)−
f(x, y)| ≤ 2k

n , which means that the portion of S located above a small square
can be enclosed in a cube of side 2k

n and therefore in a sphere of diameter 2
√

3k
n .

For the covering C that consists of these n2 spheres, we have

∑
{(diam(C))2+ε | C ∈ C} = n2

(
2
√

3k
n

)2+ε

=
2
√

3k
nε

.

If n is chosen such that 2
√

3k
n < r, we have HB2+ε

r (S) ≤ 2
√

3k
nε . Thus,

limr→0 HB2+ε
r (S) = 0, so HBdim(S) ≤ 2.

Example 12.58. We saw that the Cantor set C is included in each of the sets
En that consists of 2n closed intervals of length 1

3n . Thus, we have

HBs
1

3n
(C) ≤ 2n

3sn
=
(

2
3s

)n

for every n ≥ 1. If 2
3s < 1 (that is, if s > ln 2

ln 3 ), we have limn→∞ HBs
1

3n
= 0. If

s < ln 2
ln 3 , then limn→∞ HBs

1
3n

=∞, so HBdim(C) = ln 2
ln 3 .

Theorem 12.59. Let (S,Od) be a topological metric space and let T be a
precompact set. We have HBdim(T ) ≤ lbd(U).

Proof. Suppose that T can be covered by nT (r) sets of diameter r. By the
definition of the outer measure HBs

r(U), we have

HBs
r(U) ≤ rsnT (r).

Since HBs(U) = limr→0 HBs
r(U), if HBs(U) > 1, then if r is sufficiently small

we have HBs
r(U) > 1, so log HBs

r(U) > 0, which implies s log r + log nT (r) >
0. Thus, if r is sufficiently small, s < nT (r)

log 1
r

, so s ≤ lbd(U). This entails
HBdim(U) ≤ lbd(U). 	


The following statement is known as the mass distribution principle
(see [48]).

Theorem 12.60. Let (S, d) be a metric space and let μ be a Carathéodory
outer measure on S such that there exist s, r > 0 such that μ(U) ≤ c·diam(U)s

for all U ∈ P(S) with diam(U) ≤ r. Then, HBs(W ) ≤ μ(W )
c and s ≤

HBdim(W ) ≤ lbd(W ) for every precompact set W ∈ P(S) with μ(W ) > 0.
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Proof. Let {Ui | i ∈ I} be a cover of W . We have

0 < μ(W ) ≤ μ
(⋃

i

Ui

)
≤
∑
i∈I

μ(Ui) ≤ c
∑

i

(diam(Ui))s,

so
∑

i(diam(Ui))s ≥ μ(W )
c . Therefore, HBs

r(W ) ≥ μ(W )
c , which implies

HBs(W ) ≥ μ(W )
c > 0. Consequently, HBdim(W ) ≥ μ(W )

c > 0. 	


12.8 Similarity Dimension

The notions of similarity and contraction between metric spaces were intro-
duced in Definition 11.64.

Definition 12.61. Let r = (r1, . . . , rn) be a sequence of numbers such that
ri ∈ (0, 1) for 1 ≤ i ≤ n and let (S, d) be a metric space.

An iterative function system on (S, d) that realizes a sequence of ratios
r = (r1, . . . , rn) is a sequence of functions f = (f1, . . . , fn), where fi : S −→ S
is a contraction of ratio ri for 1 ≤ i ≤ n.

A subset T of S is an invariant set for the iterative function system
(f1, . . . , fn) if T =

⋃n
i=1 fi(T ).

Example 12.62. Let f0, f1 : [0, 1] −→ [0, 1] defined by

f0(x) =
x

3
and f1(x) =

x+ 2
3

for x ∈ [0, 1], which are contractions of ratio 1
3 .

The Cantor set C is an invariant set for the iterative function system
f = (f0, f1), as we have shown in Section 12.5.

Lemma 12.63. Let r1, . . . , rn be n numbers such that ri ∈ (0, 1) for 1 ≤ i ≤ n
and n > 1. There is a unique number d such that

rd1 + rd2 + · · ·+ rdn = 1.

Proof. Define the function φ : R≥0 −→ R≥0 by

φ(x) = rx1 + rx2 + · · ·+ rxn

for x > 0. Note that φ(0) = n, limx→∞ φ(x) = 0, and φ′(x) = rx1 ln r1 +
rx2 ln r2 + rxn ln rn < 0. Since φ′(x) < 0, φ is a strictly decreasing function, so
there exists a unique d such that φ(d) = 1. 	


Definition 12.64. Let r = (r1, . . . , rn) be a sequence of ratios such that ri ∈
(0, 1) for 1 ≤ i ≤ n and n > 1. The dimension of r is the number d, whose
existence was proven in Lemma 12.63.
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Observe that if the sequence r has length 1, r = (r1), then rd1 = 1 implies
d = 0.

Example 12.65. The dimension of the sequence r = (1
3 ,

1
3 ) is the solution of

the equation

2 ·
(

1
3

)d

= 1;

that is, d = log 2
log 3 .

Lemma 12.66. Let (S,Od) be a complete topological metric space and let f =
(f1, . . . , fn) be an iterative function system that realizes a sequence of ratios
r = (r1, . . . , rn). The mapping F : K(S,Od) −→ K(S,Od) defined on the
Hausdorff metric hyperspace (K(S,Od), δ) by

F (U) =
n⋃

i=1

fi(U)

is a contraction.

Proof. We begin by observing that F is well-defined. Indeed, since each con-
traction fi is continuous and the image of a compact set by a continuous
function is compact (by Theorem 6.68), it follows that if U is compact, then
F (U) is compact as the union of a finite collection of compact sets.

Next, we prove that δ(F (U), F (V )) ≤ rδ(U, V ) for r = max0≤i≤n−1 ri < 1.
Let x ∈ F (U). There is u ∈ U such that x = fi(u) for some i, 1 ≤ i ≤ n.

By the definition of δ, there exists v ∈ V such that d(u, v) ≤ δ(U, V ).
Since fi is a contraction, we have d(u, v) = d(fi(v), fi(u)) ≤ rid(u, v) ≤
rd(u, v) ≤ rδ(U, V ), so F (U) ⊆ C(F (V ), rδ(U, V )). Similarly, F (V ) ⊆
C(F (U), rδ(U, V )), so δ(F (U), F (V )) ≤ rδ(U, V ), which proves that F is a
contraction of the Hausdorff metric hyperspace (K(S,Od), δ). 	


Theorem 12.67. Let (S,Od) be a complete topological metric space and let
f = (f1, . . . , fn) be an iterative function system that realizes a sequence of ra-
tios r = (r1, . . . , rn). There exists a unique compact set U that is an invariant
set for f.

Proof. By Lemma 12.66, the mapping F : K(S,Od) −→ K(S,Od) is a con-
traction. Therefore, by the Banach fixed point theorem (Theorem 11.70), F
has a fixed point in K(S,Od), which is an invariant set for f. 	


The unique compact set that is an invariant for an iterative function system
f is usually referred to as the attractor of the system.

Definition 12.68. Let (S,Od) be a topological metric space and let U be an
invariant set of an iterative function system f = (f1, . . . , fn) that realizes a
sequence of ratios r = (r1, . . . , rn).

The similarity dimension of the pair (U, f) is the number SIMdim(f), which
equals the dimension of r.
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In principle, a set may be an invariant set for many iterative function
systems.

Example 12.69. Let p, q ∈ (0, 1) such that p + q ≥ 1 and let f0, f1 : [0, 1] −→
[0, 1] be defined by f0(x) = px and f1(x) = qx + 1 − q. Both f0 and f1 are
contractions. The sequence f = (f0, f1) realizes the sequence of ratios r = (p, q)
and we have (0, 1) = f0(0, 1)∪ f1(0, 1). The dimension of the pair (U, r) is the
number d such that pd + qd = 1; this number depends on the values of p and
q.

Theorem 12.70. Let (S,Od) be a complete topological metric space, f =
(f1, . . . , fn) be an iterative function system that realizes a sequence of ratios
r = (r1, . . . , rn), and U be the attractor of f. Then, we have HBdim(U) ≤
SIMdim(f).

Proof. Suppose that rd1 + rd2 + · · · + rdn = 1, that is, d is the dimension of f.
For a subset T of S denote the set fi1(fi2(· · · fip

(T ) · · · )) by fi1i2···ip
(T ).

If U is the attractor of f, then

U =
⋃
{fi1i2···ip

(U) | (i1, i2, . . . , ip) ∈ Seqp({1, . . . , n})}.

This shows that the sets of the form fi1i2···ip
(U) constitute a cover of U .

Since fi1 , fi2 , . . . , fip
are similarities of ratios ri1 , ri2 , . . . , rip

, respectively,
it follows that diam(fi1i2···ip

(U)) ≤ (ri1ri2 · · · rip
)diam(U). Thus,

∑
{(diam(fi1i2···ip

(U)))d | (i1, i2, . . . , ip) ∈ Seqp({1, . . . , n})}

≤
∑
{rdi1r

d
i2 · · · r

d
ip

diam(U)d | (i1, i2, . . . , ip) ∈ Seqp({1, . . . , n})}

=

(∑
i1

rdi1

)(∑
i2

rdi2

)
· · ·

⎛
⎝∑

ip

rdip

⎞
⎠ diam(U)d

= diam(U)d.

For r ∈ R>0, choose p such that diam(fi1i2···ip
(U)) ≤ (max ri)pdiam(U) < r.

This implies HBd
r(U) ≤ diam(U)d, so HBd(U) = limr→0 HBd

r(U) ≤ diam(U)d.
Thus, we have HBdim(U) ≤ d = SIMdim(f). 	


The next statement involves an iterative function system f = (f1, . . . , fm)
acting on a closed subset H of the metric space (Rn, d2) such that each con-
traction fi satisfies the double inequality

bid2(x,y) ≤ d2(fi(x), fi(y)) ≤ rid2(x,y)

for 1 ≤ i ≤ m and x,y ∈ H. Note that each of the functions fi is injective on
the set H.
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Theorem 12.71. Let f = (f1, . . . , fm) be an iterative function system on a
closed subset H of R

n that realizes a sequence of ratios r = (r1, . . . , rm).
Suppose that, for every i, 1 ≤ i ≤ m, there exists bi ∈ (0, 1) such that
d2(fi(x), fi(y)) ≥ bid2(x,y) for x,y ∈ H.

If U is the nonempty and compact attractor of f and {f1(U), . . . , fm(U)}
is a partition of U , then U is a totally disconnected set and HBdim(U) ≥ c,
where c is the unique number such that

∑n
i=1 b

c
i = 1.

Proof. Let

t = min{d2(fi(U), fj(U) | 1 ≤ i, j ≤ m and i �= j}.

Using the same notation as in the proof of Theorem 12.70, observe that the
collection of sets

{fi1···ip
(U) | (i1, . . . , ip) ∈ Seq({1, . . . ,m})}

is a sequential cover of the attractor U . Note also that all sets fi1···ip
(U)

are compact and therefore closed. Also, since each collection {fi1···ip
(U) |

(i1, . . . , ip) ∈ Seqp({1, . . . ,m}) is a partition of U , it follows that each of
these sets is clopen in U . Thus, U is totally disconnected.

Define
m(fi1i2···ip

(U)) = (bi1bi2 · · · bip
)c.

Note that
m∑

i=1

m(fi1i2···ipi(U)) =
m∑

i=1

(bi1bi2 · · · bip
bi)c

= (bi1bi2 · · · bip
)c

m∑
i=1

bci

= (bi1bi2 · · · bip
)c = m(fi1i2···ip

(U))

= m

(
m⋃

i=1

fi1i2···ipi(U)

)
.

For x ∈ U , there is a unique sequence (i1, i2, . . .) ∈ Seq∞({1, . . . ,m}) such
that x ∈ Ui1···ik

for every k ≥ 1. Observe also that

U ⊇ Ui1 ⊇ Ui1i2 ⊇ · · · ⊇ Ui1i2···ik
⊇ · · · .

Consider the decreasing sequence 1 > bi1 > bi1bi2 > · · · > bi1 · · · bin
> · · · .

If 0 < r < t, let k be the least number j such that r
t ≥ bi1 · · · bij

. We have

bi1 · · · bik−1 >
r

t
≥ bi1 · · · bik

so m(Ui1···ik−1) >
rc

tc ≥ m(Ui1···ik
).
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Let (i′1, . . . , i
′
k) be a sequence distinct from (i1, . . . , ik). If � is the least

integer such that i′� �= i�, then Ui′1···i′� ⊆ Ui′�
and Ui1···i�

⊆ Ui�
. Since Ui�

and
Ui�′ are disjoint and separated by t, it follows that the sets Ui1...ik

and Ui′1...i′k
are disjoint and separated by at least bi1 · · · bi�

t > r. Thus, U ∩ B(x, r) ⊂
Ui1···ik

, so

m(U ∩B(x, r)) ≤ m(Ui1···ik
) = (bi1 · · · bik

)c ≤
(r
t

)c

.

If U ∩W �= ∅, then W ⊂ B(x, r) for some x ∈ U with r = diam(W ). Thus,
m(W ) ≤ diam(W )

tc , so HBc(U) > 0 and HBdim(U) ≥ c. 	


Exercises and Supplements

1. Let Qn(�) be an n-dimensional cube in R
n. Prove that:

a) there are
(
n
k

)
· 2n−k k-dimensional faces of Qn(�);

b) the total number of faces of Qn(�) is
∑n

k=1

(
n
k

)
· 2n−k = 3n − 1.

2. Let T be a subset of R. Prove that T is zero-dimensional if and only if it
contains no interval.

3. Prove that the Cantor set C is totally disconnected.
Hint: Suppose that a < b and b belongs to the connected components
Ka of a. By Example 6.82, this implies [a, b] ⊆ Ka ⊆ C, which leads to a
contradiction.

4. Prove the following extension of Example 12.42. If T = {0}∪{ 1
na | n ≥ 1},

then (T) = 1
1+a .

5. Let (S,Od) be a compact topological metric space, x ∈ S, and let H be
a closed set in (S,O). Prove that if the sets {x} and {y} are separated
by a closed set Kxy with ind(Kxy) ≤ n − 1 for every y ∈ H, then {x} is
separated from H by a closed set K with ind(K) ≤ n− 1.

6. Prove that every zero-dimensional separable topological space (S,O) is
homeomorphic to a subspace of the Cantor set.
Hint: By the separability of (S,O) and by Theorem 12.6, (S,O) has a
countable basis {B0, B1, . . . , Bn, . . .} that consists of clopen sets. Consider
the mapping f : S −→ Seq∞({0, 1}) defined by f(x) = (b0, b1, . . .), where
bi = IBi

(x) for i ∈ N.
7. Let T be a subset of R

n. A function f : T −→ R
n satisfies the Hölder

condition of exponent α if there is a constant k such that |f(x)− f(y)| ≤
k|x− y|α for x,y ∈ R

n. Prove that

HB
s
α (f(T )) ≤ k s

α HBs(T ).

Solution: If C ⊆ R
n is a set of diameter diam(C), then f(C), the image

of C under f , has a diameter no larger than k(diam(C))α. Therefore, if
C is an r-cover of T , then {f(T ∩ C) | C ∈ C} is a krα-cover of f(T ).
Therefore,
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{(diam(T ∩ C))

s
α | C ∈ C} ≤

∑
{(k(diam(C))α)

s
α | C ∈ C}

= k
s
α

∑
{(diam(C))s | C ∈ C},

which implies HB
s
α
r (T ) ≤ k

s
α HBs

r(T ). Since limr→0 kr
α = 0, we have

HB
s
α (f(T )) ≤ k s

α HBs(T ).
8. Consider the ultrametric space (Seq∞({0, 1}), dφ) introduced in Supple-

ment 46 of Chapter 10, where φ(u) = 2−|u| for u ∈ Seq({0, 1}). Prove
that if (S,Od) is a separable topological metric space such that ind(S) = 0,
then S is homeomorphic to a subspace of the topological metric space
(Seq∞{0, 1},Odφ

).
Solution: Since ind(S) = 0, there exists a basis B0 for Od that consists

of clopen sets (by Theorem 12.6). Further, since (S,Od) is countable, there
exists a basis B ⊆ B0 that is countable. Let B = {B0, B1, . . .}.

If s = (s0, s1, . . . , sp−1) ∈ Seqp({0, 1}), let B(s) be the clopen set
B(s) = Bs0

0 ∩Bs1
1 ∩ · · · ∩Bs1

p−1.
Define the mapping h : S −→ Seq∞({0, 1}) by h(x) = (s0, s1, . . .),

where si = 1 if x ∈ Bi and si = 0 otherwise for x ∈ S. Thus, s is a
prefix of h(x) if and only if x ∈ B(s). The mapping h is injective. Indeed,
suppose that x �= y. Since S−{y} is an open set containing x, there exists
i with x ∈ Bi ⊆ S − {y}, which implies (h(x))i = 1 and (h(y))i = 0, so
h(x) �= h(y). Thus, h is a bijection between S and h(S).

In Exercise 5 of Chapter 11, we saw that the collection {Pu | u ∈
Seq({0, 1})} is a basis for Seq∞({0, 1}) and h−1(Pu) = B(u), so h−1 :
h(S) −→ S is continuous.

Note that h(Ui) = h(S)∩{0, 1}i−1Seq∞({0, 1}) is open in Seq∞({0, 1})
for every i ∈ N, so h−1 is continuous. Thus, h is a homeomorphism of S
into h(S).

9. Let f = (f1, . . . , fm) be an iterative function system on R
n that realizes

the sequence (r, . . . , r) with r ∈ (0, 1) and let H be a nonempty compact
set in R

n. Prove that if U is the attractor of f, then

δ(H,U) ≤ 1
1− r δ (H,F (H)) ,

where δ is the metric of the Hausdorff hyperspace of compact subsets and
F (T ) =

⋃n
i=1 fi(T ) for T ∈ P(S).

Solution: In the proof of Lemma 12.66, we saw that δ(F (H), F (U)) ≤
rδ(H,U). This allows us to write

δ(H,U) ≤ δ(H,F (H)) + δ(F (H), U)
= δ(H,F (H)) + δ(F (H), F (U))
≤ δ(H,F (H)) + rδ(H,U),

which implies the desired inequality.
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10. Consider the contractions f0, f1 : R −→ R defined by f0(x) = rx and
f1(x) = rx + 1 − r for x ∈ R, where r ∈ (0, 1). Find the attractor of the
iterative function system f = (f0, f1).

11. Let (S,Od) be a compact topological metric space. Prove that cov(S) ≤ n
if and only if for every ε > 0 there is an open cover C of S with ord(C) ≤ n
and sup{diam(C) | C ∈ C} < ε.

Solution: The set of open spheres {C(x, ε/2) | x ∈ S} is an open cover
that has a refinement with order not greater than n; the diameter of each
of the sets of the refinement is less than ε.

Conversely, suppose that for every ε > 0 there is an open cover C of S
with ord(C) ≤ n and sup{diam(C) | C ∈ C} < ε.

Let D be a finite open cover of S. By Lebesgue’s Lemma (Theo-
rem 11.19) there exists r > 0 such that for every subset U of S with
diam(U) < r there is a set L ∈ D such that U ⊆ L.

Let C′ be an open cover of S with order not greater than n and such
that sup{diam(C ′) | C ′ ∈ C′} < min{ε, r}. Then C′ is a refinement of D,
so cov(S) ≤ n.

12. Prove that if f : R
n −→ R

m is an isometry, then HB
s
α (f(T )) = HBs(T ).

13. Let F be a finite set of a metric space. Prove that HB0(F ) = |F |.
14. A useful variant of the Hausdorff-Besicovitch outer measure can be defined

by restricting the r-covers to closed spheres of radius no greater than r.
Let Br(U) be the set of all countable covers of a subset U of a metric
space (S, d) that consist of closed spheres of radius no greater than r.
Since Br(U) ⊆ Cr(U), it is clear that HBs

r(U) ≤ HB
′s
r (U), where

HB
′s
r (U) = inf

C∈Br(U)

∑
{(diam(C))s | C ∈ C}.

Prove that:
a) HB

′s
r (U) ≤ 2sHBs

r(U),
b) HBsU ≤ HB

′sU ≤ 2sHBsU , where HB
′s(U) = limr→0 HB

′s
r (U), and

c) HBdim(U) = HBdim′(U), where HBdim′(U) = sup{s ∈ R≥0 |
HB

′s(U) = ∞}
for every Borel subset U of S.

15. Prove that if U is a subset of R
n such that I(U) �= ∅, then HBdim(U) = n.

Let (S, d) be a metric space, s and r be two numbers in R>0, U be a subset
of S, and

P s
r (U) = sup

{∑
i

diam(Bi)s | Bi ∈ Br(U)

}
,

where Br(U) is the collection of disjoint closed spheres centered in U and
having diameter not larger than r. Observe that limr→0 P

s
r (U) exists because

P s
r (U) decreases when r decreases. Let P s(U) = limr→0 P

s
r (U).
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16. Let (S,Od) be a topological metric space. Define PKs(U) as the outer
measure obtained by Method I starting from the function P s,

PKs(U) = inf
C∈Cr(U)

∑
{P s(C) | C ∈ C} ,

where Cr(U) is the collection of all countable r-covers for a set U .
a) Prove that if U is a Borel set in (S,Od), 0 < s < t, and PKs(U)

is finite, then PKt(U) = 0. Further, prove that if PKt(U) > 0, then
PKs(U) =∞.

b) The packing dimension of U is defined as

PKdim(U) = sup{s | PKs(U) =∞}.

Prove that HBdim(U) ≤ PKdim(U) for any Borel subset U of R
n.

Bibliographical Comments

The first monograph dedicated to dimension theory is the book by Hurewicz
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the last reference. Example 12.57 is from [13], where an interesting connection
between entropy and the Hausdorff-Besicovitch dimension is discussed.



13

Clustering

13.1 Introduction

Clustering is the process of grouping together objects that are similar. The
groups formed by clustering are referred to as clusters. Similarity between
objects that belong to a set S is usually measured using a dissimilarity d :
S×S −→ R≥0 that is definite (see Section 10.2). This means that d(x, y) = 0
if and only if x = y and d(x, y) = d(y, x) for every x, y ∈ S. Two objects x
and y are similar if the value of d(x, y) is small; what “small” means depends
on the context of the problem.

Clustering can be regarded as a special type of classification, where the
clusters serve as classes of objects. It is a widely used data mining activity with
multiple applications in a variety of scientific activities ranging from biology
and astronomy to economics and sociology.

There are several points of view for examining clustering techniques. We
follow here the taxonomy of clustering presented in [73].

Clustering may or may not be exclusive, where an exclusive clustering tech-
nique yields clusters that are disjoint, while a nonexclusive technique produces
overlapping clusters. From an algebraic point of view, an exclusive clustering
algorithm generates a partition of the set of objects, and most clustering al-
gorithms fit in this category.

Clustering may be intrinsic or extrinsic. Intrinsic clustering is an unsuper-
vised activity that is based only on the dissimilarities between the objects to
be clustered. Most clustering algorithms fall into this category. Extrinsic clus-
tering relies on information provided by an external source that prescribes, for
example, which objects should be clustered together and which should not.

Finally, clustering may be hierarchical or partitional.
In hierarchical clustering algorithms, a sequence of partitions is con-

structed. In hierarchical agglomerative algorithms this sequence is increasing
and it begins with the least partition of the set of objects whose blocks con-
sist of single objects; as the clustering progresses, certain clusters are fused
together. As a result, an agglomerative clustering is a chain of partitions on

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 13, c© Springer-Verlag London Limited 2008
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the set of objects that begins with the least partition αS of the set of objects
S and ends with the largest partition ωS . In a hierarchical divisive algorithm,
the sequence of partitions is decreasing. Its first member is the one-block par-
tition ωS , and each partitions is built by subdividing the blocks of the previous
partition.

Partitional clustering creates a partition of the set of objects whose blocks
are the clusters such that objects in a cluster are more similar to each other
than to objects that belong to different clusters. A typical representative al-
gorithm is the k-means algorithm and its many extensions.

Our presentation is organized around the last dichotomy. We start with a
class of hierarchical agglomerative algorithms. This is continued with a dis-
cussion of the k-means algorithm, a representative of partitional algorithms.
Then, we continue with a discussion of certain limitations of clustering cen-
tered around Kleinberg’s impossibility theorem. We conclude with an evalua-
tion of clustering quality.

13.2 Hierarchical Clustering

Hierarchical clustering is a recursive process that begins with a metric space
of objects (S, d) and results in a chain of partitions of the set of objects. In
each of the partitions, similar objects belong to the same block and objects
that belong to distinct blocks tend to be dissimilar.

In agglomerative hierarchical clustering, the construction of this chain be-
gins with the unit partition π1 = αS . If the partition constructed at step k
is

πk = {Uk
1 , . . . , U

k
mk
},

then two distinct blocks Uk
p and Uk

q of this partition are selected using a
selection criterion. These blocks are fused and a new partition

πk+1 = {Uk
1 , . . . , U

k
p−1, U

k
p+1, . . . , U

k
q−1, U

k
q+1, . . . , U

k
p ∪ Uk

q }

is formed. Clearly, we have πk ≺ πk+1. The process must end because the
poset (PART(S),≤) is of finite height. The algorithm halts when the one-
block partition ωS is reached.

As we saw in Theorem 10.28, the chain of partitions π1, π2, . . . generates a
hierarchy on the set S. Therefore, all tools developed for hierarchies, including
the notion of a dendrogram, can be used for hierarchical algorithms.

When data to be clustered are numerical (that is, when S ⊆ R
n), we can

define the centroid of a nonempty subset U of S as:

cU =
1
|U |
∑
{o|o ∈ U}.

If π = {U1, . . . , Um} is a partition of S, then the sum of the squared errors of
π is the number
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sse(π) =
m∑

i=1

∑
{d2(o, cUi

)|o ∈ Ui}, (13.1)

where d is the Euclidean distance in R
n.

If two blocks U and V of a partition π are fused into a new block W to
yield a new partition π′ that covers π, then the variation of the sum of squared
errors is given by

sse(π′)− sse(π) =
∑
{d2(o, cW )|o ∈ U ∪ V }

−
∑
{d2(o, cU )|o ∈ U} −

∑
{d2(o, cV )|o ∈ V }.

The centroid of the new cluster W is given by

cW =
1
|W |

∑
{o|o ∈W}

=
|U |
|W |cU +

|V |
|W |cV .

This allows us to evaluate the increase in the sum of squared errors:

sse(π′)− sse(π) =
∑
{d2(o, cW ) | o ∈ U ∪ V }

−
∑
{d2(o, cU ) | o ∈ U} −

∑
{d2(o, cV ) | o ∈ V }

=
∑
{d2(o, cW )− d2(o, cU ) | o ∈ U}

+
∑
{d2(o, cW )− d2(o, cV ) | o ∈ V }.

Observe that:∑
{d2(o, cW )− d2(o, cU ) | o ∈ U}

=
∑
o∈U

((o− cW )(o− cW )− (o− cU )(o− cU ))

= |U |(c2
W − c2

U ) + 2(cU − cW )
∑
o∈U

o

= |U |(c2
W − c2

U ) + 2|U |(cU − cW )cU

= (cW − cU ) (|U |(cW + cU )− 2|U |cU )
= |U |(cW − cU )2.

Using the equality cW − cU = |U |
|W |cU + |V |

|W |cV − cU = |V |
|W | (cV − cU ), we

obtain
∑
{d2(o, cW )− d2(o, cU ) | o ∈ U} = |U ||V |2

|W |2 (cV − cU )2.
Similarly, we have

∑
{d2(o, cW )− d2(o, cV ) | o ∈ V } =

|U |2|V |
|W |2 (cV − cU )2 ,
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so,

sse(π′)− sse(π) =
|U ||V |
|W | (cV − cU )2 . (13.2)

The dissimilarity between two clusters U and V can be defined using one of
the following real-valued, two-argument functions defined on the set of subsets
of S:

sl(U, V ) = min{d(u, v)|u ∈ U, v ∈ V };
cl(U, V ) = max{d(u, v)|u ∈ U, v ∈ V };

gav(U, V ) =
∑
{d(u, v)|u ∈ U, v ∈ V }

|U | · |V | ;

cen(U, V ) = (cU − cV )2;

ward(U, V ) =
|U ||V |
|U |+ |V | (cV − cU )2 .

The names of the functions sl, cl, gav, and cen defined above are acronyms
of the terms “single link”, “complete link”, “group average”, and “centroid”,
respectively. They are linked to variants of the hierarchical clustering algo-
rithms that we discuss in later. Note that in the case of the ward function the
value equals the increase in the sum of the square errors when the clusters
U, V are replaced with their union.

13.2.1 Matrix-Based Hierarchical Clustering

The specific selection criterion for fusing blocks defines the clustering algo-
rithm. All algorithms store the dissimilarities between the current clusters
πk = {Uk

1 , . . . , U
k
mk
} in an mk ×mk-matrix Dk = (dk

ij), where dk
ij is the dis-

similarity between the clusters Uk
i and Uk

j . As new clusters are created by
merging two existing clusters, the distance matrix must be adjusted to reflect
the dissimilarities between the new cluster and existing clusters.

The general form of the algorithm is as follows.

Algorithm 13.1 (Matrix Agglomerative Clustering)
Input: the initial dissimilarity matrix D1.
Output: the cluster hierarchy on the set of objects S,
where |S| = n;
Method:
k = 1;
initialize clustering: π1 = αS ;
while (πk contains more than one block) do
merge a pair of two of the closest clusters;
output new cluster;
k + +;
compute the dissimilarity matrix Dk;
endwhile
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To evaluate the space and time complexity of hierarchical clustering, note
that the algorithm must handle the matrix of the dissimilarities between ob-
jects, and this is a symmetric n × n-matrix having all elements on its main
diagonal equal to 0; in other words, the algorithm needs to store n(n−1)

2 num-
bers. To keep track of the clusters, an extra space that does not exceed n− 1
is required. Thus, the total space required is O(n2).

The time complexity of agglomerative clustering algorithms has been eval-
uated in [84]; the proposed implementation requires a heap that contains the
pairwise distances between clusters and therefore has a size of n2.

Observe that the while loop is performed n times as each execution reduces
the number of clusters by 1. The initial construction of the heap requires a time
of O(n2 log n2) = O(n2 log n). Then, each operation inside the loop requires
no more than O(log n2) = O(log n) (because the heap has size n2). Thus, we
conclude that the time complexity is O(n2 log n).

The computation of the dissimilarity between a new cluster and existing
clusters is described next.

Theorem 13.2. Let U and V be two clusters of the clustering π that are
joined into a new cluster W . Then, if Q ∈ π − {U, V }, we have

sl(W,Q) =
1
2
sl(U,Q) +

1
2
sl(V,Q)− 1

2

∣∣∣sl(U,Q)− sl(V,Q)
∣∣∣;

cl(W,Q) =
1
2
cl(U,Q) +

1
2
cl(V,Q) +

1
2

∣∣∣cl(U,Q)− cl(V,Q)
∣∣∣;

gav(W,Q) =
|U |

|U |+ |V |gav(U,Q) +
|V |

|U |+ |V |gav(V,Q);

cen(W,Q) =
|U |

|U |+ |V |cen(U,Q) +
|V |

|U |+ |V |cen(V,Q)

− |U ||V |
(|U |+ |V |)2 cen(U, V );

ward(W,Q) =
|U |+ |Q|

|U |+ |V |+ |Q|ward(U,Q) +
|V |+ |Q|

|U |+ |V |+ |Q|ward(V,Q)

− |Q|
|U |+ |V |+ |Q|ward(U, V ).

Proof. The first two equalities follow from the fact that

min{a, b} =
1
2
(a+ b)− 1

2
|a− b|,

max{a, b} =
1
2
(a+ b) +

1
2
|a− b|,

for every a, b ∈ R.
For the third equality, we have
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gav(W,Q) =
∑
{d(w, q)|w ∈W, q ∈ Q}

|W | · |Q|

=
∑
{d(u, q)|u ∈ U, q ∈ Q}

|W | · |Q| +
∑
{d(v, q)|v ∈ V, q ∈ Q}

|W | · |Q|

=
|U |
|W |

∑
{d(u, q)|u ∈ U, q ∈ Q}

|U | · |Q| +
|V |
|W |

∑
{d(v, q)|v ∈ V, q ∈ Q}

|V | · |Q|

=
|U |

|U |+ |V |gav(U,Q) +
|V |

|U |+ |V |gav(V,Q).

The equality involving the function cen is immediate. The last equality
can be easily translated into

|Q||W |
|Q|+ |W | (cQ − cW )2

=
|U |+ |Q|

|U |+ |V |+ |Q|
|U ||Q|
|U |+ |Q| (cQ − cU )2

+
|V |+ |Q|

|U |+ |V |+ |Q|
|V ||Q|
|V |+ |Q| (cQ − cV )2

− |Q|
|U |+ |V |+ |Q|

|U ||V |
|U |+ |V | (cV − cU )2 ,

which can be verified replacing |W | = |U | + |V | and cW = |U |
|W |cU + |V |

|W |cV .
	


The equalities contained by Theorem 13.2 are often presented as a single
equality involving several coefficients.

Corollary 13.3 (The Lance-Williams Formula). Let U and V be two
clusters of the clustering π that are joined into a new cluster W . Then, if
Q ∈ π − {U, V }, the dissimilarity between W and Q can be expressed as

d(W,Q) = aUd(U,Q) + aV d(V,Q) + bd(U, V ) + c|d(U,Q)− d(V,Q)|,

where the coefficients aU , aV , b, c are given by the following table:

Function aU aV b c

sl 1
2

1
2 0 − 1

2

cl 1
2

1
2 0 1

2

gav |U |
|U |+|V |

|V |
|U |+|V | 0 0

cen |U |
|U |+|V |

|V |
|U |+|V | − |U ||V |

(|U |+|V |)2 0

ward |U |+|Q|
|U |+|V |+|Q|

|V |+|Q|
|U |+|V |+|Q| −

|Q|
|U |+|V |+|Q| 0

Proof. This statement is an immediate consequence of Theorem 13.2. 	

The variant of the algorithm that makes use of the function sl is known as

the single-link clustering. It tends to favor elongated clusters.
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Example 13.4. We use single-link clustering for the metric space (S, d1), where
S ⊆ R

2 consists of seven objects, S = {o1, . . . ,o7} (see Figure 13.1).
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o5 o7

o6
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1

2

3

4

5

6

Fig. 13.1. Set of seven points in R
2.

The distances d1(oi,oj) for 1 ≤ i, j ≤ 7 between the objects of S are
specified by the 7× 7 matrix

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 3 6 8 11 10
1 0 2 5 7 10 9
3 2 0 3 5 8 7
6 5 3 0 2 5 4
8 7 5 2 0 3 4
11 10 8 5 3 0 3
10 9 7 4 4 3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We apply the hierarchical clustering algorithm using the single-link variant to
the set S. Initially, the clustering consists of singleton sets:

π1 = {{oi} | 1 ≤ i ≤ 7}{{o1}, {o2}, {o3}, {o4}, {o5}, {o6}, {o7}}.

Two of the closest clusters are {o1}, {o2}; these clusters are fused into the
cluster {o1,o2}, the new partition is

π2 = {{o1,o2}, . . . , {o7}},

and the matrix of dissimilarities becomes the 6× 6-matrix
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D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 5 7 10 9
2 0 3 5 8 7
5 3 0 2 5 4
7 5 2 0 3 4
10 8 5 3 0 3
9 7 4 4 3 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The next pair of closest clusters is {o1,o2} and {o3}. These clusters are fused
into the cluster {o1,o2,o3}, and the new 5× 5-matrix is:

D3 =

⎛
⎜⎜⎜⎜⎝

0 3 5 8 7
3 0 2 5 4
5 2 0 3 4
8 5 3 0 3
7 4 4 3 0

⎞
⎟⎟⎟⎟⎠ ,

which corresponds to the partition

π3 = {{o1,o2,o3}, {o4}, . . . , {o7}}.

Next, the closest clusters are {o4} and {o5}. Fusing these yields the partition

π4 = {{o1,o2,o3}, {o4,o5}, {o6}, {o7}}

and the 4× 4-matrix

D4 =

⎛
⎜⎜⎝

0 3 8 7
3 0 3 4
8 3 0 3
7 4 3 0

⎞
⎟⎟⎠

We have three choices now since there are three pairs of clusters at distance
3 of each other: ({o1,o2,o3}, {o4,o5}), ({o4,o5}, {o6}), and ({o6}, {o7). By
choosing to fuse the first pair, we obtain the partition

π5 = {{o1,o2,o3,o4,o5}, {o6}, {o7}},

which corresponds to the 3× 3-matrix

D5 =

⎛
⎝0 3 4

3 0 3
4 3 0

⎞
⎠ .

Observe that the large cluster {o1,o2,o3,o4,o5} formed so far has an elon-
gated shape, which is typical for single-link variant of the algorithm.

Next, we coalesce {o1,o2,o3,o4,o5} and {o6}, which yields

π6 = {{o1,o2,o3,o4,o5,o6}, {o7}}

and
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D6 =
(

0 3
3 0

)
.

Finally, we join the last two clusters, and the clustering is completed.
The dendrogram of the hierarchy produced by the algorithm is given in

Figure 13.2.

o1 o2 o3 o4 o5 o6 o7

1

2

3

4

Fig. 13.2. Dendrogram of single-link clustering.

The variant of the algorithm that uses the function cl is known as the
complete-link clustering. It tends to favor globular clusters.

Example 13.5. Now we apply the complete-link algorithm to the set S consid-
ered in Example 13.4. It is easy to see that the initial two partitions and the
initial matrix are the same as for the single-link algorithm.

However, after creating the first cluster {o1,o2}, the distance matrices
begin to differ. The next matrix is

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 3 6 8 11 10
3 0 3 5 8 7
6 3 0 2 5 4
8 5 2 0 3 4
11 8 5 3 0 3
10 7 4 4 3 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

which shows that the closest clusters are now {o4} and {o5}. Thus,

π3 = {{o1,o2}, {o3}, {o4,o5}, {o6}, {o7}}

and the new matrix is

D3 =

⎛
⎜⎜⎜⎜⎝

0 3 8 11 10
3 0 5 8 7
8 5 0 5 3
11 8 5 0 3
10 7 3 3 0

⎞
⎟⎟⎟⎟⎠ .
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Three pairs of clusters correspond to the minimal value 3 in D3:

({o1,o2}, {o3}),
({o4,o5}, {o3}),
({o6}, {o7}).

If we merge the last pair, we get the partition

π4 = {{o1,o2}, {o3}, {o4,o5}, {o6,o7}}

and the matrix

D4 =

⎛
⎜⎜⎝

0 3 8 11
3 0 5 8
8 5 0 5
11 8 5 0

⎞
⎟⎟⎠ .

Next, the closest clusters are {o1,o2}, {o3}. Merging those clusters will result
in the partition π5 = {{o1,o2,o3}, {o4,o5}, {o6,o7}} and the matrix

D5 =

⎛
⎝ 0 8 11

8 0 5
11 5 0

⎞
⎠ .

The current clustering is shown in Figure 13.3. Observe that in the case of
the clusters obtained by the complete-link method that appear early tend to
enclose objects that are closed in the sense of the distance.
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Fig. 13.3. Partial clustering obtained by the complete-link method.

Now the closest clusters are {o4,o5} and {o6,o7}. By merging those clus-
ters, we obtain the partition π5 = {{o1,o2,o3}, {o4,o5,o6,o7}} and the ma-
trix



13.2 Hierarchical Clustering 505

D6 =
(

0 11
11 0

)
.

The dendrogram of the resulting clustering is given in Figure 13.4.
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Fig. 13.4. Dendrogram of complete-link clustering.

The group average method, which makes use of the gav function gener-
ates an intermediate approach between the single-link and the complete-link
method. What the methods mentioned so far have in common is the mono-
tonicity property expressed by the following statement.

Theorem 13.6. Let (S, d) be a finite metric space and let D1, . . . , Dm be the
sequence of matrices constructed by any of the first three hierarchical methods
(single, complete, or average link), where m = |S|. If μi is the smallest entry
of the matrix Di for 1 ≤ i ≤ m, then μ1 ≤ μ2 ≤ · · · ≤ μm. In other words, the
dissimilarity between clusters that are merged at each step is nondecreasing.

Proof. Suppose that the matrix Dj+1 is obtained from the matrix Dj by
merging the clusters Cp and Cq that correspond to the lines p and q and to
columns p, q of Dj . This happens because dpq = dqp is one of the minimal
elements of the matrix Dj . Then, these lines and columns are replaced with a
line and column that corresponds to the new cluster Cr and the dissimilarities
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between this new cluster and the previous clusters Ci, where i �= p, q. The ele-
ments dj+1

rh of the new line (and column) are obtained either as min{dj
ph, d

j
qh},

max{dj
ph, d

j
qh}, or |Cp|

|Cr|d
j
ph+ |Cq|

|Cr|d
j
qh, for the single-link, complete-link, or group

average methods, respectively. In any of these cases, it is not possible to ob-
tain a value for dj+1

rh that is less than the minimal value of an element of Dj .
	


The last two methods captured by the Lance-Williams formula are the
centroid method and the Ward method of clustering. As we observed before,
Formula (13.2) shows that the dissimilarity of two clusters in the case of
Ward’s method equals the increase in the sum of the squared errors that
results when the clusters are merged. The centroid method adopts the distance
between the centroids as the distance between the corresponding clusters.
Either method lacks the monotonicity properties.

13.2.2 Graph-based Hierarchical Clustering

Starting from a finite metric space (S, d), we can construct a sequence of
threshold graphs G0, . . . ,Gk, where k = diamS,d is the diameter of (S, d). The
threshold graph Gp = (S,Ep) is defined by its set of edges

Ep = {(x, y) ∈ S × S | d(x, y) ≤ p}

for 0 ≤ p ≤ k. The graph G0 is (S, ∅), while Gk is a complete graph on the set
S.

Example 13.7. The sequence of threshold graphs for the metric space (S, d1)
introduced in Example 13.4 is given in Figures 13.5 and 13.6.

A variant of single-link clustering can now be achieved by working on the
sequence of threshold graphs. Let G0, . . . ,Gk be the sequence of threshold
graphs of a finite metric space, where k = diamS,d, and let ci be the number
of connected components of the threshold graph Gi for 1 ≤ i ≤ k.

Algorithm 13.8 (Graph-Based Single-Link Clustering)
Input: a finite metric space (S, d) of diameter k, where |S| = n.
Output: a hierarchy of clusters on S.
Method:
initialize the threshold graph G0;
c = n; // current number of connected components
p = 1;
while (cp > 1) do

if (cp < c) then
output the connected components Gp;

p++;
endwhile
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Fig. 13.5. Threshold graphs of (S, d).
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Fig. 13.6. Threshold graphs of (S, d) (continued).

Observe that in Algorithm 13.8 some of the connected components of a
threshold graph Gp−1 persist as connected components of the graph Gp. Others
will coalesce to form larger clusters, and this is possible if at least one edge of
weight p exists between the clusters that are about to combine. This explains
the term “single-link” used to designate this algorithm (see [56]).

Example 13.9. For the threshold graphs of Example 13.7, the connected com-
ponents are shown in the next table:

i Connected Components of Gi ci
0 {o1}, {o2}, {o3}, {o4}, 7
{o5}, {o6}, {o7}

1 {o1,o2}, {o3}, {o4}, 6
{o5}, {o6}, {o7}

2 {o1,o2,o3}, {o4,o5}, 4
{o6}, {o7}

3 {o1,o2, . . . ,o7} 1

Algorithm 13.10 (Graph-Based Complete-link Clustering)
Input: a finite metric space (S, d) of diameter k, where |S| = n;
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Output: a hierarchy of clusters on S;
Method:
initialize the threshold graph G0;
initialize the collection of clusters to all singleton sets;
while (p < k) do

for all pairs of disjoint clusters (P,Q) in Gp do
if P ∪Q is a clique in Gp+1 then

add P ∪Q to the set of clusters;
p++;

endwhile

Note that not all cliques that form in the threshold graphs are produced
as clusters by Algorithm 13.10. Indeed, the algorithm generates a cluster only
when two disjoint clusters that have already appeared are cliques and will
form a new clique by the addition of edges that have been added in successive
threshold graphs. In this manner, the algorithm indeed produces a hierarchy
of clusters.

Example 13.11. In Table 13.1, we show the cluster formation in the graph-
based clustering algorithm. Observe that the cluster {o4,o5,o6,o7} is pro-
duced at p = 5, when in intermediate threshold graphs G3 and G4 sufficient
edges were added to allow us to join the disjoint clusters {o4,o5}, {o6,o7}
into the new cluster.

Table 13.1. Clusters produced by the complete-link graph-based algorithm

p Clusters in Gp

0 {{o1}, {o2}, {o3}, {o4}, {o5}, {o6}, {o7}}
1 {{o1,o2}, {o3}, {o4}, {o5}, {o6}, {o7}}
2 {{o1,o2}, {o3}, {o4,o5}, {o6}, {o7}}
3 {{o1,o2,o3}, {o4,o5}, {o6,o7}}
4 {{o1,o2,o3}, {o4,o5}, {o6,o7}}
5 {{o1,o2,o3}, {o4,o5,o6,o7}}
...

...
10 {{o1,o2,o3}, {o4,o5,o6,o7}}
11 {{o1,o2,o3,o4,o5,o6,o7}}

The usefulness of the application of minimal spanning trees to clustering
was explored by C. T. Zahn [147].

Let S = {o1, . . . , on} be a set of n objects and let d : S × S −→ R≥0 be a
metric. The weighted complete graph (Kn, w) is defined by Kn = (S, {(oi, oj) |
i �= j}), and w(oi, oj) = d(oi, oj) for 1 ≤ i, j ≤ n and i �= j.

The notion of an inconsistent edge is essential for Zahn’s algorithm and
there are several plausible definitions for it. For instance, we can define an
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edge to be inconsistent if its weight is larger by a certain factor than the
averages of the weights of both sides of (x, y).

Algorithm 13.12 (Zahn’s Clustering Algorithm)
Input: a complete graph (Kn, w), where
Kn = (S, {(oi, oj) | i �= j}), and
w(oi, oj) = d(oi, oj) for 1 ≤ i, j ≤ n and i �= j;
Output: a clustering of the objects of S.
Method:

construct a minimal spanning tree for (Kn, w);
identify inconsistent edges in the minimal spanning tree;
create a cluster hierarchy by successively removing inconsistent

edges.

Zahn’s algorithm leads to a hierarchy on the set of vertices since each
removal of an edge from a tree creates two disjoint connected components of
that tree, that are themselves trees.

Example 13.13. Again, we are using the set of objects introduced in Exam-
ple 13.4 equipped with the d1 metric given by the weight matrix

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 3 6 8 11 10
1 0 2 5 7 10 9
3 2 0 3 5 8 7
6 5 3 0 2 5 4
8 7 5 2 0 3 4
11 10 8 5 3 0 3
10 9 7 4 4 3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Kruskal’s algorithm (Algorithm 3.48) applied to the weighted complete graph
(K7, w) yields the minimal spanning tree shown in Figure 13.7. Suppose that
an edge is deemed to be inconsistent if its weight is larger than the average
of the adjacent edges. Then the most inconsistent edge is (o3,o4) of weight
3, which is 1.5 times the average of the adjacent edges. By removing this
edge the tree is divided into two connected components, {o1,o2,o3, } and
{o4,o5,o6,o7}. Among the edges of the first component, the edge (o2,o3) is
the most inconsistent. By removing it, we get the clusters {o1,o2} and {o3}.
Similarly, by removing the edge (o5,o6), the second cluster is split into the
clusters {bfo4,o5} and {bfo6,o7}.

There exists an interesting link between the single-link clustering algorithm
and the subdominant ultrametric of a dissimilarity, which we examined in
Section 10.4.

To construct the subdominant ultrametric for a dissimilarity space (S, d),
we built an increasing chain of partitions π1, π2, . . . of S (where π1 = αS)
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Fig. 13.7. Spanning tree of the graph (K7, w).

and a sequence of dissimilarities d1, d2, . . . (where d1 = d) on the sets of
blocks of π1, π2, . . ., respectively. We claim that this sequence of partitions
π1, π2, . . . coincides with the sequence of partitions π1, π2, . . ., and that the
sequence of dissimilarities d1, d2, . . . coincides with the sequences of dissim-
ilarities d1, d2, . . . defined by the matrices Di constructed by the single-link
algorithm. This is clearly the case for i = 1.

Suppose that the statement is true for i. The partition πi+1 is obtained
from πi by fusing the blocks B,C of π such that di(B,C) has the smallest
value, that is,

πi+1 = (πi − {B,C}) ∪ {B ∪ C}.
Since this is exactly how the partition πi+1 is constructed from πi, it follows
that πi+1 = πi+1. The inductive hypothesis implies that

di(U, V ) = di(U, V ) = min{d(u, v) | u ∈ U, v ∈ V }

for all U, V ∈ πi. Since the dissimilarity di+1 is di+1(U, V ) = min{d(u, v) |
u ∈ U, u ∈ V } for every pair of blocks U, V of πi+1, it is clear that di+1(U, V ) =
di(U, V ) = di(U, V ) = di+1(U, V ) when neither U nor V equal the block B∪C.
Then,

di+1(B ∪ C,W )
= min{d(t, w) | t ∈ B ∪ C,w ∈W}
= min{min{d(b, w) | b ∈ B,w ∈W},min{d(c, w) | c ∈ C,w ∈W}}
= min{di(B,W ), di(C,W )}
= min{di(B,W ), di(C,W )}
= di+1(B ∪ C,W ).

Thus, di+1 = di+1.
Let x, y be a pair of elements of S. The value of the subdominant ultra-

metric is given by

e(x, y) = min{hd(W ) | W ∈ Hd and {x, y} ⊆W}.



512 13 Clustering

This is the height of W in the dendrogram of the single-link clustering and
therefore the subdominant ultrametric can be read directly from this dendro-
gram.

Example 13.14. The subdominant ultrametric of the Euclidean metric consid-
ered in Example 13.4 is given by the following table:

e(oi,oj) o1 o2 o3 o4 o5 o6 o7

o1 0 1 2 3 3 3 3
o2 1 0 2 3 3 3 3
o3 2 2 0 3 3 3 3
o4 3 3 3 0 2 3 3
o5 3 3 3 2 0 3 3
o6 3 3 3 3 3 0 3
o7 3 3 3 3 3 3 0

13.3 The k-Means Algorithm

The k-means algorithm is a partitional algorithm that requires the specifica-
tion of the number of clusters k as an input. The set of objects to be clustered
S = {o1, . . . ,on} is a subset of R

m. Due to its simplicity and its many imple-
mentations it is a very popular algorithm despite this requirement.

The k-means algorithm begins with a randomly chosen collection of k
points c1, . . . , ck in R

m called centroids. An initial partition of the set S of
objects is computed by assigning each object oi to its closest centroid cj . Let
Uj be the set of points assigned to the centroid cj .

The assignments of objects to centroids are expressed by a matrix (bij),
where

bij =

{
1 if oi ∈ Uj ,

0 otherwise.

Since each object is assigned to exactly one cluster, we have
∑k

j=1 bij = 1.
On the other hand,

∑n
i=1 bij equals the number of objects assigned to the

centroid cj .
After these assignments, expressed by the matrix (bij), the centroids cj

must be re-computed using the formula:

cj =
∑n

i=1 bijo
i∑n

i=1 bij
(13.3)

for 1 ≤ j ≤ k.
The sum of squared errors of a partition π = {U1, . . . , Uk} of a set of

objects S was defined in Equality (13.1) as
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sse(π) =
k∑

j=1

∑
o∈Uj

d2(o, cj),

where cj is the centroid of Uj for 1 ≤ j ≤ k. The error of such an assignment
is the sum of squared errors of the partition π = {U1, . . . , Uk} defined as

sse(π) =
n∑

i=1

k∑
j=1

bij ||oi − cj ||2

=
n∑

i=1

k∑
j=1

bij

m∑
p=1

(
oi

p − cjp
)2
.

The mk necessary conditions for a local minimum of this function,

∂sse(π)
∂cjp

=
n∑

i=1

bij
(
−2(oi

p − cjp)
)

= 0,

for 1 ≤ p ≤ m and 1 ≤ j ≤ k, can be written as

n∑
i=1

bijo
i
p =

n∑
i=1

bijc
j
p = cjp

n∑
i=1

bij ,

or as

cjp =

∑n
i=1 bijo

i
p∑n

i=1 bij

for 1 ≤ p ≤ m. In vectorial form, these conditions amount to

cj =
∑n

i=1 bijo
i∑n

i=1 bij
,

which is exactly the formula (13.3) that is used to update the centroids. Thus,
the choice of the centroids can be justified by the goal of obtaining local
minima of the sum of squared errors of the clusterings.

Since we have new centroids, objects must be reassigned, which means
that the values of bij must be recomputed, which in turn will affect the values
of the centroids, etc.

The halting criterion of the algorithm depends on particular implementa-
tions and may involve
(i) performing a certain number of iterations;
(ii) lowering the sum of squared errors sse(π) below a certain limit;
(iii) the current partition coinciding with the previous partition.

This variant of the k-means algorithm is known as Forgy’s algorithm.
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Algorithm 13.15 (Forgy’s Algorithm)
Input: set of objects to be clustered S = {o1, . . . ,on} and the num-

ber of clusters k;
Output: a collection of k clusters;
Method:

obtain a randomly chosen collection of k points c1, . . . , ck in R
n;

assign each object oi to the closest centroid cj ;
let π = {U1, . . . , Uk} be the partition defined by c1, . . . , ck;
recompute the centroids of the clusters U1, . . . , Uk;

while (halting criterion is not met) do
compute the new value of the partition π

using the current centroids;
recompute the centroids of the blocks of π;

endwhile

The popularity of the k-means algorithm stems from its simplicity and its
low time complexity O(kn�), where n is the number of objects to be clustered
and � is the number of iterations that the algorithm is performing.

Another variant of the k-means algorithm redistributes objects to clusters
based on the effect of such a reassignment on the objective function. If sse(π)
decreases, the object is moved and the two centroids of the affected clusters
are recomputed. This variant is carefully analyzed in [12]

13.4 The PAM Algorithm

Another algorithm, named PAM (an acronym of “Partition Around Medoids”)
developed by Kaufman and Rousseeuw [76], also requires as an input param-
eter the number k of clusters to be extracted.

The k clusters are determined based on a representative object from each
cluster, called the medoid of the cluster. The medoid is intended to have the
most central position in the cluster relative to all other members of the cluster.
Once medoids are selected, each remaining object o is assigned to a cluster
represented by a medoid oi if the dissimilarity d(o, oi) is minimal.

In a second phase, swapping objects and existing medoids is considered. A
cost of a swap is defined with the intention of penalizing swaps that diminish
the centrality of the medoids in the clusters. Swapping continues as long as
useful swaps (that is, swaps with negative costs) can be found.

PAM begins with a set of objects S, where |S| = n, a dissimilarity n × n
matrix D, and a prescribed number of clusters k. The dij entry of the matrix
D is the dissimilarity d(oi, oj) between the objects oi and oj . PAM is more
robust than Forgy’s variant of k-clustering because it minimizes the sum of
the dissimilarities instead of the sum of the squared errors.

The algorithm has two distinct phases: the building phase and the swapping
phase. The building phase aims to construct a set L of selected objects, L ⊆ S.
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The set of remaining objects is denoted by R; clearly, R = S − L. We begin
by determining the most centrally located object.

The quantities Qi =
∑n

j=1 dij are computed starting from the matrix D.
The most central object oq is determined by

q = arg miniQi.

The set L is initialized as L = {oq}.
Suppose now that we have constructed a set L of selected objects and

|L| < k. We need to add a new selected object to the set L. To do this, we
need to examine all objects that have not been included in L so far, that is, all
objects in R. The selection is determined by a merit function M : R −→ N.

To compute the merit M(o) of an object o ∈ R, we scan all objects in
R distinct from o. Let o′ ∈ R − {o} be such an object. If d(o, o′) < d(L, o′),
then adding o to L could benefit the clustering (from the point of view of o′)
because d(L, o′) will diminish. The potential benefit is d(o′, L) − d(o, o′). Of
course, if d(o, o′) ≥ d(L, o′), no such benefit exists (from the point of view of
o′). Thus, we compute the merit of o as

M(o) =
∑

o′∈R−{o}
max{D(L, o′)− d(o, o′), 0}.

We add to L the unselected object o that has the largest merit value. The
building phase halts when |L| = k.

The objects in set L are the potential medoids of the k clusters that we seek
to build. The second phase of the algorithm aims to improve the clustering
by considering the merit of swaps between selected and unselected objects.
So, assume now that oi is a selected object, oi ∈ L, and oh is an unselected
object, oh ∈ R = S −L. We need to determine the cost C(oi, oh) of swapping
oi and oh. Let oj be an arbitrary unselected object. The contribution cihj of
oj to the cost of the swap between oi and oh is defined as follows:

1. If d(oi, oj) and d(oh, oj) are greater than d(o, oj) for any o ∈ L − {oi},
then cihj = 0.

2. If d(oi, oj) = d(L, oj), then two cases must be considered depending on
the distance e(oj) from ej to the second-closest object of S.
a) If d(oh, oj) < e(oj), then cihj = d(oh, oj)− d(S, oj).
b) If d(oh, oj) ≥ e(oj), then cihj = e(oj)− d(S, oj).
In either of these two subcases, we have

cihj = min{d(oh, oj), ej} − d(oi, oj).

3. If d(oi, oj) > d(L, oj) (that is, oj is more distant from oi than from at least
one other selected object) and d(oh, oj) < d(L, oj) (which means that oj is
closer to oh than to any selected object), then cihj = d(oh, oj)− d(S, oj).
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The cost of the swap is C(oi, oh) =
∑

oj∈R cihj . The pair that minimizes
C(oi, oj) is selected. If C(oi, oj) < 0, then the swap is carried out. All potential
swaps are considered.

The algorithm halts when no useful swap exists; that is, no swap with
negative cost can be found.

The pseudocode of the algorithm follows.

Algorithm 13.16 k means PAM{
construct the set L of k medoids;
repeat

compute the costs C(oi, oh) for oi ∈ L and oh ∈ R;
select the pair (oi, oh) that corresponds to the minimum

m = C(oi, oh);
until (m > 0);

}

Note that inside the loop repeat · · ·until there are l(n−l) pairs of objects
to be examined, and for each pair we need to involve n−l non-selected objects.
Thus, one execution of the loop requires O(l(n− l)2), and the total execution
may require up to O

(∑n−l
l=1 l(n− l)2

)
, which is O(n4). Thus, the usefulness of

PAM is limited to rather small data set (no more than a few hundred objects).

13.5 Limitations of Clustering

As we stated before, an exclusive clustering of a set of objects S is a partition
of S whose blocks are the clusters. A clustering method starts with a definite
dissimilarity on S and generates a clustering. This is formalized in the next
definition.

Definition 13.17. Let S be a set of objects and let D′
S be the set of definite

dissimilarities that can be defined on S.
A clustering function on S is a mapping f : D′

S −→ PART(S).

Example 13.18. Let g : R≥0 −→ R≥0 be a continuous, nondecreasing and
unbounded function and let S ⊆ R

n be a finite subset of R
n. For k ∈ N and

k ≥ 2, define a (g, k)-clustering function as follows.
Begin by selecting a set T of k points from S such that the function

Λg
d(T ) =

∑
x∈S g(d(x, T )) is minimized. Here d(x, T ) = min{d(x, t)|t ∈ T}.

Then, define a partition of S into k clusters by assigning each point to the
point in T that is the closest and breaking the ties using a fixed (but otherwise
arbitrary) order on the set of points. The clustering function defined by (d, g),
denoted by fg, maps d to this partition.
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The k-median clustering function, is obtained by choosing g(x) = x for
x ∈ R≥0; the k-means clustering function is obtained by taking g(x) = x2 for
x ∈ R≥0.

Definition 13.19. Let κ be a partition of S and let d, d′ ∈ D′
S. The defi-

nite dissimilarity d′ is a κ-transformation of d if the following conditions are
satisfied:
(i) if x ≡κ y, then d′(x, y) ≤ d(x, y);
(ii) if x �≡κ y, then d′(x, y) > d(x, y).

In other words, d′ is a κ-transformation of d if for two objects that belong to
the same κ-cluster d′(x, y) is smaller than d(x, y), while for two objects that
belong to two distinct clusters d′(x, y) is larger than d(x, y).

Next, we consider three desirable properties of a clustering function.

Definition 13.20. Let S be a set and let f : D′
S −→ PART(S) be a clustering

function. The function f is
(i) scale-invariant if, for every d ∈ D′

S and every α > 0, we have f(d) =
f(αd);

(ii) rich, if Ran(f) = PART(S);
(iii) consistent if, for every d, d′ ∈ D′

S and κ ∈ PART(S) such that f(d) = κ
and d′ is a κ-transformation of d, we have f(d′) = κ,

Unfortunately, as we shall see in Theorem 13.25, established in [80], there is
no clustering function that enjoys all three properties.

The following definition will be used in the proof of Lemma 13.23.

Definition 13.21. A dissimilarity d ∈ D′
S is (a, b)-conformant to a clustering

κ if x ≡κ y implies d(x, y) ≤ a and x �≡κ y implies d(x, y) ≥ b.
A dissimilarity is conformant to a clustering κ if it is (a, b)-conformant to

κ for some pair of numbers (a, b).

Note that if d′ is a κ-transformation of d, and d is (a, b)-conformant to κ,
then d′ is also (a, b)-conformant to κ.

Definition 13.22. Let κ ∈ PART(S) be a partition on S and let f be a
clustering function on S. A pair of positive numbers (a, b) is κ-forcing with
respect to f if, for every d ∈ D′

S that is (a, b)-conformant to κ, we have
f(d) = κ.

Lemma 13.23. If f is a consistent clustering function on a set S, then for
any partition κ ∈ Ran(f) there exist a, b ∈ R>0 such that the pair (a, b) is
κ-forcing.

Proof. For κ ∈ Ran(f) there exists d ∈ D′
S such that f(d) = κ. Define the

numbers



518 13 Clustering

aκ,d = min{d(x, y) | x �= y, x ≡κ y},
bκ,d = max{d(x, y) | x �≡κ y}.

In other words, aκ,d is the smallest d value for two distinct objects that belong
to the same κ-cluster, and bκ,d is the largest d value for two objects that belong
to different κ-clusters.

Let (a, b) be a pair of positive numbers such that a ≤ aκ,d and b ≥ bκ,d. If
d′ is a definite dissimilarity that is (a, b)-conformant to κ, then x ≡κ y implies
d′(x, y) ≤ a ≤ aκ,d ≤ d(x, y) and x �≡κ y implies d′(x, y) ≥ b > bκ,d > d(x, y),
so d′ is a κ-transformation of d. By the consistency property of f , we have
f(d′) = κ. This implies that (a, b) is κ-forcing. 	


Theorem 13.24. If f is a scale-invariant and consistent clustering function
on a set S, then its range is an antichain in poset (PART(S),≤).

Proof. This statement is equivalent to saying that, for any scale-invariant and
consistent clustering function, no two distinct partitions of S that are values
of f are comparable.

Suppose that there are two clusterings, κ0 and κ1, in the range of a scale-
invariant and consistent clustering such that κ0 < κ1.

Let (ai, bi) be a κi-forcing pair for i = 0, 1, where a0 < b0 and a1 < b1.
Let a2 be a number such that a2 ≤ a1 and choose ε such that

0 < ε <
a0a2

b0
.

By Supplement 27 of Chapter 10 construct a distance d such that
1. for any points x, y that belong to the same block of κ0, d(x, y) ≤ ε;
2. for points that belong to the same cluster of κ1 but not to the same cluster

of κ0, a2 ≤ d(x, y) ≤ a1; and
3. for points that do not belong to the same cluster of κ1, d(x, y) ≥ b1.

The distance d is (a1, b1)-conformant to κ1, and so we have f(d) = κ1. Take
α = b0

a2
, and define d′ = αd. Since f is scale-invariant, we have f(d′) = f(d) =

κ1. Note that for points x, y that belong to the same cluster of κ0, we have

d′(x, y) ≤ εb0
a2

< a0,

while for points x, y that do not belong to the same cluster of κ0 we have

d′(x, y) ≥ a2b0
a2

≥ b0.

Thus, d′ is (a0, b0)-conformant to κ0, and so we must have f(d′) = κ0. Since
κ0 �= κ1, this is a contradiction. 	


Theorem 13.25 (Kleinberg’s Impossibility Theorem). If |S| ≥ 2, there
is no clustering function that is scale-invariant, rich and consistent.
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Proof. If S contains at least two elements, then the poset (PART(S),≤) is
not an antichain. Therefore, this statement is a direct consequence of Theo-
rem 13.24. 	


Theorem 13.26. For every antichain A of the poset (PART(S),≤), there
exists a clustering function f that is scale-invariant and consistent such that
Ran(f) = A.

Proof. Suppose that A contains more than one partition. We define f(d) as
the first partition π ∈ A (in some arbitrary but fixed order) that minimizes
the quantity

Φd(π) =
∑

x≡πy

d(x, y).

Note that Φαd = αΦd. Therefore, f is scale-invariant.
We need to prove that every partition of A is in the range of f .
For a partition ρ ∈ A, define d such that d(x, y) < 1

|S|3 if x ≡ρ y and
d(x, y) ≥ 1 otherwise. Observe that Φd(ρ) < 1. Suppose that Φd(θ) < 1. The
definition of d means that

Φd(θ) =
∑

x≡θy

d(x, y) < 1,

so for all pairs (x, y) ∈≡θ we have d(x, y) < 1
|S|3 , which means that x ≡ρ y.

Therefore, we have π < ρ. Since A is an antichain, it follows that ρ must
minimize Φd over all partitions of A and, consequently, f(d) = ρ.

To verify the consistency of f , suppose that f(d) = π, and let d′ be a
π-transformation of d. For σ ∈ PART(S), define δ(σ) as Φd(σ) − Φd′(σ). For
σ ∈ A, we have

δ(σ) =
∑

x≡σy

(d(x, y)− d′(x, y))

≤
∑

x≡σy

and x≡πy

(d(x, y)− d′(x, y))

(only terms corresponding to pairs in the same
cluster are nonnegative)

≤ δ(π)
(every term corresponding to a pair in the
same cluster is nonnegative).

Consequently,
Φd(σ)− Φd′(σ) ≤ Φd(π)− Φd′(π)

or Φd(σ)−Φd(π) ≤ Φd′(σ)−Φd′(π). Thus, if π minimizes Φd(π), then Φd(σ)−
Φd(π) ≥ 0 for every σ ∈ A and therefore Φd′(σ) − Φd′(π) ≥ 0, which means
that π also minimizes Φd′(π). This implies f(d′) = π, which shows that f is
consistent. 	
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13.6 Clustering Quality

There are two general approaches for evaluating the quality of a clustering:
unsupervised evaluation, which measures the cluster cohesion and the separa-
tion between clusters, and supervised evaluation which measures the extent
to which the clustering we analyze matches a partition of the set of objects
that is specified by an external labeling of the objects.

13.6.1 Object Silhouettes

The silhouette method is an unsupervised method for evaluation of clusterings
that computes certain coefficients for each object. The set of these coefficients
allows an evaluation of the quality of the clustering.

Let O = {u1, . . . , un} be a collection of objects, d : O × O −→ R+ a
dissimilarity on O, and let f : O −→ {C1, . . . , Ck} be a clustering function.

Suppose that f(ui) = C�. The (f, d)-average dissimilarity is the function
ak,d : O −→ R given by

af,d(ui) =
∑
{d(ui, u) | f(u) = f(ui) and u �= ui}

|f(ui)|
,

that is, the average dissimilarity of ui to all objects of f(ui), the cluster to
which ui is assigned.

For a cluster C and an object ui let

d(ui, C) =
∑
{d(ui, u) | f(u) = C}

|C| ,

be the average dissimilarity between ui and the objects of the cluster C.

Definition 13.27. Let f : O −→ {C1, . . . , Ck} be a clustering function A
neighbor of ui is a cluster C �= f(ui) for which d(ui, C) is minimal.

In other words, a neighbor of an object ui is “the second best choice” for a
cluster for ui. Let b : O −→ R be the function defined by

bf,d(ui) = min{d(ui, C) | C �= f(ui)}.
If f and d are clear from the context, we shall simply write a(ui) and b(ui)
instead of af,d(ui) and bf,d(ui), respectively.

Definition 13.28. The silhouette of the object ui for which |f(ui)| ≥ 2 is the
number sil(ui) given by

sil(ui) =

⎧⎪⎨
⎪⎩

1− a(ui)
b(ui)

if a(ui) < b(ui)

0 if a(ui) = b(ui)
b(ui)
a(ui)

− 1 if a(ui) > b(ui).
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Equivalently, we have

sil(ui) =
b(ui)− a(ui)

max{a(ui), b(ui)}

for ui ∈ O.
If f(ui) = 1, then s(ui) = 0.

Observe that −1 ≤ sil(ui) ≤ 1. When sil(ui) is close to 1, this means that
a(ui) is much smaller than b(ui) and we may conclude that ui is well-classified.
When sil(ui) is near 0, it is not clear which is the best cluster for ui. Finally,
if sil(ui) is close to −1, the average distance from u to its neighbor(s) is much
smaller than the average distance between ui and other objects that belong
to the same cluster f(ui). In this case, it is clear that ui is poorly classified.

Definition 13.29. The average silhouette width of a cluster C is

sil(C) =
∑
{sil(u) | u ∈ C}

|C| .

The average silhouette width of a clustering κ is

sil(κ) =
∑
{sil(u) | u ∈ O}

|O| .

The silhouette of a clustering can be used for determining the “optimal”
number of clusters. If the average silhouette of the clustering is above 0.7, we
have a strong clustering.

13.6.2 Supervised Evaluation

Suppose that we intend to evaluate the accuracy of a clustering algorithm
A on a set of objects S relative to a collection of classes on S that forms a
partition σ of S. In other words, we wish to determine the extent to which
the clustering produced by A coincides with the partition determined by the
classes.

If the set S is large, the evaluation can be performed by extracting a
random sample T from S, applying A to T , and then comparing the clustering
partition of T computed by A and the partition of T into the preexisting
classes.

Let κ = {C1, . . . , Cm} be the clustering partition of T and let σ =
{K1, . . . ,Kn} be the partition of T into preexisting classes. The evaluation is
helped by n×m-matrix Q, where qij = |Ci∩Kj | named the confusion matrix.

We can use distances associated with the generalized entropy, dβ(κ, σ), to
evaluate the distinction between these partitions. This was already observed
in [111], who proposed as a measure the cardinality of the symmetric difference
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of the sets of pairs of objects that belong to the equivalences that correspond
to the two partitions.

Frequently, one uses the conditional entropy

H(σ|κ) =
m∑

i=1

|Ci|
|T | H(σCi

) =
m∑

i=1

|Ci|
|T |

n∑
j=1

|Ci ∩Kj |
|Ci|

log2

|Ci ∩Kj |
|Ci|

to evaluate the “purity” of the clusters Ci relative to the classes K1, . . . ,Kn.
Low values of this number indicate a high degree of purity.

Some authors [132] define the purity of a cluster Ci as purσ(Ci) =
maxj

|Ci∩Kj |
|Ci| and the purity of the clustering κ relative to σ as

purσ(κ) =
n∑

i=1

|Ci|
|T | purσ(Ci).

Larger values of the purity indicate better clusterings (from the point of view
of the matching with the class partition of the set of objects).

Example 13.30. Suppose that a set of 1000 objects consists of three classes
of objects K1,K2,K3, where |K1| = 500, |K2| = 300, and |K1| = 200. Two
clustering algorithms A and A′ yield the clusterings κ = {C1, C2, C3} and
κ′ = {C ′

1, C
′
2, C

′
3} and the confusion matrices Q and Q′, respectively:

K1 K2 K3

C1 400 0 25
C2 60 200 75
C3 40 100 100

and

K1 K2 K3

C ′
1 60 0 180
C ′

2 400 50 0
C ′

3 40 250 20

The distances d2(κ, σ) and d2(κ′, σ) are 0.5218 and 0.4204, suggesting that
the clustering κ′ produced by the second algorithm is closer to the partition
in classes.

As expected, the purity of the first clustering, 0.7, is smaller than the
purity of the second clustering, 0.83.

Another measure of clustering quality, proposed in [112] which applies to
objects in R

n and can be applied, for example, to the clustering that results
from the k-means method, is the validity of clustering. Let π = {U1, . . . , Uk}
be a clustering of N objects, c1, . . . , ck the centroids of the clusters. The
clustering validity is

val(π) =
sse(π)

N mini<j d2(ci, cj)
.

The variety of clustering algorithms is very impressive and it is very helpful
to the reader to consult two excellent surveys of clustering algorithms [73, 11]
before exploring in depth this domain.
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Exercises and Supplements

1. Apply hierarchical clustering to the data set given in Example 13.4 using
the average-link method, the centroid method, and the Ward method.
Compare the shapes of the clusters that are formed during the aggregation
process. Draw the dendrograms of the clusterings.

2. Using a random number generator, produce h sets of points in R
n normally

distributed around h given points in R
n. Use k-means to cluster these

points with several values for k and compare the quality of the resulting
clusterings.

3. A variant of the k-means clustering introduced in [130] is the bisecting k-
means algorithm described below. The parameters are S the set of objects
to be clustered, k the desired number of clusters, and nt, the number of
trial bisections.

Algorithm 13.31 bisecting k-means{
set of clusters = {S};
while (|set of clusters| < k)

extract a cluster C from the set of clusters;
k = 0;
for i = 1 to nt do

let C0i, C1i be the two clusters obtained from C by bisecting
C

using standard k-means (k = 2);
if (i = 1) then s = sse({C0i, C1i});
if (sse({C0i, C1i}) ≤ s) then
k = i;
s = sse({C0i, C1i});

endif;
endfor;
add C0k, C1k to set of clusters;

endwhile
}

The cluster C that is bisected may be the largest cluster or the cluster
having the largest sse.
Evaluate the time performance of bisecting k-means compared with the
standard k-means and with some variant of a hierarchical clustering.

4. One of the issues that the k-means algorithm must confront is that the
number of clusters k must be provided as an input parameter. Using
clustering validity, design an algorithm that identifies local maxima of
validity (as a function of k) to provide a basis for a good choice of k.
See [112] for a solution that applies to image segmentation.

5. Let B ⊆ R
n be a finite subset of R

n. The clustering feature of B is
a triple (p, s,q), where p = |B|, s =

∑
{x | x ∈ R

n}, and q =(∑
{x2

1 | x ∈ B}, . . . ,
∑
{x2

n | x ∈ B}
)
. The center of B is x̄ = 1

ps, the
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average distance between the center and the members of B is

RB =

√
(x− x̄)2

p

and the average distance between the members of the clusters is

DB =

√∑
{(u− v)2 | u,v ∈ B}

p(p− 1)
.

Prove that x̄, RB , and DB can be computed starting from the cluster
feature.

Let G = (V,E) be a finite graph. A graph clustering [22] is a partition κ =
{C1, . . . , Cp} of the set V ; the clusters are the subgraphs GCi

= (Ci, ECi
)

induced by the blocks of κ. The intracluster edges are the edges in Eκ =⋃p
i=1ECi

, while the intercluster edges are the edges in E − Eκ. The set of
edges between nodes in C and C ′ is denoted by E(C,C ′).

6. The quality of a graph clustering κ is measured by its modularity index
q(κ) given by

q(κ) =
∑
C∈κ

{
|Eκ|
|E| −

( |E(C)|+
∑

C′∈κ |E(C,C ′)|
2|E|

)2
}
.

Prove that q(κ) =
∑

C∈κ

{
|Eκ|
|E| −

(∑
v∈C d(v)

2|E|

)2
}

What does it take for a

clustering to achieve a high value of the modularity index?
7. Prove that q(κ) ∈ [−0.5, 1] for every clustering of a graph G and the

minimum is achieved when all edges are intercluster edges.
8. Prove that there is always a clustering of a graph G that has maximum

modularity in which each cluster consists of a connected subgraph.
9. Let G = (V,E) be a bipartite graph with the partition π = {V1, V2} (see

Definition 3.7). Prove that q(κ) = −0.5.
10. Prove that for k ≥ 2 and for sufficiently large sets of objects, the clustering

function fg introduced in Example 13.18 is not consistent.
Solution: Suppose that κ = {C1, C2, . . . , Ck} is a partition of S and

d is a definite dissimilarity on S such that d(x, y) = ri if x �= y and
{x, y} ⊆ Ci for some 1 ≤ i ≤ k and d(x, y) = r + a if x and y belong to
two distinct blocks of κ, where r = max{ri|1 ≤ i ≤ k} and a > 0.

Suppose that T is a set of k members of S. Then, the value of g(d(x, T ))
is g(r) if the closest member of T is in the same block as x and is
g(r + a) otherwise. This means that the smallest value of Λg

d(T ) =∑
x∈Ci

g(d(x, T )) is obtained when each block Ci contains a member ti
of T for 1 ≤ i ≤ k and the actual value is Λg

d(T ) =
∑k

i=1(|Ci| − 1)r2 =
(|S| − k)r2.
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Consider now a partition κ′ = {C ′
1, C

′′
1 , C2, . . . , Ck}, where C1 = C ′

1∪C ′′
1

so κ′ < κ. Choose r′ to be a positive number such that r′ < r and define
the dissimilarity d′ on S such that d′(x, y) = r′ if x �= y and x ≡κ′ y
and d′(x, y) = d(x, y) otherwise. Clearly, d′ is a κ-transformation of d.
The minimal value for Λg

d(T
′) will be achieved when T ′ consists of k + 1

points, one in each block of κ′; as a result, the value of the clustering
function for d′ will be κ′ �= κ, which shows that no clustering function
obtained by this technique is consistent.

Bibliographical Comments

Several general introductions in data mining [132, 130] provide excellent refer-
ences for clustering algorithms. Basic reference books for clustering algorithms
are [72] and [76]. Recent surveys such as [11] and [73] allow the reader to get
familiar with current issues in clustering. Cluster features discussed in Exer-
cise 5 were considered in the BIRCH algorithm [150]. Exercises 6–9 contain
results obtained in [22].
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Combinatorics

14.1 Introduction

Combinatorics is the area of mathematics concerned with counting collections
of mathematical objects. Several elementary combinatorial problems were al-
ready discussed in Chapter 1, where we counted the number of permutations
of a set of size n, the number of subsets of size k, etc. In this chapter, we
present several of the more involved combinatorial techniques that are rele-
vant for data mining.

14.2 The Inclusion-Exclusion Principle

Let A and B be two finite sets. It is easy to verify that

|A ∪B| = |A|+ |B| − |A ∩B|. (14.1)

In this section we discuss a generalization of Equality( 14.1) known as the
inclusion-exclusion principle.

Note that if U and V are two subsets of a finite set S such that V ⊆ U ,
then the function I defined by I(x) = IU (x)− IV (x) for x ∈ S is an indicator
function, namely the indicator function of the subset U − V of S.

Let a and b be two numbers that belong to the set {−1, 1} such that the
function Iab defined by

Iab(x) = aIU (x) + bIV (x)

for x ∈ S is the indicator function of a subset W of the set S. Since Iab(x) ∈
{0, 1}, the following cases are possible:
1. If a = b = 1, then we have U ∩V = ∅; otherwise (that is, if x ∈ U ∩V ) we

would have aIU (x) + bIV (x) = 2 and this would prevent Iab from being
an indicator function. Clearly, in this case, W = U ∪ V .

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 14, c© Springer-Verlag London Limited 2008
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2. If a = 1 and b = −1, we must have IV (x) ≤ IU (x) for every x ∈ S, which
implies V ⊆ U . Thus, W = U − V .

3. The case where a = −1 and b = 1 is similar to the previous case, and we
have W = V − U .

4. The case when a = −1 and b = −1 is possible only if U = V = ∅. In this
case, W = ∅.

Note that in all these cases we have |W | = a|U | + b|V |. This observation is
generalized by the following statement.

Theorem 14.1. Let U0, . . . , Un−1 be n subsets of a finite set S, where n ≥ 2,
and let (a0, . . . , an−1) ∈ Seqn({−1, 1}) be a sequence of n numbers such that
the function I : S −→ {0, 1} defined by

I(x) = a0IU0(x) + · · ·+ an−1IUn−1(x)

for x ∈ S is the indicator function of a subset W of S. Then,

|W | = a0|U0|+ · · ·+ an−1|Un−1|.

Proof. If W is a subset of S, then
∑

x∈S IW (x) = |W | because for each x ∈ S
its contribution to the sum

∑
x∈S IW (x) is equal to 1 if and only if x ∈ W .

Therefore, if IW (x) =
∑n−1

i=0 aiIUi
(x) for x ∈ S, we have

|W | =
∑
x∈S

IW (x) =
∑
x∈S

n−1∑
i=0

aiIUi
(x)

=
n−1∑
i=0

∑
x∈S

aiIUi
(x)

=
n−1∑
i=0

ai

∑
x∈S

IUi
(x)

=
n−1∑
i=0

ai|Ui|.

	


Corollary 14.2 (Principle of Inclusion-Exclusion). Let A0, . . . , An−1 be
n finite sets, where n ≥ 2. We have∣∣∣∣∣
n−1⋃
i=0

Ai

∣∣∣∣∣ =
∑

0≤i≤n−1

|Ai| −
∑

0≤i1<i2≤n−1

|Ai1 ∩Ai2 |+

∑
0≤i1<i2<i3≤n−1

|Ai1 ∩Ai2 ∩Ai3 | − · · ·+ (−1)n+1|A0 ∩ · · · ∩An−1|.
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Proof. Suppose that Ai ⊆ S for 0 ≤ i ≤ n − 1, where S is a finite set. For
x ∈ S, we have x �∈ A =

⋃n−1
i=0 Ai if and only if x �∈ Ai for 0 ≤ i ≤ n− 1. This

is equivalent to writing

1− IA(x) = (1− IAi0
(x)) · · · (1− IAin−1

(x))

for every x ∈ S. This equality is, in turn, equivalent to

IA(x)

=
n−1∑
i=0

IAi
(x)−

∑
0≤i1<i2≤n−1

IAi1
(x)IAi2

(x)

+
∑

0≤i1<i2<i3≤n−1

IAi1
(x)IAi2

(x)IAi3
(x)− · · ·+ (−1)n+1IA0(x) · · · IAn−1(x)

=
n−1∑
i=0

IAi
(x)−

∑
0≤i1<i2≤n−1

IAi1∩Ai2
(x)

+
∑

0≤i1<i2<i3≤n−1

IAi1∩Ai2∩Ai3
(x)− · · ·+ (−1)n+1IA0∩···∩An−1(x).

By applying Theorem 14.1, we obtain the equality of the corollary. 	


Corollary 14.3. Let A0, . . . , An−1 be n finite sets, where n ≥ 2, and let S =⋃n−1
i=0 Ai. We have∣∣∣∣∣

n−1⋂
i=0

Ai

∣∣∣∣∣ = |S| −
∑

0≤i≤n−1

|Ai|+
∑

0≤i1<i2≤n−1

|Ai1 ∩Ai2 |

−
∑

0≤i1<i2<i3≤n−1

|Ai1 ∩Ai2 ∩Ai3 |+ · · ·+ (−1)n|A0 ∩ · · · ∩An−1|.

Proof. This follows immediately from Corollary 14.2 by observing that∣∣∣∣∣
n−1⋂
i=0

Ai

∣∣∣∣∣ = |S| −
∣∣∣∣∣
n−1⋃
i=0

Ai

∣∣∣∣∣ .
	

It is interesting to observe that the principle of inclusion-exclusion can

be obtained also from the Möbius dual inversion theorem. Let A0, . . . , An−1

be n finite sets, where n ≥ 2, S =
⋃n−1

i=0 Ai, and I be a subset of the set
{0, . . . , n− 1}. The complement of I, {0, . . . , n− 1} − I is denoted by Ī.

Let BI be the subset of S that consists of those elements that belong to
every one of the sets Ai with i ∈ I and to no other sets. Clearly, we have

BI =

(⋂
i∈I

Ai

)
∩

⎛
⎝⋂

i∈Ī

Ai

⎞
⎠ .
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Note that if I �= I ′, then the sets BI and BI′ are disjoint. We claim that⋃
{BJ | I ⊆ J ⊆ {0, . . . , n− 1}} =

⋂
i∈I

Ai. (14.2)

If I ⊆ J , then BJ ⊆
⋂

i∈I Ai. Therefore,

⋂
i∈I

Ai ⊆
⋃
{BJ | I ⊆ J ⊆ {0, . . . , n− 1}}.

Conversely, let x ∈
⋂

i∈I Ai and let Jx = {j ∈ {0, . . . , n − 1} | x ∈ Aj}. It
is clear that I ⊆ Jx and that x ∈ BJx

. Therefore, x ∈
⋃
{BJ | I ⊆ J ⊆

{0, . . . , n− 1}} and we have the reverse inclusion⋂
i∈I

Ai ⊆
⋃
{BJ | I ⊆ J ⊆ {0, . . . , n− 1}},

which proves Equality (14.2). This allows us to write∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ =
∑

{|BJ | | I ⊆ J ⊆ {0, . . . , n− 1}} .

Define f(J) as |BJ |. The last equality can now be rewritten as∣∣∣ ⋂
i∈I

Ai

∣∣∣ =∑{f(J) | I ⊆ J ⊆ {0, . . . , n− 1}}.

By the Möbius dual inversion theorem (Theorem 4.115) applied to the poset
(P({0, . . . , n− 1}),⊆), we have

f(I) =
∑
I⊆J

(−1)|J|−|I|

∣∣∣∣∣
⋂
i∈J

Ai

∣∣∣∣∣ .
For the special case I = ∅, we have f(∅) =

∣∣∣S − ⋃0≤i≤n−1Ai

∣∣∣ because the
intersection of an empty collection of subsets of a set S equals S. Thus,∣∣∣∣∣∣S −

⋃
0≤i≤n−1

Ai

∣∣∣∣∣∣ =
∑

J

(−1)|J|

∣∣∣∣∣
⋂
i∈J

Ai

∣∣∣∣∣ ,
which is equivalent to Corollary 14.3.

Example 14.4. Let n be a natural number such that n ≥ 2. Using the inclusion-
exclusion principle we can compute the number φ(n) of positive integers that
are less than n and are relatively prime with n; that is, the number of integers
r such that 1 ≤ r ≤ n such that gcd{n, r} = 1.
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Suppose that n = pa1
1 p

a2
2 · · · pam

m , where p1, . . . , pm are distinct prime num-
bers and a1, . . . , am are positive integers. Let Mi = {r ∈ N | r < n and pi|r}
for 1 ≤ i ≤ m.

It is clear that |Mi| = n
pi

for 1 ≤ i ≤ m and that

|Mi1 ∩Mi2 ∩ · · · ∩Mik
| = n

pi1pi2 · · · pik

for 1 ≤ i1, . . . , ik ≤ m.
Note that r is relatively prime with r if and only if r �∈

⋃m
i=1Mi.

Thus, the number that we are seeking is n− |
⋃m

i=1Mi|. By the inclusion-
exclusion principle, we have

φ(n) = n−
∣∣∣ m⋃

i=1

Mi

∣∣∣
= n−

∑
1≤i≤m

|Mi|+
∑

1≤i1<i2≤m

|Mi1 ∩Mi2 | −

+ · · ·+ (−1)m|M1 ∩ · · · ∩Mm|
= n−

∑
1≤i≤m

n

pi
+

∑
1≤i1<i2≤m

n

pi1pi2

+

+ · · ·+ (−1)m n

p1p2 · · · pm

= n

m∏
i=1

(
1− 1

pi

)
.

The function φ is known as Euler’s function. It is easy to see that φ(2) = 1,
φ(3) = 2, φ(4) = 2, etc. Furthermore, for any prime number p, we have
φ(p) = p− 1.

14.3 Ramsey’s Theorem

Data miners should be aware of what is known today as Ramsey theory be-
cause this family of combinatorial results establishes that data sets that are
sufficiently large contain spurious patterns whose existence is caused by the
sheer size of the data set and do not represent “significant” structures from a
data mining point of view.

We begin with a set of basic terms of Ramsey theory.

Definition 14.5. Let C = {c1, . . . , ck} be a finite set referred to as the set of
colors. A C-coloring of a set S is a mapping f : S −→ C. The set f−1(c) is
the set of elements of S colored by c.

A subset T of S is monochromatic in the color ci if f(t) = ci for every
t ∈ T . A subset W of S is f-monochromatic if it is monochromatic in some
color ci.
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Clearly, every set of the form f−1(c) for a C-coloring of S is f -monochromatic.
Recall that the set of subsets of size q of a set S is denoted by Pq(S).

Theorem 14.6. Let S be a finite set, q a positive natural number, f :
S −→ {c1, c2} a coloring of the set S such that every set in Pq(S) is f-
monochromatic, and a1 and a2 be two natural numbers not less than 2.

There is a number denoted by R(a1, a2, q) such that if |S| ≥ R(a1, a2, q),
then there is i ∈ {1, 2} and a subset T of S such that |T | = ai and every
subset of Pq(T ) has the color ci.

Proof. We begin by showing that R(a1, q, q) = a1 for a1 ≥ q. Let S be a set
of size a1. One of the following two cases may occur:

Case 1: There is a subset T of S of size q that is colored by c2. In this
case, the statement holds since the T has only itself as a subset of size q.

Case 2: There is no subset T of S of size q that is colored by c2. Now all
subsets of size q of S have color c1, and if T is a subset of S of size a1, then
all its subsets of size q have the color c1 (since they are q-subsets of S).

This shows that R(a1, q, q) = a1 for a1 ≥ q; similarly, R(q, a2, q) = a2 for
a2 ≥ q.

The argument is by induction on q.
In the basis case, q = 1, and we color each element individually. If S is

a set of size a1 + a2 − 1, then we must have either a1 elements colored c1 or
a2 elements colored c2 since otherwise, the set S would have no more than
a1 + a2 − 2 elements.

For the inductive step, suppose the theorem holds for q − 1. Now we act
by induction on p = a1 + a2. The basis case, where a1 = a2 = q, is included
in the previous discussion.

Suppose that the theorem holds for a1+a2−1, and let b1 = R(a1−1, a2, q)
and b2 = R(a1, a2−1, q). Let S be a set whose size is at least R(b1, b2, q−1)+1,
and suppose that all its q-subsets are colored by c1 or c2. If s is a fixed element
of S, then any set U ∈ Pq(S) such that s ∈ U yields a subset U − {s} of size
q−1 of the set S′, where S′ = S−{s} is colored in the same color as U . Thus,
we obtain a coloring of the q−1 subsets of the set S−{s} that contains at least
R(b1, b2, q− 1) elements. By the inductive hypothesis, there is either a subset
V of S′ such that |V | = b1 = R(a1 − 1, a2, q) and all its q − 1 subsets have
color c1 or there is an subset W of S′ such that |W | = b2 = R(a1, a2 − 1, q)
and all its q − 1 subsets have color c2.

The first case yields a coloring of S in which the q-subsets of S obtained
by adding s to the (q− 1)-subsets of S′ are colored in c1. By the definition of
R(a1 − 1, a2, q), there exists either a subset T1 of S′ that has a1 − 1 elements
whose q-subsets are colored c1 or a a2-subset T2 of S whose q-subsets are
colored c2. The statement follows in the first situation by observing that T1 ∪
{s} has a1 elements. The second situation requires no further argument.

The second case is treated similarly. 	
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Corollary 14.7. We have the inequality

R(a1, a2, q) ≤ R(R(a1 − 1, a2, q),R(a1, a2 − 1, q)) + 1

for every q ≥ 1 and a1, a2 such that a1, a2 ≥ q.

Proof. The inequality follows immediately from the proof of Theorem 14.6.
	


In the proof of Ramsey’s theorem, we shall use the preliminary result
contained in Theorem 14.6.

Theorem 14.8 (Ramsey’s Theorem). Let S be a finite set, q a positive
natural number, f : S −→ {c1, . . . , ck} a coloring of the set S such that every
set in Pq(S) is f-monochromatic, and a = (a1, . . . , ak) a sequence of k positive
natural numbers such that ai ≥ q for 1 ≤ i ≤ k.

There is a number denoted by Ramsey(a, q) such that if |S| ≥ Ramsey(a, q),
then there exists a number i, 1 ≤ i ≤ k, and a set T with |T | = ai such that
every subset of Pq(T ) has the color ci.

Proof. This time the proof is by induction on k, the number of colors. The ba-
sis case, k = 2, was discussed in Theorem 14.6. We have Ramsey((a1, a2), q) =
R(a1, a2, q).

Suppose the statement holds for k − 1 colors.
Let S be a set such that |S| ≥ Ramsey((Ramsey((a1, . . . , ak−1), q), ak), q)

and let f : S −→ {c1, . . . , ck} be a coloring of S using k colors. Define the
coloring g : S −→ {c0, ck} by

g(x) =

{
c0 if f(x) ∈ {c1, . . . , ck−1},
ck if f(x) = ck,

for x ∈ S. Using the coloring g, every q-subset of S that was colored
c1, . . . , ck−1 will receive the color c0 and every q-subset of S colored ck will
remain colored by ck. By the two-color case of Theorem 14.6, either there
is a subset T such that |T | = Ramsey((a1, . . . , ak−1), q) whose q-subsets are
colored c0 or a subset U such that |U | = ak whose q-subsets are colored ck.
Since f colors the q-subsets of T in any of the colors c1, . . . , ck−1, the theorem
follows immediately from the inductive hypothesis. 	


Corollary 14.9. We have the inequality

Ramsey((a1, . . . , ak), q) ≤ Ramsey((Ramsey((a1, . . . , ak−1), q), ak), q)

for every q ≥ 1 and ai such that ai ≥ q for 1 ≤ i ≤ k.

Proof. This result follows from the proof of Ramsey’s theorem. 	
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Note that Ramsey((2, . . . , 2︸ ︷︷ ︸
k

), 1) = k + 1. Indeed, if we color the elements

of a set S using |S|+ 1 colors, then there is a subset T of S that contains two
elements colored with the same color. This is a well known combinatorial fact
known as the pigeonhole principle.

A beautiful application of Theorem 14.8 is known as the Erdös-Szekeres
theorem. We need the following preliminary observation.

Lemma 14.10. Let P be a set of points in R
2. If every four-point subset of

P is a convex polygon, then the set P itself is a convex polygon.

Proof. This is a direct consequence of Theorem B.12. 	


Theorem 14.11 (The Erdös-Szekeres Theorem). For every number n ∈
N, n ≥ 3, there exists a number E(n) such that any set P of points in the
plane such that |P | = E(n) and no three points of P are collinear contains an
n-point convex polygon.

Proof. A four-point subset of P may or may not be a convex polygon. Thus,
the four-point subsets may be colored with two colors: c1 for convex polygons
and c2 for the other four-point sets.

Another key observation is that every five-point set in R
2 such that no

three points are collinear contains a four-point convex polygon.
Choose E(n) = Ramsey((n, 5), 4), which involves coloring all sets in P4(P )

with the colors c1 and c2. Note that by Klein’s theorem, (Theorem B.14), no
five point set can be colored in c2 (which would mean that none of its four-
point sets is convex). Therefore, there exists an n-element set K that can be
colored by c1, and, by Lemma 14.10, the set K is convex. 	


Ramsey’s theorem can be used to derive interesting properties of graphs.
Indeed, if G = (V,E) is a graph, then E ⊆ P2(V ), and Ramsey functions
of the form Ramsey(a, 2) yield lower bounds of the cardinality of the vertex
sets that guarantee the existence of subgraphs having monochromatic sets of
edges and containing a number ai of vertices for some i, 1 ≤ i ≤ n, and
a = (a1, . . . , an).

14.4 Combinatorics of Partitions

Let S be a set having n elements. We are interested in the number of partitions
of S that have m blocks. We begin by counting the number of onto functions
of the form f : A −→ B, where |A| = n, |B| = m, and n ≥ m.

Lemma 14.12. Let A and B be two sets, where |A| = n, |B| = m, and
n ≥ m. The number of surjective functions from A to B is given by
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m−1∑
j=0

(−1)j

(
m

j

)
(m− j)n.

Proof. There are mn functions of the form f : A −→ B.
We begin by determining the number of functions that are not surjective.

Suppose that B = {b1, . . . , bm}, and let Fj = {f : A −→ B | bj �∈ f(A)} for
1 ≤ j ≤ m. A function is not surjective if it belongs to one of the sets Fj . Thus,
we need to evaluate |

⋃m
j=1 Fj |. By using the inclusion-exclusion principle, we

can write∣∣∣∣∣∣
m⋃

j=1

Fj

∣∣∣∣∣∣ =
m∑

j1=1

|Aj1 | −
m∑

j1,j2=1

|Aj1 ∩Aj2 |

+
m∑

j1,j2,j3=1

|Aj1 ∩Aj2 ∩Aj3 | − · · · −+(−1)m|A1 ∩A2 ∩ · · · ∩Am|.

Note that the set |Aj−1∩Aj2∩· · ·∩Ajp
| is actually the set of functions defined

on A with values in the set B−{yj1 , yj2 , . . . , yjp
}, and there are (m−p)n such

functions. Since there are
(
m
p

)
choices for the set {j1, j2, . . . , jp}, it follows

that there are(
m

1

)
(m− 1)n −

(
m

2

)
(m− 2)n +

(
m

1

)
(m− 3)n − · · ·+ (−1)m

(
m

m− 1

)

functions that are not surjective.
Thus, we can conclude that there are

m−1∑
j=0

(−1)j

(
m

j

)
(m− j)n

= mn −
(
m

1

)
(m− 1)n +

(
m

2

)
(m− 2)n − · · ·+ (−1)m−1

(
m

m− 1

)

surjective functions from A to B. 	


Theorem 14.13. The number of partitions of a set S that have m blocks
(m ≤ n) is given by

1
m!

m−1∑
j=0

(−1)j

(
m

j

)
(m− j)n.

Proof. Note that there arem! distinct onto functions that have the same kernel
partition. Indeed, given a surjective function f : A −→ B, one can obtain
a function g that has the same partition as f by defining g(a) = p(f(a)),
where p is a permutation of the set B, that is, a bijection p : B −→ B.
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Since there are m! such bijections, it follows that the number of partitions is
1

m!

∑m−1
j=0 (−1)j

(
m
j

)
(m− j)n. 	


The numbers S(n,m) defined by

S(n,m) =
1
m!

m−1∑
j=0

(−1)j

(
m

j

)
(m− j)n

for m,n ∈ N and m ≤ n are known as the Stirling numbers of the second kind.
So far, we have examined partitions of sets. Next we consider partitions of

natural numbers.

Definition 14.14. An integral partition of n is a nonincreasing sequence k =
(k1, . . . , k�) of positive integers such that

∑�
i=1 ki = n.

The set of integral partitions of n is denoted by IPn; the set of integral
partitions of n that consist of � components is denoted by IPn(�).

Example 14.15. The sequence k = (5, 5, 3, 2, 2, 2, 1, 1) is an integral partition
of 21.

We can regard an integral partition of n as a multiset P on the set
{1, 2, . . . , n}, where P (k) is the number of entries in the sequence k of Defi-
nition 14.14 that equal k.

Example 14.16. The integral partition (5, 5, 3, 2, 2, 2, 1, 1) ∈ IP21 defines the
multiset P on the set {1, . . . , 21} given by

P (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if k = 1 or k = 5,
3 if k = 2,
1 if k = 3,
0 in every other case.

An integral partition k can be represented graphically by a Ferrers diagram
that consists of a sequence of rows of squares such that each component k of
k corresponds to a row of k cells in the diagram.

Example 14.17. The Ferrers diagram of (5, 5, 3, 2, 2, 2, 1, 1) of integer 21 is
shown in Figure 14.1(a).

Starting from the Ferrers diagram of k ∈ IPn, we can derive a new integral
partition k′ ∈ IPn by exchanging the rows of the diagram with its columns.
The new integral partition k′ is called the conjugate integral partition of k.
The Ferrers diagram of the conjugate partition k′ of k (where k is the integral
partition defined in Example 14.17) is shown in Figure 14.1(b).
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(a) (b)

Fig. 14.1. Ferrers diagrams.

Theorem 14.18. The number of integral partitions in IPn where the largest
component is � equals IPn(�), the number of integral partitions on n with �
components.

Proof. This statement follows immediately by observing that the function
f : IPn −→ IPn that maps k into its conjugate k′ is a bijection and the image
under f of an integral partition that has � components is an integral partition
whose largest component is �. 	


14.5 Combinatorics of Collections of Sets

Definition 14.19. A Sperner system is a collection of sets C such that X,Y ∈
C and X �= Y implies X �⊆ Y .

If C is a Sperner system and C ⊆ P(S), then we say that C is a Sperner
system on the set S.

The next theorem presents an inequality known as the LYM inequality,
an acronym of the names of the mathematicians whose work is related to it
(Lubell, Yamamoto, and Meshalkin [91, 145, 98]).

Theorem 14.20 (The LYM Inequality). Let C be a Sperner system on a
finite set S such that |S| = n. Define the function c : {0, 1, . . . , n} −→ N by
c(k) = |{X ∈ C | |X| = k}| for 0 ≤ k ≤ n. We have

n∑
k=0

c(k)(
n
k

) ≤ 1.

Proof. Let (x1, . . . , xn) be one of the n! permutations of the set S. For U ∈ C

define the set PU as
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PU = {(x1, . . . , xn) | {x1, . . . , xm} = U, where m = |U |}.

Since C is a Sperner system, we have PU ∩ PV = ∅ for U �= V and U, V ∈ C.
The number of permutations in PU is |U |!(n− |U |)!, so∑

U∈C

|U |!(n− |U |)! ≤ n!.

Using the definition of the function c, we have
n∑

k=0

c(k)|k|!(n− |k|)! ≤ n!,

which immediately yields the desired inequality. 	

The next statement is known as Sperner’s theorem and was obtained

in [127] using a different approach (outlined in Supplement 21).

Corollary 14.21. Let S be a finite set such that |S| = n. If C is a Sperner
system on S, then

|C| ≤
(
n

�n
2 �

)
.

Proof. The largest value of the binomial coefficient
(
n
k

)
is achieved when k =

�n
2 �. Therefore, we have

n∑
k=0

c(k)|k|!(n− |k|)! ≥
∑n

i=0 c(k)(
n


n
2 �
) =

|C|
�n

2 �
.

By the LYM inequality we obtain |C| ≤
(

n

n

2 �
)
. 	


The Ahlswede-Daykin inequality involves functions defined on sets and
collections of sets. We use the operations “∨” and “∧” between collections of
sets introduced in Definition 1.20.

Let E be a collection of subsets of a set S and let φ : P(S) −→ R be a
function. We define a new function (denoted by the same letter φ) on the set
of all collections of subsets of S (that is, on P(P(S))) as

φ(E) =
∑
{φ(E) | E ∈ E}.

This definition allows us to formulate a powerful combinatorial inequality.

Theorem 14.22 (The Ahlswede-Daykin Inequality). Let S be a set such
that S �= ∅ and let

α, β, γ, δ : P(S) −→ N

be four functions that satisfy the inequality

α(A)β(B) ≤ γ(A ∪B)δ(A ∩B)

for A,B ∈ P(S). For all collections A,B of subsets of S, we have

α(A)β(B) ≤ γ(A ∨B)δ(A ∧B).
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Proof. The argument is by induction on n = |S|, where n ≥ 1. For the base
case, |S| = 1, we have P(S) = {∅, S}. Thus, we can write

α(∅)β(∅) ≤ γ(∅)δ(∅), (14.3)
α(∅)β(S) ≤ γ(S)δ(∅), (14.4)
α(S)β(∅) ≤ γ(S)δ(∅), (14.5)
α(S)β(S) ≤ γ(S)δ(S). (14.6)

Since C,B ⊆ {∅, S}, we need to analyze the following cases.

Case A B A ∨B A ∧B

I {∅} {∅} {∅} {∅}
II {∅} {S} {S} {∅}
III {S} {∅} {S} {∅}
IV {S} {S} {S} {S}
V {∅} {∅, S} {∅, S} {∅}
VI {S} {∅, S} {S} {∅, S}
VII {∅, S} {∅} {∅, S} {∅}
VIII {∅, S} {S} {S} {∅, S}
IX {∅, S} {∅, S} {∅, S} {∅, S}

We discuss only case IX; the remaining cases are similar and are left to the
reader. The inequality that we need to prove,

(α(∅) + α(S))(β(∅) + β(S)) ≤ (γ(∅) + γ(S))(δ(∅) + δ(S))

follows immediately by adding Inequalities (14.3) to (14.6).
Suppose that the inequality holds for sets containing m elements, and let

S = {s0, . . . , sm−1, sm} be a set of size m+ 1. Define U = {s0, . . . , sm−1} and
V = {sm}.

The mappings α1, β1, γ1, δ1 : P(U) −→ N are defined by

α1(C) =
∑
{α(A) | A ∈ A and A ∩ U = C},

β1(C) =
∑
{α(B) | B ∈ B and B ∩ U = C},

γ1(C) =
∑
{γ(E) | E ∈ A ∨ β and E ∩ U = C},

δ1(C) =
∑
{δ(F ) | F ∈ A ∧B and F ∩ U = C}.

Observe that
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α1(P(U)) =
∑
{α1(C) | C ∈ P(U)}

=
∑

C∈P(U)

∑
{α(A) | A ∈ A and A ∩ U = C}

=
∑
{α(A) | A ∈ A}

= α(A).

Similarly, β1(P(U)) = β(B), γ1(P(U)) = γ(A∨B), and δ1(P(U)) = γ(A∧B).
Let R ∈ P(V ). We have either R = ∅ or R = {sm}.
Let C,D ∈ P(U) and let E = C ∪D and F = C ∩D. Define the mappings

αC
2 , β

D
2 , γ

E
2 , δ

F
2 : P(V ) −→ N by

αC
2 (R) =

{
α(R ∪ C) if R ∪ C ∈ A,

0 otherwise,

βD
2 (R) =

{
β(R ∪D) if R ∪D ∈ B,

0 otherwise,

γE
2 (R) =

{
γ(R ∪ E) if R ∪ E ∈ A ∨B,

0 otherwise,

δF
2 (R) =

{
δ(R ∪ F ) if R ∪ F ∈ A ∧B,

0 otherwise.

We have α1(C) = αC
2 (P(V )) for every C ⊆ U . Indeed,

αC
2 (P(V )) = αC

2 (∅) + αC
2 ({sm})

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α(C) + α(C ∪ {sm}) if C ∈ A and C ∪ {sm} ∈ A,

α(C) if C ∈ A and C ∪ {sm} �∈ A,

α(C ∪ {sm}) if C �∈ A and C ∪ {sm} ∈ A,

0 otherwise.

= α1(C).

Similar arguments show that β1(D) = βD
2 (P(V )) for D ∈ P(U), γ1(E) =

γE
2 (P(V )) for E ∈ P(U), and δ1(F ) = δF

2 (P(V )) for F ∈ P(U).
We claim that αC

2 (R)βD
2 (Q) ≤ γE

2 (R ∪Q)δF
2 (R ∩Q) for all R,Q ∈ P(V ).

If αC
2 (R)βD

2 (Q) = 0 the inequality obviously holds.
Now suppose that αC

2 (R)βD
2 (Q) �= 0, that is, R ∪ C ∈ A and Q ∪D ∈ B

and αC
2 (R)βD

2 (Q) = α(R ∪ C)β(Q ∪D). Note that

(R ∪ C) ∪ (Q ∪D) = (R ∪Q) ∪ (C ∪D) = (R ∪Q) ∪ E ∈ A ∨B

and



14.5 Combinatorics of Collections of Sets 543

(R ∪ C) ∩ (Q ∪D) = (R ∩Q) ∪ (R ∩D) ∪ (C ∩Q) ∪ (C ∩D)
= (R ∩Q) ∪ (C ∩D) = (R ∩Q) ∪ F ∈ A ∧B

because R ∩D = C ∩Q = ∅ (since R,Q ∈ P(V ) and C,D ∈ P(U)). Thus,

γE
2 (R ∪Q)δF

2 (R ∩Q) = γ(R ∪Q ∪ E)δ((R ∩Q) ∪ F ).

By the defining property of α, β, γ, and δ, we have α(R ∪ C)β(Q ∪ D) ≤
γ(R ∪Q ∪ E)δ((R ∩Q) ∪ F ), which yields the inequality

αC
2 (R)βD

2 (Q) ≤ γE
2 (R ∪Q)δF

2 (R ∩Q)

for all R,Q ∈ P(V ).
The inductive hypothesis (for n = 1) implies

α1(C)β1(D)
= αC

2 (P(V ))βD
2 (P(V )) ≤ γE

2 (P(V ))δF
2 (P(V ))

= γ1(C ∪D)δ1(C ∩D).

Again applying the inductive hypothesis, we can write

α(A)β(B) = α1(P(U))β1(P(U)) ≤ γ1(P(U))δ1(P(U)) = γ(A ∨B)δ(A ∧B).

	


Corollary 14.23. Let A and B be two collections of subsets of S. In this case,

|A| · |B| ≤ |A ∨B| · |A ∧B|.

Proof. In the Ahlswede-Daykin inequality, choose α, β, γ, δ : P(S) −→ N such
that α(C) = β(C) = γ(C) = δ(C) = 1 for C ∈ P(S). The required inequality
follows immediately. 	


Definition 14.24. A hereditary collection of sets is a collection I such that
C ∈ I and D ⊆ C implies D ∈ I.

A dually hereditary collection of sets is a collection of sets F such that
C ∈ F and C ⊆ D implies D ∈ F.

Note that if I is a hereditary family of subsets of a set S, then P(S) − I

is a dually hereditary family of subsets; similarly, if F is a dually hereditary
family of subsets of S, then P(S)− F is a hereditary family.

Theorem 14.25. Let I and I′ be two hereditary families of sets. Then,

I ∨ I′ = I ∩ I′.

Proof. Let C ∈ I ∨ I′. Then, C = A ∩ B, where A ∈ I and B ∈ I′. Since
C ⊆ A and C ⊆ B, the hereditary character of I and I′ implies that C ∈ I

and C ∈ I′, so C ∈ I ∩ I′. 	
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Theorem 14.26. Let F and F′ be two dual hereditary families of sets. Then,

F ∧ F′ = F ∩ F′.

Proof. Let C ∈ F ∧ F′. Then, C = A ∪ B, where A ∈ F and B ∈ F′. Since
A ⊆ C and B ⊆ C, the dual hereditary character of F and F′ implies that
C ∈ F and C ∈ F′, so C ∈ F ∩ F′. 	


The inequality contained by the next corollary is known as Kleitman’s
inequality.

Corollary 14.27. If I is a hereditary family and F is a dual hereditary family
of subsets of a finite set S, then |I| · |F| ≥ 2|S| · |I ∩ F|.

Proof. Note that I′ = P(S)−F is a hereditary family. By Corollary 14.23, we
have

|I| · |I′| ≤ |I ∨ I′| · |I ∧ I′|
= |I ∩ I′| · |I ∧ I′|

(by Theorem 14.25)

Note that |I′| = 2|S| − |F|. Thus, we can write

|I| ·
(
2|S| − |F|

)
= |I− (I ∩ F)| · |I ∧ I′|

= (|I| − |I ∩ F|) · |I ∧ I′|
≤ 2|S| · (|I| − |I ∩ F|) ,

which gives the desired inequality. 	

If φ is logarithmic supramodular on S (see Definition 8.53), then, by the

Ahlswede-Daykin inequality, we have

φ(A)φ(B) ≤ φ(A ∨B)φ(A ∧B),

for every A,B ⊆ P(S) and φ(E) =
∑

E∈E φ(E), for E ⊆ P(S).

Exercises and Supplements

1. A derangement is a permutation f : {1, . . . , n} −→ {1, . . . , n} such that
f(i) �= i for 1 ≤ i ≤ n. Denote by E{i1···ik} the set of permutations f of
PERMn such that f(ip) = ip for 1 ≤ p ≤ k.
a) Prove that |E{i1···ik}| = (n− k)!.
b) By applying the inclusion-exclusion principle, prove that the number

of derangements is

Dn = n!
(

1− 1
1!

+
1
2!

+ · · ·+ (−1)n 1
n!

)
.
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c) Use a combinatorial argument to prove that

n! =
n∑

j=0

(
n

j

)
Dn−j .

2. Let S be a set, C be a collection of subsets of S and T be a subset of
S. Denote by d(C, T ) the collection of sets in C that are disjoint from
T , {C ∈ C | C ∩ T = ∅}. If ck is the number of ways to choose a
subcollection D of C such that |D| = k and

⋃
S = S, then prove that

ck =
∑

T⊆S(−1)|T ||d(C, T )|k.
Solution: Note that there are |d(C, T )|k ways to pick k sets C1, . . . , Ck

of C that are disjoint from T . If
⋃
Ci = S, then at least one of these sets

must intersect T , which implies T = ∅. Thus, every cover contributes only
to the term (−1)0|d(C, ∅)|k.

If
⋃
Ci = V ⊂ S, then the Ci contribute to every term corresponding

to T = S − V , so the total contribution of C1, . . . , Ck is
∑

T⊆S−V (−1)T ,
and this sum equals 0 because every nonempty set has an equal number
of even and odd-sized subsets. Thus, only the collection of sets that cover
the entire set S contributes to ck.

3. Let P be a subset of {1, . . . , 2n} such that |P | = n+ 1. Prove that there
exists a pair of numbers in P × P whose components are relatively prime
numbers.

4. Prove that R(m, p, q) ≤
(
m+ p− 2
m− 1

)
for m ≥ 2 and p ≥ 2.

5. Let G = (N, E) be a complete graph having N as its set of vertices and
E = (m,n) ∈ P2(N) | m �= n.
a) If f : E −→ {c1, c2} is a two-color coloring of the edges of G, prove that

there exists an infinite complete subgraph of G that is monochromatic.
b) Extend this statement to an r-color coloring, where r ≥ 3.
Solution: Define the sequence of infinite subsets T0, T1, . . . of N as

follows. The initial set is T0 = N. Suppose Ti is defined. Choose ni ∈ Ti,
and let Uij = {n ∈ T − {ni} | f(ni, n) = cj} for j = 1, 2. At least one of
Ui1, Ui2 is infinite, and Ti+1 is chosen as one of Ui1, Ui2 that is infinite.

If i ≤ min{j, k}, then nj ∈ Tj ⊂ Ti+1 and nk ∈ Tk ⊂ Ti+1, which
implies f(ni, nj) = f(ni, nk) because of the definition of the sets Ti. Let
U = {n0, n1, . . .} and let g : U −→ {c1, c2} be given by g(ni) = f(ni, nj)
for i < j. It is clear that g is well-defined. Since U is an infinite set,
at least one of the subsets g−1(c1), g−1(c2) is infinite. Let W be one of
these subsets that is infinite. Then, for nl, nk ∈ W , where l < k, we
have g(nl) = g(nk) = c and therefore f(nl, nk) = c. Thus, the subgraph
induced by U is monochromatic.

6. Let n = (n0, n1, . . .) ∈ Seq∞(N) be a sequence of natural numbers. Prove
that n contains a subsequence that is either strictly increasing, strictly
decreasing, or constant. Extend this result to countable, totally ordered
sets.
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Hint: Consider the complete graph on the set {n0, n1, . . .}, and color each
edge (ni, nj) with i < j with red if ni < nj , blue if ni > nj , and white if
ni = nj .

7. Let a = (a1, . . . , an) be a sequence in Seqn(N) such that r ≤ min ai and
let p = max ai. If p = (p, . . . , p) ∈ Seqn(N), prove that Ramsey(p, r) ≥
Ramsey(a, r).

8. The left shift and the right shift on PERMn are the mappings lshift, rshift :
PERMn −→ PERMn defined by

lshift(a1, a2, . . . , an) = (a2, . . . , an, a1),
rshift(a1, a2, . . . , an) = (an, a1 . . . , an−1),

for every (a1, . . . , an) ∈ PERMn, respectively.
a) Prove that lshift and rshift are inverse to each other.
b) Two permutations f, g ∈ PERMn are equivalent, f ≡ g, if there exists

an integer k such that lshift(k)(f) = g. Here h(k) denotes the kth

iteration of h.
Prove that “≡” is an equivalence on PERMn.

9. Prove that S(n, 2) = 2n−1 − 1 for n ≥ 2.
10. Prove that

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1),

for 1 ≤ m ≤ n, using a combinatorial argument.
11. The number of partitions of a set having n elements is denoted by Bn and

is known as the nth Bell number. Clearly, Bn =
∑n

m=0 S(n,m). Prove
that:

Bn =
n−1∑
m=0

(
n− 1
m

)
Bm.

12. Prove that if 0 ≤ p ≤ (n + 1)! − 1, then there exists a unique sequence
a = (a1, . . . , an) ∈ Seq(nn) such that 0 ≤ ai ≤ i and p = a1 · 1! + a2 · 2! +
· · ·+ an · n!.

13. Consider the polynomial [x]n = x(x − 1) · · · (x − n + 1). The coefficients
of this polynomial

[x]n = s(n, n)xn + s(n, n− 1)xn−1 + · · ·+ s(n, i)xi + · · ·+ s(n, 0)

are known as the Stirling numbers of the first kind.
Prove that

s(n, 0) = 0,
s(n, n) = 1,

s(n+ 1, k) = s(n, k − 1)− ns(n, k).

Hint:: To prove the last equality, note that [x]n+1 = [x]n(x − n) and
seek the coefficient of xk in both sides.
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14. The Stirling numbers of the second kind occur in an equality related to
the one used to define the Stirling numbers of the first kind.
Prove that every polynomial xn can be written as

xn =
n∑

i=1

S(n, i)[x]i.

Solution: Let A and B be two finite sets such that |A| = n and
|B| = m. There are mn functions f : A −→ B. These functions can be
classified depending on the size of their range f(A). If g : A −→ B is a
function such that |g(A)| = j, then g can be regarded as a surjection from
A to g(A). Since there are j!S(n, j) such onto functions and there are

(
m
j

)
subsets of B that have j elements, we can write

mn =
m∑

j=1

(
m

j

)
j!S(n, j)

= m(m− 1) · · · (m− j + 1)S(n, j).

15. Prove the inequality

S(n, i− 1)S(n, i+ 1) ≤ (S(n, i))2

for 1 ≤ i ≤ n− 1.
16. Consider the equation x1 + · · ·+ xp = n, where n ≥ 1. Prove that:

a) the number of solutions in natural numbers is
(
n+p−1

p−1

)
;

b) the number of solutions in positive integers is
(
n−1
p−1

)
.

Solution: Let S = {a, b} be a two-element set and let a = (a, . . . , a) ∈
Seqn(S) be a sequence of length n. Let a′ ∈ Seqn+p−1 be the sequence
obtained from a by inserting p− 1 elements b. The number of a symbols
between any two consecutive bs yields a solution in natural numbers if
adjacent b symbols are allowed and there are

(
n+p−1

p−1

)
configurations of a′,

each corresponding to a choice of p−1 positions out of a total of n+p−1
possible places. Further, any solution of the equation can be obtained in
this manner. The second part follows immediately from the first part.

17. Prove that |IPn(�)| equals the number of solutions of the equation y1 +
· · · + y� = n − � such that y1 ≥ y2 ≥ · · · ≥ y� ≥ 0. Infer that |IPn(�)| =∑�

k=1 |IPn−�(k)|.
18. Prove that the number of Ferrers diagrams that can be placed in an m×n

rectangle is
(
m+n

n

)
.

19. A partition k ∈ IPn is self-conjugate if k′ = k. Using Ferrers diagrams
prove that the number of self-conjugate partitions in IPn equals the num-
ber of partitions of n into distinct odd numbers.

20. Let S be a set having n elements.
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a) A collection A of subsets of S has the intersecting property if A,B ∈ A

implies A∩B �= ∅. Prove that if A has the intersecting property, then
|A| ≤ 2n−1.

b) Prove that there are collections of subsets of S that have the inter-
secting property and contain 2n−1 subsets.

Solution: For Part 1, note that, for any subset B, at most one of the
sets B, S −B may belong to A. Therefore, A may not contain more than
half of the members of P(S), so |A| ≤ 2n−1.

A collection of sets that answers Part (b) is the set of subsets of S that
contain a fixed element a of S. Clearly, there are 2n−1 such sets.

21. Prove Sperner’s theorem using Supplement 54 of Chapter 1.
Solution: Let C be a Sperner system on a finite set S such that |S| = n

and let c : {0, 1, . . . , n} −→ N be defined by c(k) = |{X ∈ C | |X| = k} for
0 ≤ k ≤ n. Suppose that i0 = min{i | 1 ≤ i ≤ n | c(i) > 0} < n−1

2 . By
Part (e) of Supplement 54 in Chapter 1, for each of the sets X in C with
|X| = i0, there exists a set X ′ in the shade of {X ∈ C | |X| = i0} such
that |X ′| = i0+1 andX ′ �∈ C. By replacing eachX with the corresponding
X ′, we obtain a new Sperner system with the same number of sets as C.
The process is repeated until a Sperner system C′ that contains no sets
with fewer than n−1

2 elements is obtained and C′ = |C|. Thus each set
in C′ has at least n+1

2 elements. Now the process is reversed using the
ΔC′ by replacing every set of C′ of size n+1

2 by a set of size �n
2 �. The

Sperner system C′′ has the same size as C and consists of sets of size n+1
2 ,

so |C| ≤
(

n

n

2 �
)
.

22. Let C and D be two collections of subsets of a set S. In Definition 1.20,
we introduced the collection D− C as C−D = {U − V | U ∈ C, V ∈ D}.
Prove that |C− C| ≥ |C|.

Solution: Let D be a collection of subsets of a set S and let D′ =
{S −D | D ∈ D}. Observe that |D| = |D′|.

If C and D are two collections of subsets of S, we have |C ∨ D′| =
|(C∨D′)′| = |C′∧D|. By the previous observation and by Corollary 14.23,
we can write

|C| · |D| = |C| · |D′| ≤ |C ∨D′| · |C ∧D′|
= |C′ ∧D| · |C ∧D′| = |D− C| · |C−D|.

If we now choose D = C, the previous inequality yields |C|2 ≤ |C − C|2,
which gives the desired inequality.

23. Prove that if C and D are hereditary or dually hereditary families of
subsets of a finite set S, then |C| · |D| ≤ 2n · |C ∩D|.

24. Let I be a set of items and T : {1, . . . , n} −→ P(I) be a transaction data
set. Recall that in Section 7.6 we introduced the function tidsT : P(I) −→
P({1, . . . , n) by tidsT (H) = {k ∈ {1, . . . , n} | H ⊆ T (k)} for any item set
H.



Bibliographical Comments 549

a) Prove that if L, J ⊆ I, J ⊆ L, and L − J = {i1, . . . , ip}, then
tidsT (L) =

⋂p
�=1 tidsT (J ∪ {i�}).

b) Let FL
J be the number FL

J = |{(h, J ′) | J ′ ⊆ T (h) and J ′ ∩ L = J |.
Prove that

FL
J =

∣∣∣∣∣
p⋃

k=1

tidsT (J ∪ {ik})
∣∣∣∣∣− |tidsT (J)|.

c) By applying the Inclusion-Exclusion Principle, prove that

suppcount(L)− (−1)pFL
J =

∑
J⊆J ′⊂L

(−1)|L−J ′|+1suppcount(J ′).

Bibliographical Comments

Supplement 2 was obtained in [15]. The inequality from Supplement 22 was
obtained in [96]. Exercise 24 contains a result of T. Calders [26].

There are several well-known and comprehensive references on combina-
torics that contain rich collections of ideas [128, 129] and [57].
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The Vapnik-Chervonenkis Dimension

15.1 Introduction

The concept of the Vapnik-Chervonenkis dimension of a collection of sets
was introduced in [139] and independently in [117]. Its main interest for data
mining is related to one of the basic models of machine learning, the prob-
abilistic approximately correct learning paradigm as was shown in [16]. The
subject is of great interest to probability theorists interested in empirical pro-
cesses [41, 108].

15.2 The Vapnik-Chervonenkis Dimension

Definition 15.1. Let U be a set, K be a subset of U , and C be a collection of
subsets of U , C ⊆ P(U). If the trace of C on K, CK equals P(K), then we say
that K is shattered by C.

The Vapnik-Chervonenkis dimension of the collection C (called the VC-
dimension for brevity) is the largest cardinality of a set K that is shattered by
C and is denoted by VCD(C).

If U is a finite set, then the trace of a collection C = {C1, . . . , Cp} of
subsets of U on a subset K of U can be presented in an intuitive, tabular form.
Suppose, for example, that U = {u1, . . . , un}, and let θ = (TC, u1u2 · · ·un, r)
be a table, where r = (t1, . . . , tp). The domain of each of the attributes ui is
the set {0, 1}.

Each tuple tk corresponds to a set Ck of C and is defined by

tk[ui] =

{
1 if ui ∈ Ck,

0 otherwise,

for 1 ≤ i ≤ n. Then, C shatters K if the content of the projection r[K] consists
of 2|K| distinct rows.

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 15, c© Springer-Verlag London Limited 2008
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Example 15.2. Let U = {u1, u2, u3, u4} and let C be the collection of subsets
of U given by

C = {{u2, u3}, {u1, u3, u4}, {u2, u4},
{u1, u2}, {u2, u3, u4}} .

The tabular representation of C is

TC

u1 u2 u3 u4

0 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0
0 1 1 1

The set K = {u1, u3} is shattered by the collection C because

r[K] = ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1))

contains the all four necessary tuples (0, 1), (1, 1), (0, 0), and (1, 0). On the
other hand, it is clear that no subset K of U that contains at least three
elements can be shattered by C because this would require r[K] to contain at
least eight tuples. Thus, VCD(C) = 2.

Theorem 15.3. Let U be a finite nonempty set and let C be a collection of
subsets of U . If d = VCD(C), then 2d ≤ |C| ≤ (|U |+ 1)d.

Proof. If C shatters a finite set K of size d, then CK must contain at least 2d

sets. Therefore, 2d ≤ |C|.
The argument for the inequality |C| ≤ (|U |+ 1)d is by induction on |U |.
The basis step, |U | = 1, is immediate.
Suppose that the statement holds for sets of size at most n and let U be

a set such that |U | = n + 1. Select an element x0 ∈ U and define the set
U1 = U − {x0} and the collection of sets

C0 = {D ∈ C | D = E ∪ {x0} for some E ∈ C and x0 �∈ E}.

Let C1 = C− C0.
The sets of C0 are distinct on U1; in other words, if D ∩ U1 = D′ ∩ U1 for

D,D′ ∈ C1, then D = D′, as can be seen immediately.
Let C′

0 = {D − {x0} | D ∈ C1}. The definition of C0 implies that C′
0 ⊆ C

and that C′
0 ⊆ P(U1). It is clear that the collections C′

0 and C0 have the same
cardinality.



15.2 The Vapnik-Chervonenkis Dimension 553

If C′
0 shatters a subset S of U1 with |S| = d, then S∪{x0} will be shattered

by C0, and therefore by C. Since this is not possible (because |S∪{x0}| = d+1
and VCD(C) = d), it follows that VCD(C′

0) ≤ d − 1. Thus, by the inductive
hypothesis, |C′

0| ≤ (|U1|+ 1)d−1.
If D ∈ C1, then D ∈ C and we have two cases:

1. x0 �∈ D and therefore D ⊆ U1, or
2. x0 ∈ D and D − {x0} �∈ C.

Consider the collection C′
1 = {D−{x0} | D ∈ C1}. The mapping � : C1 −→ C′

1

defined by �(D) = D−{x0} is a bijection. It is immediate that � is a surjection;
thus, we need to show only that � is injective.

Suppose that D − {x0} = D′ − {x0} for D,D′ ∈ C1. If x0 �∈ D, then
D = D′ − {x0}. Suppose that x0 ∈ D′. In this case, D′ − {x0} �∈ C and this
contradicts the fact that D ∈ C. Thus, x0 �∈ D′ and so, D = D′.

If x0 ∈ D, then D−{x0} �∈ C. Thus, D′−{x0} �∈ C, which happens only if
x0 ∈ D′. Thus, D = D′, so � is indeed a bijection. This allows us to conclude
that C′

1 is a collection of concepts on U1 that has the same cardinality as C1.
If C′

1 shatters a subset Z of U1 of size larger than d, then C1 shatters
Z, which is not possible. Thus, VCD(C′

1) ≤ d. By the inductive hypothesis,
|C′

1| ≤ (|U1|+ 1)d, which means that |C1| ≤ (|U1|+ 1)d.
We conclude that

|C| = |C0|+ |C1| ≤ (|U1|+ 1)d−1 + (|U1|+ 1)d

≤ (|U1|+ 1)d−1(|U1|+ 2) ≤ (|U1|+ 2)d = (|U |+ 1)d.

	

It is clear that every collection of sets shatters the empty set. Also, if C

shatters a set of size n, then it shatters a set of size p, where p ≤ n.
For a collection of sets C and for m ∈ N, let C[m] be the number

C[m] = max{|CK | | |K| = m}.

This is the largest number of distinct subsets of a set having m elements that
can be obtained as intersections of the set with members of C. In general,
C[m] ≤ 2m; however, if C shatters a set of size m, then C[m] = 2m.

Definition 15.4. A Vapnik-Chervonenkis class (or a VC class) is a collection
C of sets such that VCD(C) is finite.

Example 15.5. Let R be the set of real numbers and let S be the collection of
sets {(−∞, t) | t ∈ R}. We claim that any singleton is shattered by S. Indeed,
if S = {x} is a singleton, then P({x}) = {∅, {x}}. Thus, if t ≥ x, we have
(−∞, t) ∩ S = {x}; also, if t < x, we have (−∞, t) ∩ S = ∅, so SS = P(S).

There is no set S with |S| = 2 that can be shattered by S. Indeed, suppose
that S = {x, y}, where x < y. Then, any member of S that contains y includes
the entire set S, so SS = {∅, {x}, {x, y}} �= P(S). This shows that S is a VC
class and VCD(S) = 1.
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Example 15.6. Consider the collection I = {[a, b] | a, b ∈ R, a ≤ b} of closed
intervals. We claim that VCD(I) = 2. To justify this claim, we need to show
that there exists a set S = {x, y} such that IS = P(S) and no three-element
set can be shattered by I.

For the first part of the statement, consider the intersections

[u, v] ∩ S = ∅, where v < x,
[x− ε, x+y

2 ] ∩ S = {x},
[x+y

2 , y] ∩ S = {y},
[x− ε, y + ε] ∩ S = {x, y},

which show that IS = P(S).
For the second part of the statement, let T = {x, y, z} be a set that contains

three elements. Note that any interval that contains x and z also contains y, so
it is impossible to obtain the set {x, z} as an intersection between an interval
in I and the set T .

Example 15.7. Let H be the collection of closed half-planes in R
2, that is, the

collection of sets of the form

{x = (x1, x2) ∈ R
2 | ax1 + bx2 − c ≥ 0, a �= 0 or b �= 0}.

We claim that VCD(H) = 3.
Let P,Q,R be three points in R

2 such that they are not located on the
same line. Each line in Figure 15.1 is marked with the sets it defines; thus, it
is clear that the family of hyperplanes shatters the set {P,Q,R}, so VCD(H)
is at least 3.

�

�

�

P

Q

R

{P, Q}

{Q}{P, R}

{P}

{Q, R}

∅ {P, Q, R}

{R}

Fig. 15.1. Three-point sets can be shattered by half-planes.

To complete the justification of the claim we need to show that no set that
contains at least four points can be shattered by H.
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Let {P,Q,R, S} be a set that contains four points such that no three points
of this set are collinear. If S is located inside the triangle P,Q,R, then every
half-plane that contains P,Q,R will contain S, so it is impossible to separate
the subset {P,Q,R}. Thus, we may assume that no point is inside the triangle
formed by the remaining three points (see Figure 15.2). Note that any half-
plane that contains two diagonally opposite points, for example, P and R,
will contain either Q or S, which shows that it is impossible to separate the
set {P,R}. Thus, no set that contains four points may be shattered by H, so
VCD(H) = 3.

�

�

�

�

P

Q

R

S

Fig. 15.2. A four-point set cannot be shattered by half-planes.

Example 15.8. Let R
2 be equipped with a system of coordinates and let R be

the set of rectangles whose sides are parallel with the axes x and y. Each such
rectangle has the form [x0, x1]× [y0, y1].

There is a set S with |S| = 4 that is shattered by R. Indeed, let S be
a set of four points in R

2 that contains a unique “northernmost point” Pn,
a unique “southernmost point” Ps, a unique “easternmost point” Pe, and a
unique “westernmost point” Pw. If L ⊆ S and L �= ∅, let RL be the smallest
rectangle that contains L. For example, we show the rectangle RL for the set
{Pn, Ps, Pe} in Figure 15.3.

On the other hand, this collection cannot shatter a set of points that
contains at least five points. Indeed, let S be a set of points such that |S| ≥ 5
and, as before, let Pn be the northernmost point, etc. If the set contains more
than one “northernmost” point, then we select exactly one to be Pn. Then,
the rectangle that contains the set K = {Pn, Pe, Ps, Pw} contains the entire
set S, which shows the impossibility of separating the set K.

If a collection of sets C is not a VC class (that is, if the Vapnik-
Chervonenkis dimension of C is infinite), then C[m] = 2m for all m ∈ N.
However, we shall prove that if VCD(C) = d, then C[m] is bounded asymp-
totically by a polynomial of degree d.

For n, k ∈ N and 0 ≤ k ≤ n define the number
(

n
≤k

)
as
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�

�

�

�

Pn

Ps

Pe

Pw

Fig. 15.3. Rectangle that separates the set {Pn, Ps, Pe}.

(
n

≤ k

)
=

k∑
i=0

(
n

k

)

Theorem 15.9. Let φ : N
2 −→ N be the function defined by

φ(d,m) =

{
1 if m = 0 or d = 0
φ(d,m− 1) + φ(d− 1,m− 1) otherwise.

We have

φ(d,m) =
(
m

≤ d

)
for d,m ∈ N.

Proof. The argument is by strong induction on s = i + m. The base case,
s = 0, implies m = 0 and d = 0, and the equality is immediate. Suppose that
the equality holds for φ(d′,m′), where d′ +m′ < d+m. We have

φ(d,m) = φ(d,m− 1) + φ(d− 1,m− 1)
(by definition)

=
∑d

i=0

(
m−1

i

)
+
∑d−1

i=0

(
m−1

i

)
(by inductive hypothesis)

=
∑d

i=0

(
m−1

i

)
+
∑d

i=0

(
m−1
i−1

)
(since

(
m−1
−1

)
= 0)

=
∑d

i=0

((
m−1

i

)
+
(
m−1
i−1

))
=
∑d

i=0

(
m
i

)
=
(

m
≤d

)
,

which gives the desired conclusion. 	


Theorem 15.10 (Sauer-Shelah Theorem). If C is a collection of subsets
of S that is a VC-class such that VCD(C) = d, then C[m] ≤ φ(d,m) for
m ∈ N, where φ is the function defined in Theorem 15.9.



15.2 The Vapnik-Chervonenkis Dimension 557

Proof. The argument is by strong induction on s = d+m. For the base case,
s = 0 we have d = m = 0 and this means that the collection C shatters only
the empty set. Thus, C[0] = |C∅| = 1, and this implies C[0] = 1 = φ(0, 0).

Suppose that the statement holds for pairs (d′,m′) such that d′ +m′ < s
and let C be a collection of subsets of S such that VCD(C) = d.

Let K be a set of cardinality m and let k0 be a fixed (but, otherwise,
arbitrary) element ofK. Consider the trace CK−{k0}. Since |K−{k0}| = m−1,
we have, by the inductive hypothesis, |CK−{k0}| ≤ φ(d,m− 1).

Let C′ be the collection of sets given by

C′ = {G ∈ CK | k0 �∈ G,G ∪ {k0} ∈ CK}.

Observe that C′ = C′
K−{k0} because C′ consists only of subsets of K − {k0}.

Further, note that the Vapnik-Chervonenkis dimension of C′ is less than d.
Indeed, let K ′ be a subset of K − {k0} that is shattered by C′. Then, K ′ ∪
{k0} is shattered by C. hence |K ′| < d. By the inductive hypothesis, |C′| =
|CK−{k0}| ≤ φ(d− 1,m− 1).

The collection of sets CK is a collection of subsets ofK that can be regarded
as the union of two disjoint collections: those subsets in CK that do not contain
the element k0. and those subsets of K that contain k0. The first type of
subsets forms the collection CK−{k0}. If L is a second type of subset, then
L− {k0} is clearly a member of C′. Thus, we have

|CK | = |CK−{k0}|+ |C′
K−{k0}|

This equality implies

|CK | ≤ φ(d,m− 1) + φ(d− 1,m− 1),

which is the desired conclusion. 	


Lemma 15.11. For d ∈ N and d ≥ 2 we have

2d−1 ≤ dd

d!
.

Proof. The argument is by induction on d. In the basis step, d = 2 both
members are equal to 2.

Suppose the inequality holds for d. We have
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(d+ 1)d+1

(d+ 1)!
=

(d+ 1)d

d!

=
dd

d!
· (d+ 1)d

dd

=
dd

d!
·
(

1 +
1
d

)d

≥ 2d ·
(

1 +
1
d

)d

(by inductive hypothesis)
≥ 2d

because (
1 +

1
d

)d

≥ 1 + d
1
d

= 2.

This concludes the proof of the inequality. 	


Lemma 15.12. The function φ satisfies the inequality:

φ(d,m) ≤ 2
md

d!

for every m ≥ d and d ≥ 1.

Proof. The argument is by induction on d and n. If d = 1, then φ(1,m) =
m+ 1 ≤ 2m for m ≥ 1, so the inequality holds for every m ≥ 1, when d = 1.

If m = d ≥ 2, then φ(d,m) = φ(d, d) = 2d and the desired inequality
follows immediately from Lemma 15.11.

Suppose that the inequality holds for m > d ≥ 1. We have

φ(d,m+ 1) = φ(d,m) + φ(d− 1,m)
(by the definition of φ)

≤ 2
md

d!
+ 2

md−1

(d− 1)!
(by inductive hypothesis)

= 2
md−1

(d− 1)!

(
1 +

m

d

)
.

It is easy to see that the inequality

2
md−1

(d− 1)!

(
1 +

m

d

)
≤ 2

(m+ 1)d

d!

is equivalent to
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d

m
+ 1 ≤

(
1 +

1
m

)d

and, therefore, is valid. This yields immediately the inequality of the lemma.
	


The next theorem discusses the asymptotic behavior of the function φ:

Theorem 15.13. The function φ satisfies the inequality:

φ(d,m) <
(em
d

)d

for every m ≥ d and d ≥ 1.

Proof. From Lemma 15.12 we know that φ(d,m) ≤ 2md

d! . Therefore, we need
to show only that

2
(
d

e

)d

< d!.

The argument is by induction on d ≥ 1. The basis case, d = 1 is immediate.
Suppose that 2

(
d
e

)d
< d!. We have

2
(
d+ 1
e

)d+1

= 2
(
d

e

)d(
d+ 1
d

)d
d+ 1
e

=
(

1 +
1
d

)d 1
e
· 2
(
d

e

)d

(d+ 1)

< 2
(
d

e

)d

(d+ 1),

because (
1 +

1
d

)d

< e.

The last inequality holds because the sequence (
(
1 + 1

d

)d)d∈N
is an increasing

sequence whose limit is e. Since 2
(

d+1
e

)d+1
< 2

(
d
e

)d
(d + 1), by inductive

hypothesis we obtain:

2
(
d+ 1
e

)d+1

< (d+ 1)!.

This proves the inequality of the theorem. 	


Corollary 15.14. If m is sufficiently large we have φ(d,m) = O(md).
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Proof. The statement is a direct consequence of Theorem 15.13. 	

Let u : Bk

2 −→ B2 be a Boolean function of k arguments and let C1, . . . , Ck

be k subsets of a set U . Define the set u(C1, . . . , Ck) as the subset C of U
whose indicator function is IC = u(IC1 , . . . , ICk

).

Example 15.15. If u : B2
2 −→ B2 is the Boolean function u(a1, a2) = a1 ∨ a2,

then u(C1, C2) is C1 ∪ C2; similarly, if u(x1, x2) = x1 ⊕ x2, then u(C1, C2) is
the symmetric difference C1 ⊕ C2 for every C1, C2 ∈ P(U).

Let u : Bk
2 −→ B2 and C1, . . . ,Ck are k family of subsets of U , the family

of sets u(C1, . . . ,Ck) is

u(C1, . . . ,Ck) = {u(C1, . . . , Ck) | C1 ∈ C1, . . . , Ck ∈ Ck}.

Theorem 15.16. Let α(k) be the least integer a such that a
log(ea) > k.

If C1, . . . ,Ck are k collections of subsets of the set U such that d =
max{VCD(Ci) | 1 ≤ i ≤ k} and u : B2

2 −→ B2 is a Boolean function,
then

VCD(u(C1, . . . ,Ck)) ≤ α(k) · d.

Proof. Let S be a subset of U that consists ofm elements. The collection (Ci)S

is not larger than φ(d,m). For a set in the collection W ∈ u(C1, . . . ,Ck)S we
can write W = S ∩ u(C1, . . . , Ck), or, equivalently, 1W = 1S · u(1C1 , . . . , 1Ck

).
By Exercise 20 of Chapter 5, there exists a Boolean function gS such that

1S · u(1C1 , . . . , 1Ck
) = gS(1S · 1C1 , . . . , 1S · 1Ck

) = gS(1S∩C1 , . . . , 1S∩Ck
).

Since there are at most φ(d,m) distinct sets of the form S ∩ Ci for every i,
1 ≤ i ≤ k, it follows that there are at most (φ(d,m))k distinct sets W , hence
u(C1, . . . ,Ck)[m] ≤ (φ(d,m))k.

Theorem 15.13 implies

u(C1, . . . ,Ck)[m] ≤
(em
d

)kd

.

We observed that if C[m] < 2m, then VCD(C) < m. Therefore, to limit the
Vapnik-Chervonenkis dimension of the collection u(C1, . . . ,Ck) it suffices to
require that

(
em
d

)kd
< 2m.

Let a = m
d . The last inequality can be written as (ea)kd < 2ad; equivalently,

we have (ea)k < 2a, which yields k < a
log(ea) . If α(k) is the least integer a such

that k < a
log(ea) , then m ≤ α(k)d, which gives our conclusion. 	


Example 15.17. If k = 2, the least integer a such that a
log(ea) > 2 is k = 10, as

it can be seen by graphing this function; thus, if C1,C2 are two collection of
concepts with VCD(C1) = VCD(C2) = d, the Vapnik-Chervonenkis dimension
of the collections C1 ∨ C2 or C1 ∧ C2 is not larger than 10d.
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Lemma 15.18. Let S, T be two sets and let f : S −→ T be a function. If D

is a collection of subsets of T , U is a finite subset of S and C = f−1(D) is the
collection {f−1(D) | D ∈ D}, then |CU | ≤ |Df(U)|.

Proof. Let V = f(U) and denote f �U by g. For D,D′ ∈ D we have

(U ∩ f−1(D))⊕ (U ∩ f−1(D′))
= U ∩ (f−1(D)⊕ f−1(D′)) = U ∩ (f−1(D ⊕D′))
= g−1(V ∩ (D ⊕D′)) = g−1(V ∩D)⊕ g−1(V ⊕D′).

Thus, C = U ∩ f−1(D) and C ′ = U ∩ f−1(D′) are two distinct members of
CU , then V ∩D and V ∩D′ are two distinct members of Df(U). This implies
|CU | ≤ |Df(U)|. 	


Theorem 15.19. Let S, T be two sets and let f : S −→ T be a function. If D

is a collection of subsets of T and C = f−1(D) is the collection {f−1(D) | D ∈
D}, then VCD(C) ≤ VCD(D). Moreover, if f is a surjection, then VCD(C) =
VCD(D).

Proof. Suppose that C shatters an n-element subset K = {x1, . . . , xn} of S, so
|CK | = 2n By Lemma 15.18 we have |CK | ≤ |Df(U)|, so |Df(U)| ≥ 2n, which
implies |f(U)| = n and |Df(U)| = 2n, because f(U) cannot have more than n
elements. Thus, D shatters f(U), so VCD(C) ≤ VCD(C).

Suppose now that f is surjective and H = {t1, . . . , tm} is an m element
set that is shattered by D. Consider the set L = {u1, . . . , um} such that
ui ∈ f−1(ti) for 1 ≤ i ≤ m. Let U be a subset of L. Since H is shattered by D,
there is a set D ∈ D such that f(U) = H ∩D, which implies U = L∩f−1(D).
Thus, L is shattered by C and this means that VCD(C) = VCD(D). 	


Definition 15.20. The density of C is the number

dens(C) = inf{s ∈ R>0 | C[m] ≤ c ·ms for every m ∈ N},

for some positive constant c.

Theorem 15.21. Let S, T be two sets and let f : S −→ T be a function. If D

is a collection of subsets of T and C = f−1(D) is the collection {f−1(D) | D ∈
D}, then dens(C) ≤ dens(D). Moreover, if f is a surjection, then dens(C) =
dens(D).

Proof. Let L be a subset of S such that |L| = m. Then, |CL| ≤ |Df(L)|.
In general, we have |f(L)| ≤ m, so |Df(L)| ≤ D[m] ≤ cms. Therefore, by
Lemma 15.18, we have |CL| ≤ |Df(L)| ≤ D[m] ≤ cms, which implies dens(C) ≤
dens(D).

If f is a surjection, then, for every finite subset M of T such that |M | = m
there is a subset L of S such that |L| = |M | and f(L) = M . Therefore,
D[m] ≤ C[m] and this implies dens(C) = dens(D). 	
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If C,D are two collections of sets such that C ⊆ D, then VCD(C) ≤
VCD(D) and dens(C) ≤ dens(D).

Theorem 15.22. Let C be a collection of subsets of a set S and let C′ =
{S − C | C ∈ C}. Then, for every K ∈ P(S) we have |CK | = |C′

K |.

Proof. We will prove the statement by showing the existence of a bijection
f : CK −→ C′

K . If U ∈ CK , then U = K ∩ C, where C ∈ C. Then S − C ∈ C′

and we define f(U) = K ∩ (S−C) = K−C ∈ C′
K . Note that f is well-defined

because if K ∩C1 = K ∩C2, then K −C1 = K − (K ∩C1) = K − (K ∩C2) =
K − C2.

It is clear that if f(U) = f(V ) for U, V ∈ CK , U = K∩C1, and V = K∩C2,
then K − C1 = K − C2, so K ∩ C1 = K ∩ C2 and this means that U = V .
Thus, f is injective. If W ∈ C′

K , then W = K ∩ C ′ for some C ′ ∈ C. Since
C ′ = S−C for some C ∈ C, it follows that W = K −C, so W = f(U), where
U = K ∩ C. 	


Corollary 15.23. Let C be a collection of subsets of a set S and let C′ =
{S − C | C ∈ C}. We have dens(C) = dens(C′) and VCD(C) = VCD(C′).

Proof. This statement follows immediately from Theorem 15.22. 	


Theorem 15.24. For every collection of sets we have dens(C) ≤ VCD(C).
Furthermore, if dens(C) is finite, then C is a VC-class.

Proof. If C is not a VC-class the inequality dens(C) ≤ VCD(C) is clearly
satisfied. Suppose now that C is a VC-class and VCD(C) = d. By Sauer-Shelah
Theorem (Theorem 15.10) we have C[m] ≤ φ(d,m); then, by Theorem 15.13,
we obtain C[m] ≤

(
em
d

)d, so dens(C) ≤ d.
Suppose now that dens(C) is finite. Since C[m] ≤ cms ≤ 2m for m suffi-

ciently large, it follows that VCD(C) is finite, so C is a VC-class. 	

Let D be a finite collection of subsets of a set S. In Supplement 6 of

Chapter 1 the partition πD was defined as consisting of the nonempty sets of
the form {Da1

1 ∩Da2
2 ∩ · · · ∩Dar

r , where (a1, a2, . . . , ar) ∈ {0, 1}r.

Definition 15.25. A collection D = {D1, . . . , Dr} of subsets of a set S is
independent if the partition πD has the maximum numbers of blocks, that is,
it consists of 2r blocks.

If D is independent, then the Boolean subalgebra generated by D in the
Boolean algebra (P(S), {∩,∪, ¯ , ∅, S}) contains 22r

sets, because this subal-
gebra has 2r atoms. Thus, if D shatters a subset T with |T | = p, then the
collection DT contains 2p sets, which implies 2p ≤ 22r

, or p ≤ 2r.
Let C be a collection of subsets of a set S. The independence number of C,

I(C) is:
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I(C) = sup{r | {C1, . . . , Cr}
is independent for some finite {C1, . . . , Cr} ⊆ C}.

The next theorem is an analog of Theorem 15.19 for the independence
number of a collection.

Theorem 15.26. Let S, T be two sets and let f : S −→ T be a function. If
D is a collection of subsets of T and C = f−1(D) is the collection {f−1(D) |
D ∈ D}, then I(C) ≤ I(D). Moreover, if f is a surjection, then I(C) = I(D).

Proof. Let E = {D1, . . . , Dp} be an independent finite subcollection of D.
The partition πE contains 2r blocks. By Supplement 23 of Chapter 5, the
number of atoms of the subalgebra generated by {f−1(D1), . . . , f−1(Dp)} is
not greater than 2r. Therefore, I(C) ≤ I(D); from the same supplement it
follows that if f is surjective, then I(C) = I(D). 	


Theorem 15.27. If C is a collection of subsets of a set S such that VCD(C) ≥
2n, then I(C) ≥ n.

Proof. Suppose that VCD(C) ≥ 2n, that is, there exists a subset T of S that is
shattered by C and has at least 2n elements. Then, the collection CT contains
at least 22n

sets, which means that the Boolean subalgebra of P(T ) generated
by TC contains at least 2n atoms. This implies that the subalgebra of P(S)
generated by C contains at least this number of atoms, so I(C) ≥ n. 	


15.3 Perceptrons

Definition 15.28. Let w ∈ R
n be a n-dimensional vector, and let t ∈ R be a

number.
A perceptron is a collection of functions Pn = {Pn

w,t | w ∈ R
n, t ∈ R},

where a function Pn
w,t : R

n −→ {0, 1} is defined by

fw,t(x) =

{
1 if wx ≥ t,
0 otherwise,

for x ∈ R
n.

We refer to w as the weight vector and to t as the threshold of the function
Pn

w,t. The set R
n+1 of all pairs (w, t) is the parameter space of the perceptron.

Define the function sign : R −→ {0, 1} by

sign(x) =

{
1 if x ≥ 0,
0 if x < 0,
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for x ∈ R. Now, the function Pn
w,t can be written simply as Pn

w,t(x) =
sign(wx− t) for x ∈ R

n.
Each function Pn

w,t generates a hyperplane Hw,t in R
n given by

Hw,t = {x ∈ R
n | wx− t = 0}.

The set Rn −Hw,t has two connected components,

H+
w,t = {x ∈ R

n | wx− t > 0},
H−

w,t = {x ∈ R
n | wx− t < 0}.

which are both half-spaces of R
n and, also are convex sets. Furthermore, H+

w,t

and H−
w,t are clearly disjoint.

The next statement is a generalization of the computation of Example 15.7.

Theorem 15.29. Let Pn be the perceptron with n inputs. For the collection
S of half-spaces generated by the perceptron we have VCD(S) = n+ 1.

Proof. We show first that no subset S of R
n that consists of n+ 2 points can

be shattered by S.
Indeed, suppose that S would shatter a set S with |S| = n+2. By Radon’s

Theorem (Theorem B.13) there are two disjoint subsets R,Q of S such that
S = R ∪Q and Kconv(R) ∩Kconv(Q) �= ∅. Suppose that there is a half-space
H+

w,t such that R ⊆ H+
w,t and Q ⊆ H−

w,t. This would imply Kconv(R) ⊆ H+
w,t

and Kconv(Q) ⊆ H−
w,t. In turn, this implies

Kconv(R)
⋂

Kconv(Q) ⊆ H+
w,t ∩H−

w,t = ∅,

which contradicts Radon’s theorem. Consequently, VCD(S) ≤ n+ 1.
To prove the converse inequality let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R

n, where
1 occurs in the ith place for 1 ≤ i ≤ n. We will prove that the collection S

shatters the set T = {0} ∪ {e1, . . . , en}.
Let U be a subset of T . Define w = (w1, . . . , wn) by wi = 2IU (ei)− 1 for

1 ≤ i ≤ n, where IU : P(T ) −→ {0, 1} is the indicator function of U . Also,
define t as

t =
1− 2 · IU (0)

2

We claim that T ∩ H+
w,t = U . Indeed, we have x ∈ T ∩ H+

w,t if and only if
wx > t.

To prove the inclusion T ∩H+
w,t ⊆ U we need to consider two cases:

(i) If x = 0 ∈ T ∩ H+
w,t, then wx > t implies t < 0, which happens if

IU (0) = 1, that is, if 0 ∈ U .
(ii) If x = ei, then wx > t is equivalent to wi > t, that is 2IU (ei) − 1 > t.

Since t ∈ {0.5,−0.5}, this implies 2IU (ei) > 0.5, so IU (ei) > 0, that is
IU (ei) = 1, which is equivalent to ei ∈ U .
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This shows that T ∩H+
w,t ⊆ U .

Conversely, if x ∈ U and x = 0 we have t = −0.5 and, therefore wx = 0 >
t, which implies 0 ∈ T ∩H+

w,t. If x ∈ U and x = ei, then wx = wi = 1 > t,
so, again, x ∈ T ∩H+

w,t.
This shows that S shatters a set with n+ 1 elements, so VCD(S) ≥ n+ 1.

	


Corollary 15.30. For the collection S of half-spaces generated by the percep-
tron Pn we have S[m] ≤ φ(n+ 1,m).

Proof. The statement follows from Theorems 15.29 and 15.10. 	


Exercises and Supplements

1. Let C,D be two collections of subsets of a set S. Prove that for every
m ∈ N we have (C ∪D)[m] = max{C[m],D[m]}.

2. Let S be a nonempty set and let C = {{x} | x ∈ S}. Prove that VCD(C) =
1.

3. Let S be a nonempty set. Prove that if C is a collection of subsets of S
such that |C| ≥ 2, then VCD(C) ≥ 1.

4. Let U be a finite set and let C be a collection of subsets of U such that
|C| ≥ 2. Prove that VCD(C) > ln |C|

1+ln |U | .
Solution: Observe that C[|U |] = |C|. Therefore, by Sauer-Shelah The-

orem (Theorem 15.10) and by Theorem 15.13, we have

|C| ≤
(
e|U |
d

)d

,

where d is the VC dimension of the collection C. The last inequality implies

ln |C| ≤ d(1 + ln |U | − ln d),

so ln |C| ≤ d(1 + ln |U |), which gives the desired inequality.
5. Prove that if C is a chain of subsets of a set S, then VCD(C) = 1.
6. Let C be a collection of subsets of S. Prove that if T is a subset of S, then

VCD(CT ) ≤ VCD(C).
7. Let C be a collection of sets such that C,C ′ ∈ C and C �= C ′ implies
C ∩ C ′ = ∅. Prove that VCD(C) = 1.

8. Let S be a set and let C1, . . . ,Cn be n chains in the poset (P(S),⊆).
Define the collection C as C = {

⋂n
i=1 Ci | Ci ∈ Ci, 1 ≤ i ≤ n}. Prove that

VCD(C) ≤ n.
Solution: Let T be a subset of S such that |T | = n+ 1. Clearly, T has

n+ 1 subsets that have n elements.
For each i at most one n-element subset of T is the intersection of the

form T ∩C, where C ∈ Ci. Indeed, if we would have two distinct n-element
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sets of the form T ∩ C ′ and T ∩ C ′′, where C ′, C ′′ ∈ C this would imply
the existence of x′ ∈ (T ∩C ′)− (T ∩C ′′) and of x′′ ∈ (T ∩C ′′)− (T ∩C ′),
which would mean that x′ ∈ C ′−C ′′ and x′′ ∈ C ′′−C ′, thus contradicting
the Ci is a chain of sets. Let Ui be this n-element when it exists.

Let W be an n-element subset of T such that W = T ∩ C for some
C =

⋂n
i=1 Ci ∈ C. Then, either Cj ∩ T = W or Ci ∩ T = T for 1 ≤ j ≤ n

and Ci ∩ T = W for at least one i, 1 ≤ i ≤ n. Therefore, W = Ui for
some i, 1 ≤ i ≤ n, which shows that at most n subsets of T that contain
n elements can be obtained as intersections of T with the elements of C.
Thus, T is not shattered by C and VCD(C) ≤ n.

9. For 1 ≤ i ≤ n and a ∈ R let Ci,a = {x ∈ R
n | x = (x1, . . . , xn), xi ≤ a}.

The chain of sets Ci is defined by {Ci,a | a ∈ R} for 1 ≤ i ≤ n.
Prove that C =

⋂n
i=1 Ci shatters the set B = {e1, . . . , en}, where

ei = (0, . . . , 0, 1, 0, . . . , 0) has 1 as its ith component for 1 ≤ i ≤ n, so
VCD(C) = n.

10. The statement included here is a generalization of Example 15.8. Prove
that the Vapnik-Chervonenkis dimension of the collection of rectangular
subsets of R

n given by

C = {
n∏

i=1

[ai, bi] | ai, bi ∈ R̂, ai ≤ bi, for 1 ≤ i ≤ n}

is 2n. If ai = −∞ for all ai, 1 ≤ i ≤ n, then VCD(C) = n.
11. Let S be a set that contains at least two elements and let C be a collection

of subsets S. Suppose that for every two-element subset of S, T = {t1, t2},
there exist U, V ∈ C such that T ⊆ U and T ∩ V = ∅. Then VCD(C) = 1
if and only if C is a chain.

Solution: Suppose that VCD(C) = 1 but C is not a chain. Then, C

contains two sets C ′, C ′′ such that neither C ′ ⊆ C ′′ nor C ′′ ⊆ C ′. Let
c′ ∈ C ′ − C ′′ and c′′ ∈ C ′′ − C ′. Then, the two element set T = {c′, c′′}
is shattered by C, which implies VCD(C) ≥ 2. The reverse implication
follows from Supplement 5.

12. Prove that if C is a collection of subsets of a set S such that {∅, S} ⊆ C,
then VCD(C) = 1 if and only if C is a chain.

13. Let S be a finite set and let C be a collection of subsets of S. Prove that
|C| = |{K ∈ P(S) | C shatters K}|.

Solution: Let x be an element of S and let φx : C −→ P be the
injective mapping introduced in Supplement 26 of Chapter 1. We claim
that if φx(C) = {φx(C) | C ∈ C} shatters K, then C shatters K. If
x �∈ K, then CK = φx(C)K , so the statement obviously holds. If x ∈ K
and L ⊆ K − {x}, then there is F ∈ φx(C) such that F ∩K = L ∪ {x}
and T = φx(C) for some C ∈ C. Since x ∈ F , both F and F −{x} belong
to C, so C shatters K.

Define w(C) =
∑
{|C| | C ∈ C}. Let C′ be a collection of sets ob-

tained from C by applying transforms of the form φx, such that w(C′) is
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minimal. For C ∈ C′ and x ∈ K we must have C − {x} ∈ C′ because
otherwise w(φx(C′)) < w(C′), contradicting the minimality of C′. Thus,
C′ is hereditary, so it shatters any set it contains. Since |C′| = |C| (by
Supplement 26 of Chapter 1, and C shatters at least as many sets as C we
obtain the desired equality.
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Theorem 15.16 appears in [142]. Supplements 4-12 contain results obtained
in [144]. Note that in [144] the Vapnik-Chervonenkis dimension of a collection
of set is defined as the smallest n such that no n-element set is shattered by
C, so values of VCD(C) in [144] are obtained by increasing by one the value
of the VCD adopted here (and in the vast majority of publications).

The notion of density of a collection of sets was introduced by P. Assouad
in [6]. Supplement 13 originates in [86].



Part V

Appendices



A

Asymptotics

We present some formal concepts that allow the evaluation of the rate of
growth of algorithm complexity.

Definition A.1. Let f : N −→ R≥0 be a function. The classes of functions
O(f), Θ(f), and Ω(f) are given by:
(i) 0(f) consists of those functions g : N −→ R≥0 for which there exists
c ∈ R>0 and nc ∈ N such that n ≥ nc implies g(n) ≤ cf(n).

(ii) Θ(f) consists of those functions g : N −→ R≥0 for which there exist c, c′ ∈
R>0 and nc,c′ ∈ N such that n ≥ nc,c′ implies c′f(n) ≤ g(n) ≤ cf(n).

(iii) Ω(f) consists of those functions g : N −→ R≥0 for which there exists
c ∈ R>0 and nc ∈ N such that n ≥ nc implies g(n) ≥ cf(n).

Another collection of classes of functions is introduced next.

Definition A.2. Let f : N −→ R≥0 be a function. The classes of functions
o(f), θ(f) and ω(f) are given by:
(i) o(f) consists of those functions g : N −→ R≥0 for which

lim
n→∞

g(n)
f(n)

= 0.

(ii) θ(f) consists of those functions g : N −→ R≥0 for which

lim
n→∞

g(n)
f(n)

= k

for some k ∈ R>0.
(iii) ω(f) consists of those functions g : N −→ R≥0 such that

lim
n→∞

g(n)
f(n)

=∞.

Theorem A.3. If g, h ∈ R(f), where R ∈ {0, Θ,Ω, o, θ, ω}, then ag + bh ∈
R(f) for every a, b > 0.
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Proof. The argument is elementary and is left to the reader. 	


Theorem A.4. For every function f : N −→ R≥0, we have the inclusions
o(f) ⊆ O(f), θ(f) ⊆ Θ(f), and ω(f) ⊆ Ω(f).

Proof. We show only the inclusion θ(f) ⊆ Θ(f) and leave the two other for
the reader.

Suppose that g ∈ θ(f); that is, limn→∞
g(n)
f(n) = k for some k > 0. By the

definition of the limit, for every ε > 0 there is nε such that n ≥ nε implies∣∣∣∣ g(n)f(n)
− k
∣∣∣∣ < ε

or, equivalently,

k − ε < g(n)
f(n)

< k + ε.

Thus, the role of c, c′ can be played by k + ε and k − ε, respectively, and we
may conclude that g ∈ Θ(f). 	


The reverse inclusions are not necessarily true. For example, if f is a
function that differs from the constant function 0 and g(n) = f(n) sinπn,
then g ∈ Θ(f); however, g �∈ θ(f) because limn→∞

g(n)
f(n) = limn→∞ sinπn

does not exist.



B

Convex Sets and Functions

Definition B.1. Let (L,+, ·) be a real linear space and let C be a subset
of L. The set C is convex if, for all x,y ∈ C and all a ∈ [0, 1], we have
(1−a)x+ay ∈ C. In other words, every point on the line segment connecting
x and y belongs to C.

Example B.2. The convex subsets of (R,+, ·) are the intervals of R. Regular
polygons are convex subsets of R

2.

Definition B.3. Let U be a subset of a real linear space (L,+, ·).
A convex combination of U is an element of L of the form a1x1+· · ·+akxk,

where x1, . . . ,xk ∈ U , ai ≥ 0 for 1 ≤ i ≤ k, and a1 + · · ·+ ak = 1.
If the conditions ai ≥ 0 are dropped, we have an affine combination of U .

In other words, x is an affine combination of U if there exist a1, . . . , ak ∈ R

such that x = a1x1 + · · ·+ akxk, for x1, . . . ,xk ∈ U , and
∑k

i=1 ai = 1.

Definition B.4. Let U be a subset of a real linear space (L,+, ·). A subset
{x1, . . . ,xn} is affinely dependent if 0 = a1x1 + · · ·+ anxn such that at least
one of the numbers a1, . . . , an is nonzero and

∑n
i=1 ai = 0. If no such affine

combination exists, then x1, . . . ,xn are affinely independent.

Theorem B.5. The set U = {x1, . . . ,xn} is affinely independent if and only
if the set V = {x1 − xn,xn−1 − xn} is linearly independent.

Proof. Suppose that U is affinely independent but V is linearly dependent;
that is, 0 = b1(x1−xn) + · · ·+ bn−1(xn−1−xn) such that not all numbers bi
are 0. This implies

b1x1 + · · ·+ bn−1xn−1 −
(

n−1∑
i=1

bi

)
xn = 0,

which contradicts the affine independence of U .
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Conversely, suppose that V is linearly independent but U is not affinely
independent. In this case, 0 = a1x1 + · · ·+ anxn such that at least one of the
numbers a1, . . . , an is nonzero and

∑n
i=1 ai = 0. This implies an = −

∑n−1
i=1 ai,

so 0 = a1(x1 − xn) + · · ·+ an−1(xn−1 − xn). Observe that at least one of the
numbers a1, . . . , an−1 must be distinct from 0 because otherwise we would
have a1 = · · · = an−1 = an = 0. This contradicts the linear independence of
V , so U is affinely independent. 	


Example B.6. Let x1 and x2 be two elements of the linear space (R2,+, · · · ).
The line that passes through x1 and x2 consists of all x such that x−x1 and
x− x2 are collinear; that is, a(x− x1) + b(x− x2) = 0 for some a, b ∈ R such
that a+ b �= 0. Thus, we have x = a1x1 + a2x2, where

a1 + a2 =
a

a+ b
+

b

a+ b
= 1,

so x is an affine combination of x1 and x2. It is easy to see that the segment
of line contained between x1 and x2 is given by a convex combination of x1

and x2; that is, by an affine combination a1x1 + a2x2 such that a1, a2 ≥ 0.

Theorem B.7. If C is a convex subset of a real linear space (L,+, ·), then C
contains all convex linear combinations of C.

Proof. The proof is by induction on k ≥ 2 and is left to the reader. 	


Theorem B.8. The intersection of any collection of convex sets of a linear
space (L,+, ·) is a convex set.

Proof. Let C = {Ci | i ∈ I} be a collection of convex sets and let C =
⋃

C.
Suppose that x1, . . . ,xk ∈ C, ai ≥ 0 for 1 ≤ i ≤ k, and a1 + · · · + ak = 1.
Since x1, . . . ,xk ∈ Ci, it follows that a1x1 + · · · + akxk ∈ Ci for every i ∈ I.
Thus, a1x1 + · · ·+ akxk ∈ C, which proves the convexity of C. 	


Corollary B.9. The family of convex sets of a linear space (L,+, · · · ) is a
closure system on P(L).

Proof. This statement follows immediately from Theorem B.8 by observing
that the set L is convex. 	


Corollary B.9 allows us to define the convex hull of a subset U of L as the
closure Kconv(U) of U relative to the closure system of the convex subsets of
L. If U ⊆ R

n consists of n+1 points such that no point is an affine combination
of the other n points, then Kconv(U) is an n-dimensional simplex in L.

Example B.10. A two-dimensional simplex is defined starting from three points
x1,x2,x3 in R

2 such that none of these points is an affine combination of
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the other two (no point is collinear with the others two). Thus, the two-
dimensional symplex generated by x1,x2,x3 is the full triangle determined
by x1,x2,x3.

In general, an n-dimensional simplex is the convex hull of a set of n + 1
points x1, . . . ,xn+1 in R

n such that no point is an affine combination of the
remaining n points.

Let S be the n-dimensional simplex generated by the points x1, . . . ,xn+1 in
R

n and let x ∈ S. If x ∈ S, then x is a convex combination of x1, . . . ,xn,xn+1.
In other words, there exist a1, . . . , an, an+1 such that a1, . . . , an, an+1 ∈ (0, 1),∑n+1

i=1 ai = 1, and x = a1x1 + · · ·+ anxn + an+1xn+1.
The numbers a1, . . . , an, an+1 are the baricentric coordinates of x relative

to the simplex S and are uniquely determined by x. Indeed, if we have

x = a1x1 + · · ·+ anxn + an+1xn+1 = b1x1 + · · ·+ bnxn + bn+1xn+1,

and ai �= bi for some i, this implies

(a1 − b1)x1 + · · ·+ (an − bn)xn + (an+1 − bn+1)xn+1 = 0,

which contradicts the affine independence of x1, . . . ,xn+1.
The next statement plays a central role in the study of convexity. We

reproduce the proof given in [59].

Theorem B.11 (Carathéodory’s Theorem). If U is a subset of R
n, then

for every x ∈ Kconv(U) we have x =
∑n+1

i=1 aixi, where xi ∈ U , ai ≥ 0 for
1 ≤ i ≤ n+ 1, and

∑n+1
i=1 ai = 1.

Proof. Consider x ∈ Kconv(U). We can write x =
∑p+1

i=1 aixi, where xi ∈ U ,
ai ≥ 0 for 1 ≤ i ≤ p + 1, and

∑p+1
i=1 ai = 1. Let p be the smallest number

which allows this kind of expression for x. We prove the theorem by showing
that p ≤ n.

Suppose that p ≥ n+1. Then, the set {x1, . . . ,xp+1} is affinely dependent,
so there exist b1, . . . , bp+1 not all zero such that 0 =

∑p+1
i=1 bixi and

∑p+1
i=1 bi =

0. Without loss of generality, we can assume bp+1 > 0 and ap+1
bp+1

≤ ai

bi
for all i

such that 1 ≤ i ≤ p and bi > 0. Define

ci = bi

(
ai

bi
− ap+1

bp+1

)

for 1 ≤ i ≤ p. We have
p∑

i=1

ci =
p∑

i=1

ai −
ap+1

bp+1

p∑
i=1

bi = 1.

Furthermore, ci ≥ 0 for 1 ≤ i ≤ p. Indeed, if bi ≤ 0, then ci ≥ ai ≥ 0; if
bi > 0, then ci ≥ 0 because ap+1

bp+1
≤ ai

bi
for all i such that 1 ≤ i ≤ p and bi > 0.

Thus, we have
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p∑
i=1

cixi =
p∑

i=1

(
ai −

ap

bp
bi

)
xi =

p∑
i=1

aixi = x,

which contradicts the choice of p. 	

A finite set of points P in R

2 is a convex polygon if no member p of P lies
in the convex hull of P − {p}.

Theorem B.12. A finite set of points P in R
2 is a convex polygon if and

only if no member p of P lies in a two-dimensional simplex formed by three
other members of P .

Proof. The argument is straightforward and is left to the reader as an exercise.
	


Theorem B.13 (Radon’s Theorem). Let P = {xi ∈ R
n | 1 ≤ i ≤ n + 2}

be a set of n+ 2 points in R
n. Then, there are two disjoint subsets R and Q

of P such that Kconv(R) ∩Kconv(Q) �= ∅.

Proof. Since n+2 points in R
n are affinely dependent, there exist a1, . . . , an+2

not all equal to 0 such that
n+2∑
i=1

aixi = 0 (B.1)

and
∑n+2

i=1 ai = 0. Without loss of generality, we can assume that the first k
numbers are positive and the last n + 2 − k are not. Let a =

∑k
i=1 ai > 0

and let bj = aj

a for 1 ≤ j ≤ k. Similarly, let cl = −al

a for k + 1 ≤ l ≤ n + 2.
Equality (B.1) can now be written as

k∑
j=1

bjxj =
n+2∑

l=k+1

clxl.

Since the numbers bj and cl are nonnegative and
∑k

j=1 bj =
∑n+2

l=k+1 cl = 1,
it follows that Kconv ({x1, . . . ,xk}) ∩Kconv ({xk+1, . . . ,xn+2}) �= ∅. 	


Theorem B.14 (Klein’s Theorem). If P ⊆ R
2 is a set of five points such

that no three of them are collinear, then P contains four points that form a
convex quadrilateral.

Proof. Let P = {xi | 1 ≤ i ≤}. If these five points form a convex polygon,
then any four of them form a convex quadrilateral. If exactly one point is in
the interior of a convex quadrilateral formed by the remaining four points,
then the desired conclusion is reached.

Suppose that none of the previous cases occur. Then, two of the points,
say xp,xq, are located inside the triangle formed by the remaining points
xi,xj ,xk. Note that the line xpxq intersects two sides of the triangle xixjxk,
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Fig. B.1. A five-point configuration in R
2.

say xixj and xixk (see Figure B.1). Then xpxqxkxj is a convex quadrilateral.
	

A function f : R −→ R is convex if its graph on an interval is located

below the chord determined by the endpoints of the interval. More formally,
we have the following definition.

Definition B.15. A function f : R −→ R is convex if f(tx + (1 − t)y) ≤
tf(x) + (1 − t)f(y) for every x, y ∈ Dom(f) and t ∈ [0, 1]. The function
g : R −→ R is concave if −g is convex.

Theorem B.16. If f : R −→ R is a convex function and a < b ≤ c, then

f(b)− f(a)
b− a ≤ f(c)− f(a)

c− a .

Proof. Since a < b ≤ c, we can write b = ta+ (1− t)c, where t = c−b
c−a ∈ (0, 1].

The convexity of f yields the inequality

f(b) ≤ c− b
c− af(a) +

b− a
c− af(c),

which is easily seen to be equivalent with the desired inequality. 	

A similar result follows.

Theorem B.17. If f : R −→ R is a convex function and a ≤ b < c, then

f(c)− f(a)
c− a ≤ f(c)− f(b)

c− b .
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Proof. The argument is similar to the proof of Theorem B.16. 	


Corollary B.18. Let f : R −→ R be a convex function and let p, q, p′, q′ be
four numbers such that p ≤ p′ < q ≤ q′. We have the inequality

f(q)− f(p)
q − p ≤ f(q′)− f(p′)

q′ − p′ . (B.2)

Proof. By Theorem B.16 applied to the numbers p′, q, q′, we have

f(q)− f(p′)
q − p′ ≤ f(q′)− f(p′)

q′ − p′ .

Similarly, by applying Theorem B.17 to p, p′, q, we obtain

f(q)− f(p)
q − p ≤ f(q)− f(p′)

q − p′ .

The inequality of the corollary can be obtained by combining the last two
inequalities. 	


From Corollary B.18, it follows that if f : R −→ R is convex and differen-
tiable everywhere, then its derivative is an increasing function.

The converse is also true; namely, if f is differentiable everywhere and its
derivative is an increasing function, then f is convex. Indeed, let a, b, c be
three numbers such that a < b < c. By the mean value theorem, there is
p ∈ (a, b) and q ∈ (b, c) such that

f ′(p) =
f(b)− f(a)
b− a and f ′(q) =

f(c)− f(b)
c− b .

Since f ′(p) ≤ f ′(q), we obtain

f(b)− f(a)
b− a ≤ f(c)− f(b)

c− b ,

which implies

f(b) ≤ c− b
c− af(a) +

b− a
c− af(c);

that is, the convexity of f . Thus, if f is twice differentiable everywhere and its
second derivative is nonnegative everywhere, then it follows that f is convex.
Clearly, under the same conditions of differentiability as above, if the second
derivative is nonpositive everywhere, then f is concave.

The functions listed in the Table B.1, defined on the set R≥0, provide
examples of convex (or concave) functions.

Theorem B.19 (Jensen’s Theorem). Let f be a function that is convex on
an interval I. If t1, . . . , tn ∈ [0, 1] are n numbers such that

∑n
i=1 ti = 1, then
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f

(
n∑

i=1

tixi

)
≤

n∑
i=1

tif(xi)

for every x1, . . . , xn ∈ I.

Proof. The argument is by induction on n, where n ≥ 2. The basis step, n = 2,
follows immediately from Definition B.15.

Suppose that the statement holds for n, and let u1, . . . , un, un+1 be n+ 1
numbers such that

∑n+1
i=1 ui = 1. We have

f(u1x1 + · · ·+ un−1xn−1 + unxn + un+1xn+1)

= f

(
u1x1 + · · ·+ un−1xn−1 + (un + un+1)

unxn + un+1xn+1

un + un+1

)
.

By the inductive hypothesis, we can write

f(u1x1 + · · ·+ un−1xn−1 + unxn + un+1xn+1)

≤ u1f(x1) + · · ·+ un−1f(xn−1) + (un + un+1)f
(
unxn + un+1xn+1

un + un+1

)
.

Next, by the convexity of f , we have

f

(
unxn + un+1xn+1

un + un+1

)
≤ un

un + un+1
f(xn) +

un+1

un + un+1
f(xn+1).

Combining this inequality with the previous inequality gives the desired con-
clusion. 	


Of course, if f is a concave function and t1, . . . , tn ∈ [0, 1] are n numbers
such that

∑n
i=1 ti = 1, then

f

(
n∑

i=1

tixi

)
≥

n∑
i=1

tif(xi). (B.3)

Table B.1. Examples of convex or concave functions.

Function Second Convexity
Derivative Property

xr for r(r − 1)xr−2 concave for r < 1
r > 0 convex for r ≥ 1

ln x − 1
x2 concave

x ln x 1
x

convex

ex ex convex
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Example B.20. We saw that the function f(x) = lnx is concave. Therefore, if
t1, . . . , tn ∈ [0, 1] are n numbers such that

∑n
i=1 ti = 1, then

ln

(
n∑

i=1

tixi

)
≥

n∑
i=1

ti lnxi.

This inequality can be written as

ln

(
n∑

i=1

tixi

)
≥ ln

n∏
i=1

xti
i ,

or equivalently
n∑

i=1

tixi ≥
n∏

i=1

xti
i ,

for x1, . . . , xn ∈ (0,∞).
In the special case where t1 = · · · = tn = 1

n , we have the inequality that
relates the arithmetic to the geometric average on n positive numbers:

x1 + · · ·+ xn

n
≥
(

n∏
i=1

xi

) 1
n

. (B.4)

Let w = (w1, . . . , wn) ∈ R
n be such that

∑n
i=1 wi = 1. For r �= 0,

the w-weighted mean of order r of a sequence of n positive numbers x =
(x1, . . . , xn) ∈ R

n
>0 is the number

μr
w(x) =

(
n∑

i=1

wix
r
i

) 1
r

.

Of course, μr
w(x) is not defined for r = 0; we will give as special definition

μ0
w(x) = lim

r→0
μr
w(x).

We have

lim
r→0

lnμr
w(x) = lim

r→0

ln
∑n

i=1 wix
r
i

r

= lim
r→0

∑n
i=1 wix

r
i lnxi∑n

i=1 wixr
i

=
n∑

i=1

wi lnxi

= ln
n∏

i=1

xwi
i .
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Thus, if we define μ0
w(x) =

∏n
i=1 x

wi
i , the weighted mean of order r becomes

a function continuous everywhere with respect to r.
For w1 = · · · = wn = 1

n , we have

μ−1
w (x) =

nx1 · · ·xn

x2 · · ·xn + · · ·+ x1 · · ·xn−1

(the harmonic average of x),

μ0
w(x) = (x1 . . . xn)

1
n

(the geometric average of x),

μ1
w(x) =

x1 + · · ·+ xn

n
(the arithmetic average of x).

Theorem B.21. If p < r, we have μp
w(x) ≤ μr

w(x).

Proof. There are three cases depending on the position of 0 relative to p and
r.

In the first case, suppose that r > p > 0. The function f(x) = x
r
p is

convex, so by Jensen’s inequality applied to xp
1, . . . , x

p
n, we have

(
n∑

i=1

wix
p
i

) r
p

≤
n∑

i=1

wix
r
i ,

which implies (
n∑

i=1

wix
p
i

) 1
p

≤
(

n∑
i=1

wix
r
i

) 1
r

,

which is the inequality of the theorem.
If r > 0 > p, the function f(x) = x

r
p is again convex because f ′′(x) =

r
p

(
r
p − 1

)
x

r
p−2 ≥ 0. Thus, the same argument works as in the previous case.

Finally, suppose that 0 > r > p. Since 0 < r
p < 1, the function f(x) = x

r
p

is concave. Thus, by Jensen’s inequality,

(
n∑

i=1

wix
p
i

) r
p

≥
n∑

i=1

wix
r
i .

Since 1
r < 0, we obtain again

(
n∑

i=1

wix
p
i

) 1
p

≤
(

n∑
i=1

wix
r
i

) 1
r

.

	




C

Useful Integrals and Formulas

C.1 Euler’s Integrals

The integrals

B(a, b) =
∫ 1

0

xa−1(1− x)b−1dx,

Γ (a) =
∫ ∞

0

xa−1e−xdx,

are known as Euler’s integral of the first type and Euler’s integral of the second
type, respectively. We assume here that a and b are positive numbers to ensure
that the integrals are convergent.

Replacing x by 1− x yields the equality

B(a, b) = −
∫ 0

1

(1− x)a−1(x)b−1dx = B(b, a),

which shows that B is symmetric.
Integrating B(a, b) by parts, we obtain

B(a, b) =
∫ 1

0

xa−1(1− x)b−1dx

=
∫ 1

0

(1− x)b−1d
xa

a

=
xa(1− x)1−b)

a

1∣∣∣∣∣
0

+
b− 1
a

∫ 1

0

xa(1− x)b−2dx

=
b− 1
a

∫ 1

0

xa−1(1− x)b−2dx− b− 1
a

∫ 1

0

xa−1(1− x)b−1dx

=
b− 1
a
B(a, b− 1)− b− 1

a
B(a, b),
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which yields

B(a, b) =
b− 1

a+ b− 1
B(a, b− 1). (C.1)

The symmetry of the function B allows us to infer the formula

B(a, b) =
a− 1

a+ b− 1
·B(a− 1, b).

If b is a natural number n, a repeated application of Equality (C.1) allows us
to write

B(a, n) =
n− 1

a+ n− 1
· n− 2
a+ n− 2

· · · 1
a+ 1

·B(a, 1).

The last factor of this equality, B(a, 1), is easily seen to equal 1
a . Thus,

B(a, n) = B(n, a) =
1 · 2 · · · · (n− 1)

a · (a+ 1) · · · · (a+ n− 1)
.

If a is also a natural number, a = m ∈ N, then

B(m,n) =
(n− 1)!(m− 1)!

(m+ n− 1)!
.

Next, we show the connection between Euler’s integral functions:

B(a, b) =
Γ (a)Γ (b)
Γ (a+ b)

. (C.2)

Changing the variable x in the integral

Γ (a) =
∫ ∞

0

xa−1e−xdx

by taking x = ry with r > 0 gives

Γ (a) = ra
∫ ∞

0

ya−1e−rydy.

Replacing a by a+ b and r by r + 1 yields the equality

Γ (a+ b)(r + 1)−(a+b) =
∫ ∞

0

ya+b−1e−(r+1)ydy.

By multiplying both sides by ra−1 and integrating, we have

Γ (a+ b)
∫ ∞

0

ra−1(r + 1)−(a+b)dr =
∫ ∞

0

ra−1

(∫ ∞

0

ya+b−1e−(r+1)ydy

)
dr.

By the definition of B, the last equality can be written
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Γ (a+ b)B(a, b) =
∫ ∞

0

ra−1

(∫ ∞

0

ya+b−1e−(r+1)ydy

)
dr.

By permuting the integrals from the right member (we omit the justification
of this manipulation), the last equality can be written as

Γ (a+ b)B(a, b) =
∫ ∞

0

ya+b−1e−y

(∫ ∞

0

ra−1e−rydr

)
dy.

Note that
∫∞
0
ra−1e−rydr = Γ (a)

ya . Therefore,

Γ (a+ b)B(a, b) =
∫ ∞

0

ya+b−1e−y Γ (a)
ya

dy =
∫ ∞

0

yb−1e−yΓ (a)dy = Γ (a)Γ (b),

which is Formula (C.2).
The Γ function is a generalization of the factorial. Starting from the defi-

nition of Γ and integrating by parts, we obtain

Γ (x) =
∫ ∞

0

xa−1e−xdx =
xa

a
e−x

∞∣∣∣∣∣
0

+
1
a

∫ ∞

0

xae−xdx =
1
a
Γ (a+ 1).

Thus, Γ (a + 1) = aΓ (a). Since Γ (1) =
∫∞
0
e−xdx = 1, it is easy to see that

Γ (n+ 1) = n! for n ∈ N.
Using an argument from classical analysis it is possible to show that Γ has

derivatives of arbitrary order and that we can compute these derivatives by
deriving the function under the integral sign. Namely, we can write:

Γ ′(a) =
∫ ∞

0

xa−1 lnxe−xdx,

and, in general, Γ (n)(a) =
∫∞
0
xa−1(lnx)ne−xdx. Thus, Γ (2)(a) > 0, which

shows that the first derivative is increasing.
Since Γ (1) = Γ (2) = 1, there exists a ∈ [1, 2] such that Γ ′(a) = 0. For

0 < x < a, we have Γ ′(x) ≤ 0, so Γ is decreasing. For x > a, Γ ′(x) ≥ 0, so Γ
is increasing. It is easy to see that

lim
x→0+

Γ (x) =
Γ (x+ 1)

x
=∞,

and limx→∞ Γ (x) =∞.
An integral that is useful for a variety of applications is

I =
∫
R

e−
1
2 t2dt.

We prove that I =
√

2π.
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We can write

I2 =
∫
R

e−
1
2 x2
dx ·

∫
R

e−
1
2 y2
dy

=
∫
R

2
e−

x2+y2

2 dxdy.

Changing to polar coordinates by using the transformation

x = ρ cos θ
y = ρ sin θ,

whose Jacobian is ∣∣∣∣∣
∂x
∂ρ

∂x
∂θ

∂y
∂ρ

∂y
∂θ

∣∣∣∣∣ =
∣∣∣∣cos θ −ρ sin θ
sin θ ρ cos θ

∣∣∣∣ = ρ,

we have

I2 =
∫
R

2
e−

ρ2

2 ρdρdθ

=
∫ 2π

0

dθ

∫ ∞

0

e−
ρ2

2 ρdρ = 2π.

Thus, I =
√

2π. Since e−
1
2 t2 is an even function, it follows that∫ ∞

0

e−
1
2 t2dt =

√
π

2
.

Using this integral, we can compute the value of Γ
(

1
2

)
. Note that

Γ

(
1
2

)
=
∫ ∞

0

e−x

√
x
dx.

Applying the change of variable x = t2

2 , we have

Γ

(
1
2

)
=
√

2 ·
∫ ∞

0

e−
1
2 t2dt =

√
π. (C.3)

The last equality allows us to compute the values of the form Γ
(

2p+1
2

)
. It is

easy to see that

Γ

(
2p+ 1

2

)
=

(2p− 1) · (2p− 3) · · · 3 · 1
2p

√
π =

(2p)!
p!22p

√
π. (C.4)
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C.2 Wallis’s Formula

The double factorial n!! is defined by

n!! =

{
n(n− 2) · · · 4 · 2 if n is even
n(n− 2) · · · 3 · 1 if n is odd.

For example, 5!! = 5 · 3 · 1 = 15 and 6!! = 6 · 4 · 2 = 48.
Let n ∈ N and let Sn =

∫ π
2

0
sinn xdx and Cn =

∫ π
2

0
cosn xdx. Integrating

by parts, we obtain

Sn =
∫ π

2

0

sinn−1 xd(− cosx) =

∣∣∣∣∣
π
2

0

+ (m− 1)
∫ π

2

0

sinm−2 x cos2 xdx

= (m− 1)
∫ π

2

0

sinm−2 x(1− sin2 x)dx

= (m− 1)Sn−2 − (m− 1)Sn,

which implies

Sn =
n− 1
n

Sn−2.

Note that S0 = π
2 and that S1 = 1. If n is an even number, n = 2p, it follows

that

S2p =
(2p− 1) · (2p− 3) · · · 3 · 1

2p · (2p− 2) · · · 4 · 2 · π
2

=
(2p− 1)!!

2p!!
π

2
.

If n is an odd number, n = 2p+ 1, then

S2p+1 =
2p · (2p− 2) · · · 4 · 2

(2p+ 1) · (2p− 1) · · · 2 · 1 =
(2p)!!

(2p+ 1)!!
.

We can also show that Cn = Sn for every n ∈ N.
Using these results, we shall prove that

lim
n→∞

(
2n!!

(2n− 1)!!

)2

· 1
2n+ 1

=
π

2
.

This equality is known as the Wallis formula and will help us prove Stirling’s
formula.

If x ∈ (0, π
2 ), we have sin2n+1 x < sin2n x < sin2n−1 x, which implies

∫ pi
2

0

sin2n+1 xdx <

∫ pi
2

0

sin2n xdx <

∫ pi
2

0

sin2n−1 xdx.

Thus,
(2n)!!

(2n+ 1)!!
<

(2n− 1)!!
(2n)!!

· π
2
<

(2n− 2)!!
(2n− 1)!!
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or, equivalently,

(
(2n)!!

(2n− 1)!!

)2 1
2n+ 1

<
π

2
<

(
(2n)!!

(2n− 1)!!

)2 1
2n
.

Note that (
(2n)!!

(2n− 1)!!

)2 1
2n
−
(

(2n)!!
(2n− 1)!!

)2 1
2n+ 1

=
(

(2n)!!
(2n− 1)!!

)2 1
2n(2n+ 1)

<
π

4n
,

which gives Wallis’ formula

lim
n→∞

1
2n+ 1

·
(

(2n)!!
(2n− 1)!!

)2

=
π

2
.

Wallis’ formula is equivalent to

π

2
= lim

n→∞

1
2n+ 1

·
(

22n(n!)2

(2n)!

)2

. (C.5)

C.3 Stirling’s Formula

The starting point for proving Stirling’s formula is the power series

ln(1 + x) = x− x
2

2
+
x3

3
− · · ·+ (−1)n−1 x

n

n
+ · · · ,

which is convergent for x ∈ [−1, 1].
Replacing x by −x, we obtain

ln(1− x) = −x− x
2

2
− x

3

3
− · · · − x

n

n
+ · · · ,

which allows us to write

ln
1 + x
1− x = 2x

(
1 +

x2

3
+
x4

5
+ · · ·+ x2n

2n+ 1
+ · · ·

)
.

Choosing x = 1
2n+1 , we have

ln
n+ 1
n

=
2

2n+ 1

(
1 +

1
3
· 1
(2n+ 1)2

+
1
5
· 1
(2n+ 1)4

+ · · ·
)

or, equivalently,
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n+

1
2

)
ln
(

1 +
1
n

)
= 1 +

1
3
· 1
(2n+ 1)2

+
1
5

1
(2n+ 1)4

+ · · · .

Note that

1 +
1
3
· 1
(2n+ 1)2

+
1
5
· 1
(2n+ 1)4

+ · · ·

≤ 1 +
1
3

(
1

(2n+ 1)2
+

1
(2n+ 1)4

+ · · ·
)

= 1 +
1

12n(n+ 1)
,

which implies that

1 <
(
n+

1
2

)
ln
(

1 +
1
n

)
< 1 +

1
12n(n+ 1)

.

The last inequalities can be written as

e <

(
1 +

1
n

)n+ 1
2

< e1+
1

12n(n+1) = e · e
1

12n

e
1

12(n+1)
.

Define the sequence

xn =
n!en

nn+ 1
2

for n ∈ N. It is easy to see that

xn

xn+1
=

1
e

(
1 +

1
n

)n+ 1
2

.

Thus, we have

1 <
xn

xn+1
<

e
1

12n

e
1

12(n+1)
.

This double inequality implies that (xn) is a decreasing sequence and that the
sequence defined by zn = xne

− 1
12n is an increasing sequence. Since (xn) has 0

as a lower bound, it follows that � = limn→∞ xn exists. This also implies that
� = limn→∞ zn and, since zn is increasing, it also follows that zn < � < xn.
The inequality

xne
− 1

12n < � < xn

implies that there exists θn ∈ (0, 1) such that � = xne
− θn

12n , or xn = �e
θn
12n . By

the definition of xn, we have

n!en

nn+ 1
2

= �e
θn
12n ,

which yields the equality
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n! = �
√
n
(n
e

)n

e
θn
12n (C.6)

To determine � we use Equality (C.5) and replace the factorials in this equality
using Equality (C.6). Observe that

22n(n!)2

(2n)!
= �

√
n

2
e

4θn−θ2n
24n ,

which allows us to write

π

2
= lim

n→∞

�2

2n+ 1
· n

2
e

4θn−θ2n
12n =

�2

4
.

Thus, � =
√

2π, and this yields Stirling’s formula

n! =
√

2πn
(n
e

)n

e
θn
12n . (C.7)

C.4 The Volume of an n-Dimensional Sphere

A closed sphere centered in (0, . . . , 0) and having the radius R in R
n is defined

as the set of points:

Sn(R) =

{
(x1, . . . , xn) ∈ R

n |
n∑

i=1

x2
i = 1

}
.

The volume of this sphere is denoted by Vn(R).
We approximate the volume of an n-dimensional sphere of radius R as a

sequence of n − 1-dimensional spheres of radius r(u) =
√
R2 − u2, where u

varies between −R and R. This allows us to write

Vn+1(R) =
∫ R

−R

Vn(r(u))du.

We seek Vn(R) as a number of the form Vn(R) = knR
n. Thus, we have

Vn+1(R) = kn

∫ R

−R

(r(u))ndu

= kn

∫ R

−R

(R2 − u2)
n
2 du

= knR
n

∫ R

−R

(
1−
( u
R

)2
)n

2

du

= Vn(R)
∫ R

−R

(
1−
( u
R

)2
)n

2

du

= RVn(R)
∫ 1

−1

(1− x2)
n
2 dx.
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In turn, this yields the recurrence

kn+1 = kn

∫ 1

−1

(1− x2)
n
2 dx.

Note that ∫ 1

−1

(1− x2)
n
2 dx = 2 ·

∫ 1

0

(1− x2)
n
2 dx

because the function (1 − x2)
n
2 is even. To compute the latest integral, sub-

stitute u = x2. We obtain∫ 1

0

(1− x2)
n
2 dx =

1
2

∫ 1

0

u−
1
2 (1− u)n

2 du,

which equals 1
2 ·B( 1

2 ,
n
2 +1). Using the Γ function, the integral can be written

as ∫ 1

0

(1− x2)
n
2 dx =

1
2
·
Γ ( 1

2 )Γ (n
2 + 1)

Γ
(

n
2 + 3

2

) .

Thus,

kn+1 = kn

Γ
(

1
2

)
Γ
(

n
2 + 1

)
Γ
(

n+1
2 + 1

) .

Since k1 = 2, this implies

kn = 2
(
Γ

(
1
2

))n−1 Γ
(

1
2 + 1

)
Γ
(

n
2 + 1

)
=
(
Γ

(
1
2

))n 1
Γ
(

n
2 + 1

)
= π

n
2

1
Γ
(

n
2 + 1

) .
Thus, the volume of the n-dimensional sphere of radius R equals

π
n
2Rn

Γ
(

n
2 + 1

) .
For n = 1, 2, 3, by applying Formula (C.4), we obtain the well-known values
2R,πR2, and 4πR3

3 , respectively. For n = 4, the volume of the sphere is π2R4

2 .



D

A Characterization of a Function

The goal of this section is to show that if h : N −→ R is an increasing
function such that h(2) = 2 and h(mn) = mh(n) + nh(m) for m,n ∈ N, then
h(n) = n log2 n for every n ∈ N1.

For a number x ∈ R, we denote the largest integer that is less than or
equal to x by �x�; the fractional part of x will be denoted by 〈x〉, where
〈x〉 = x− �x�.

The following technical lemma is a special case of a result of Dirichlet
(see[151], p.235).

Lemma D.1. Let α be a real number and let q be a positive integer. There

exists m such that 1 ≤ m < q and an integer n such that |mα− n| < 1
q
<

1
m

.

Proof. Divide the set I = {x ∈ R|0 ≤ x < 1} into q equal subintervals[
i−1
q ,

i
q

)
for 1 ≤ i ≤ q. Of the q + 1 numbers 〈nα〉, where 0 ≤ n ≤ q,

at least two, say 〈n1α〉 and 〈n2α〉 are in the same subinterval. This means
|〈n1α〉 − 〈n2α〉| < 1

q . Setting �n1α� = n′ and �n2α� = n′′ we obtain |n1α −
�n1α� − n2α + �n2α�| < 1

q , or |(n1 − n2)α − (n′ − n′′)| < 1
q . We can take

m = n1 − n2 ≥ 1 and n = n′ −m′′ in order to obtain the desired inequality.
	


Lemma D.2. If n ≤ mε < n+ε, then there exist m′ and n′ such that n′−ε <
m′ε < n′.

Similarly, if n− ε < mε < n, there exist n′′ and m′′ such that n′′ ≤ m′′ε <
n′′ + ε.

Proof. Let θ, σ > 0. We have θn+ σα ≤ (θm + σ)α < θn+ θε+ σα. Choose
θ > max{1, 1/ε}. Under this choice, the interval [θn + σα, θn + θε + σα) is
of length greater than 1, and therefore there is an integer m′ in this interval
for any choice of σ. This allows us to choose θ and σ such that θm+ σ = m′
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and θn + θε + σα = n′. Note that if we make these choices, then θn + σα =
n′ − θε > n′ − ε and therefore n′ − ε ≤ mα < n′.

The second part of the argument is similar and is left to the reader. 	


Lemma D.3. If h : N −→ R is a function such that

h(mn) = mh(n) + nh(m)

for every m,n ∈ N, then h(pk) = kpk−1h(p) for every p, k ∈ N and k ≥ 1.

Proof. The argument is by induction on k and is left to the reader. 	


Lemma D.4. If h : N −→ R is a function such that

h(mn) = mh(n) + nh(m)

for every m,n ∈ N, then

h(pk1
1 p

k2
2 · · · pkn

n ) = pk1
1 p

k2
2 · · · pkn

n

∑
1≤i≤n

kih(pi)
pi

.

Let � : N −→ R be the function given by

�(n) =
{

0 if n = 0,
h(n)

n if n > 0.

Note that �(mn) = �(m) + �(n) and therefore

�(pk1
1 p

k2
2 · · · pkn

n ) = �(pk1
1 ) + �(pk2

2 ) + · · ·+ �(pkn
n ).

Since �(pk) =
k

p
h(p) because of Lemma D.3, we obtain

�(pk1
1 p

k2
2 · · · pkn

n ) =
∑

1≤i≤n

kih(pi)
pi

,

which immediately gives the equality of the lemma. 	


Theorem D.5. Let h : N −→ R be a function such that h(p) = p log p if
p = 1 or if p is prime. If h(mn) = mh(n) + nh(m) for every m,n ∈ N, then
h(n) = n log n for every n ∈ N, n ≥ 1.

Proof. Since every positive integer n other than 1 can be written uniquely as
a product of powers of primes n = pk1

1 p
k2
2 · · · pkn

n , we have

h(n) = pk1
1 p

k2
2 · · · pkn

n

∑
1≤i≤n

kih(pi)
pi

= n
∑

1≤i≤n

ki log pi

= n log n

for n ≥ 2. 	
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Theorem D.6. Let h : N −→ R be an increasing function such that h(mn) =
mh(n) + nh(m) for every m,n ∈ N. If h(2) = 2, then h(n) = n log2 n for
n ∈ N.

Proof. Define the function b : {n ∈ N|n > 1} −→ R by b(n) = h(n)/(n∗log n).
We shall prove initially that if p > 2 is a prime number, then b(p) ≥ 1.

Let ε > 0 be a real number. Taking q < 1
ε in Lemma D.1, we obtain the

existence of m,n ∈ N such that |mα − n| < ε. In other words, we have
n− ε < mα < n+ ε. If n < mα < n+ ε, then by Lemma D.2 there are m′, n′

such that n′− ε < m′ε < n′. If n− ε < mα < n, then the same lemma implies
the existence of n′′,m′′ such that n′′ ≤ m′′ε < n′′ + ε.

If we choose α = log p, then we may assume that there are m,n ∈ N,
m,n ≥ 1 such that n ≤ m log p < n + ε. Equivalently, we have 2n ≤ pm <
2n 2ε. Since h is an increasing function, we obtain n2n ≤ h(pm), or n2n ≤
mpm−1h(p). Because of the definition of b we have n2n ≤ mpmb(p) log p, or
n2n ≤ b(p)pm log pm. In view of the previous inequality, this implies

n2n ≤ b(p)2n2ε(n+ ε)

or, equivalently,
b(p) ≥ n

2ε(n+ ε)
.

Taking ε→ 0, we obtain b(p) ≥ 1.
Similarly, there exists a number m ∈ N such that n − ε < m log p ≤ n.

A similar argument that makes use of Lemma D.2 shows that b(p) ≤ 1, so
b(p) = 1, which proves that h(p) = p log p for every prime p. 	
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isomorphic semilattices 176
isomorphism of Boolean algebras

194
iteration of a function 445
iterative function system 486

attractor of an 487
invariant set for an 486
similarity dimension of an 487

Jordan-Dedekind condition for
posets 152

key of a table 298
Kirkhoff’s law 112
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Kleitman Inequality 543
Kronecker function 163
Kruskal’s algorithm 102

large inductive dimension 462
lattice 177

Boolean 192
bounded 178
complement of an element in a

187
complementary elements in a

187
complete 188

isomorphism 189
morphism 189

distributive 184
interval in a 179
isomorphism 179
modular 180
morphism 179
projection in a 180
semimodular 182
sublattice of a 179

least element 134
least upper bound of a set 135
levelwise algorithm 287
Levenshtein distance between se-

quences 400
linear combination of an arbitrary

set 65
linear space 64

basis of a 65
inner product on a 66
linear combination of a finite

subset of a 65
n-dimensional 66
norm on a 67
real 64
set spanning a 65
set that generates a 65
subspace of a 65
zero element of a 64

linearly dependent set 65
linearly independent set 65
Lipschitz function 445

logarithmic submodular function
321

logarithmic supramodular function
321

logical implication between func-
tional dependencies 304

lower approximation of a set 334
lower bound 133
lower box-counting dimension

479

mapping 15
marginal totals of a contingency

matrix 73
mass distribution principle 485
matrix on a set 68
maximal element 136
maximal flow 112
maximal subdominant ultrametric

for a dissimilarity 374
measurable function 254
measurable space 252
measure 256

completion of a 272
generalized 321
outer 258

Carathéodory 449
Hausdorff-Besicovitch 483
Lebesgue 263
regular 263

measure space 256
medoid 514
Method I for constructing outer

measures 261
metric 352
χ2 394
discrete 353
Euclidean 382
Hausdorff 448
induced by a norm 382
Minkowski 382
Ocḧıai 393
Steinhaus transform of a 388
tree 352, 357

metric space 352
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r-cover of a 482
r-cover of a set in a 480
amplitude of a sequence in a

356
covering dimension of a 473
diameter of a 355
diameter of a subset of a 355
embedding of a 452
searching is a 402

external complexity of 409
internal complexity of 409

separate sets in a 355
minimal cut 114
minimal element 136
minimal hitting set of a hyper-

graph 120
minimal transversal of a hyper-

graph 120
minimax inequality for real num-

bers 77
minterms 199
modularity property of measures

257
monochromatic set 533
monoid 59
monotonic mapping 158
monotonicity of measures 256
monotonicity of the Cartesian

product 10
monotonicity of clusterings 505
morphism of posets 158
multicollection 46
multiset 44

carrier of a 44
multiplicity of an element of a

44
multiset difference 55
Munroe’s Method II 452
Möbius dual inversion theorem

326

negative region of a set 334
net 441
network 111
Newton’s binomial formula 43

non-Shannon entropy 311
normalized matching property 54

observation table 211, 215
occurrence of a sequence 28
occurrence of a symbol 28
one-to-one correspondence 16
open function 267
open set 225
open sphere 355
operation 57
n-ary 57
arity of an 57
associative 57
binary 57

unit of a 58
zero of a 58

commutative 57
idempotent 57
inverse of an element relative to

an 58
multiplicative inverse of an ele-

ment relative to an 58
unary 57
zero-ary 57

opposite element of an element
58

orbit of an element 75
order of a family of subsets of a set

472
order of a hypergraph 118
ordered pair 7

parameter space 563
partial order 129

discrete 129
extension of a 160
lexicographic 157
strict 129
trace of a 130
transitive reduction of a 132

partially ordered set 129
partition 32

block of a 32
covering of a 144
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Gini index of a 306
partition finer than another 32
set saturated by a 33
Shannon entropy of a 306

path that connects two vertices
85

perceptron 563
parameter space of a 563
threshold of a 563
weight vector of a 563

permutation 38
cyclic 39
cyclic decomposition of a 40
descent of a 40
even 41
inversion of a 40
odd 41

pigeonhole principle 536
pivot 402
poset 129

antichain in a 149
Artinian 151
atom in a 135
border of a subset of a 284
chain in a 148
closed interval in a 162
closure operator on a 191
co-atom in a 135
covering relation in a 132
dimension of a finite 169
dual of a 137
finite 129
graded 153
greatest element of a 134
height of a finite 153
height of an element of a 152
incidence algebra of a 163
incomparable elements in a

149
isomorphism 159
least element of a 134
length of a finite 153
level set of a graded 153
locally finite 162
multichain in a 148

Möbius function of a locally fi-
nite 166

negative border of a subset of a
284

Noetherian 151
open interval in a 162
order filter in a 168
order ideal in a 168
positive border of a subset of a

284
realizer of a 169
Riemann function of a locally fi-

nite 165
standard example 169
upward closed set in a 229
well-founded 151
well-ordered 150
width of a finite 153

positive region of a set 334
precompact set 442
premises of a rule 301
Prim’s algorithm 103
principal ideal 221
product of matrices 71
product of metric spaces 413
product of posets 155
product of the topologies 249
product of topological spaces 249
projection 25
projection of a table 48
projection of a tuple 48
projections of the Cartesian prod-

uct 50
projectivity rule 303
proper ancestor of a vertex 87
proper descendant of a vertex 87
purity of a cluster 522

quasi-ultrametric 354
query 285
query object 402
quotient algebra of an algebra and

a congruence 63
quotient set 33

range query 402
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rank of an implicant 204
reduct of a table 296
relation 10

acyclic 131
antisymmetric 14
arity of a 26
asymmetric 14
binary 26
collection of images of a set un-

der a 15
domain of a 11
dual class relative to a 15
empty 10
equivalence 30

positive set of an 337
set saturated by an 31

full 10
image of an element under a 15
inverse of a 11
irreflexive 14
n-ary 26
one-to-one 13
onto 13
polarity generated by a 190
power of a 12
preimage of an element under a

15
range of a 11
reflexive 14
symmetric 14
ternary 26
tolerance 32
total 13
transitive 14
transitive closure of a 142
transitive-reflexive closure of a

143
relation on a set 10
relation product 11
relational database 48
replacement 28
residual network of a network rel-

ative to a flow 114
ring 60

addition in a 60

multiplication in a 60
right distributivity laws in a 60
left distributivity laws in a 60

rough set 334

Schröder-Bernstein theorem 221
second axiom of countability for

topological spaces 238
selection criterion 496
selective set 34
self-conjugate partition of an inte-

ger 547
semi-metric 353
semigroup 59
semilattice 173

join 176
meet 176

semilattice morphism 176
separation properties of topologi-

cal spaces 247
sequence 25

Cauchy 439
components of a 25
concatenation 26
convergent 435
contracting 29
deletion of a symbol from a 398
divergent to +∞ 436
divergent to −∞ 436
expanding 29
graphic 81
infinite 27

ascending 150
descending 150

infix of a 27
insertion of a symbol in a 398
length of a 25
occurrence of a 28
of sets

contracting 29
convergent 29
limit of a 29
lower limit of a 29
monotonic 29
upper limit of a 29
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on a set 25
prefix of a 27
product 26
proper infix of a 27
proper prefix of a 27
proper suffix of a 27
Prüfer 108
subsequence of a 27
substitution of a symbol of a

398
suffix of a 27
unimodal 52

sequential cover of a set 263
set of colors 122
set of colors of a set coloring 533
set of finite sequences on a set 26
set of permutations 39
set of polynomials of an algebra

75
set of tuples of a heading 47
set product 25
set shattered by a collection of con-

cepts 551
Shannon entropy of a partition

306
similarity 445
similarity ratio 445
simple cycle 85
simple function on a set 19
simple hypergraph 118
simple path 85
small inductive dimension 462
soundness of Armstrong’s rules

301
spanning subgraph 88
specialization in a partially or-

dered set 284
Sperner family of sets 118
Sperner system 118, 539
Sperner’s theorem 540
square matrix 69
standard transposition 39
state of a relational database 48
Stirling numbers of the first kind

546

Stirling numbers of the second kind
538

strict order 129
strictly monotonic mapping 158
subalgebra of an algebra 63
subcollection 4
subcover of an open cover 238
subdistributive inequalities 184
subgraph 88
subgraph induced by a set of ver-

tices 88
subgroup 63
submodular function 321
submodular inequality 180
submodularity of generalized en-

tropy 321
submonoid 63
subset closed under a set of opera-

tions 143
substitution 398
sum of matrices 70
sum of square errors 496
sum of two multisets 45
supervised evaluation 520
supramodular function 321
supremum 135
surjection 16
symmetric difference 6
symmetric matrix 69
system of distinct representatives

53

table of a tabular variable 47
tabular variable 47
target of a functional dependency

proof 301
Tarski’s fixed-point theorem 221
tolerance 31
topological metric space 424

complete 439
large inductive dimension of a

462
separated r-set in a 480
small inductive dimension of a

462
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zero-dimensional 463
topological property 243
topological space 225
T0 248
T1 248
T2 248
T3 248
T4 248
r-separation number of a subset

of a 480
arcwise connected 268
border of a set in a 233
clopen set in a 231
closed cover in a 238
compact 239
compact set in a 240
connected 245
connected subset of a 245
continuous path in a 267
cover in a 238
dense set in a 230
disconnected 245
Hausdorff 249
locally compact 241
normal 249
open cover in a 238
precompact 442
regular 249
relatively compact set in a 240
separable 230
separated sets in a 266
set that separates two sets in a

466
subspace of a 229
totally disconnected 247

topologically equivalent metrics
425

topology 225
Alexandrov 229
basis of a 238
cofinite 229
discrete 226
finer 229
indiscrete 226
induced by a metric 424

subbasis of a 236
total order 148
totally ordered set 148
training set 337
transitive set 49
transitivity rule 300
transpose of a matrix 69
transposition 39
transversal of a hypergraph 120
tree 92

binary 97
almost complete 98
complete 97
left son of a vertex in an or-

dered 98
ordered 98
right son of a vertex in an or-

dered 98
equidistant 363
minimal spanning 102
root of a 95
rooted 95

height of a 95
height of a vertex in a 95
level in a 95
ordered 97

Rymon 106
spanning 95

triangular inequality 352

ultrametric 352
ultrametric inequality 352
ultrametric space 352
unbounded set 134
uncountable set 35
uniformly continuous function

426
union 4

associativity of 5
commutativity of 5
idempotency of 5

union of two multisets 45
unit matrix 70
unitary ring 61
unsupervised evaluation 520
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upper approximation of a set 334
upper bound 133
upper box-counting dimension

479
usual topology on R 226

value of a flow 112
value of a flow across a cut 114
Vapnik-Chervonenkis (VC) class

553
Vapnik-Chervonenkis dimension

551

vector normal to a hyperplane 68
vertex of a hypergraph 118

weight function 390
weight of an edge 101
well-ordering principle 150
word 26

zero flow 112
zero matrix 70
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